

You have Downloaded, yet Another Great Resource to assist you with your Studies ③

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

basic education

Department: Basic Education **REPUBLIC OF SOUTH AFRICA**

NATIONAL SENIOR CERTIFICATE

GRADE 12

MARKS: 200

This memorandum consists of 19 pages.

Please turn over

QUESTION 1: MULTIPLE-CHOICE QUESTIONS

1.1	B✓	(1)
1.2	D✓	(1)
1.3	C ✓	(1)
1.4	C ✓	(1)
1.5	B✓	(1)
1.6	D✓	(1)
1.7	A✓	(1)
1.8	B✓	(1)
1.9	A✓	(1)
1.10	B✓	(1)
1.11	B✓	(1)
1.12	B✓	(1)
1.13	D✓	(1)
1.14	D✓	(1)
1.15	A✓	(1)
1.16	C✓	(1)
1.17	A✓	(1)
1.18	B√	(1)
1.19	B✓	(1)
1.20	A✓	(1) [20]

QUESTION 2: SAFETY

2.1 **Safety – Coil spring compressor:**

- Make certain that the diameter of the compressor bolts can take the pressure of the coil spring. \checkmark
- Do not exceed the maximum pressure. ✓
- Make sure the compressors are clean and free from oil. ✓
- Ensure that the compressors are in a good working condition. \checkmark

(Any 2 x 1) (2)

2.2 **Safety – Hydraulic Press:**

- Take notice of the predetermined pressure of the hydraulic press. ✓
- Ensure the pressure gauge is in a good working order. ✓
- Platform on which the work piece rests must be rigid and square with the cylinder of the press. ✓
- The prescribed equipment must be used. \checkmark
- Check for oil leaks. ✓

2.3 **Safety – beam bender:**

- Ensure the beam is clamped parallel to the backboard. \checkmark
- Do not leave plastic beams loaded for any length of time, they tend to creep. ✓
- All the weight must be gently dropped onto the hanger as to reduce inaccuracies due to friction. ✓
- Do not exceed the tester's maximum load. \checkmark
- Make sure the tester is stable. ✓

(Any 2 x 1) (2)

(Any 3 x 1)

(3)

2.4 **Testers:**

2.4.1 **Brinell Tester:**

• The tester must be mounted rigidly on a worktable. \checkmark

2.4.2 **Bearing and gear Puller:**

- Make sure that the puller is at 90° to the work piece before you start to pull. ✓
- Ensure that the clamps are tight and will not slip from the work piece. ✓

(Any 1 x 1) (1)

2.4.3 **Torsion tester:**

Get specification (torsion) of the different materials and the size of rods you would like to test. \checkmark

(1) **[10]**

(1)

QUESTION 3: TOOLS AND EQUIPMENT

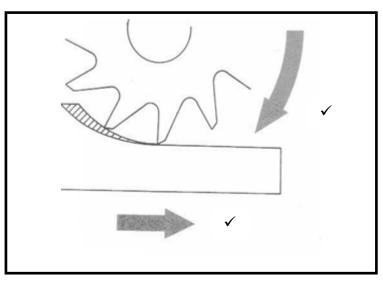
3.1	Fuel pressure:	
	 Faulty diaphragm ✓ Clogged fuel filter ✓ 	
	 Faulty non return valves ✓ 	
	 Worn gasket ✓ 	
	(Any 2 x 1)	(2)
3.2	Precision measuring instruments:	
	3.2.1 Depth micro-meter ✓	
	Vernier calliper ✓ (Any 1 x 1)	(1)
	3.2.2 Screw-thread micro-meter ✓	(1)
3.3	Depth micro-meter reading:	
	Reading = 50 + 1,5+ 0,49 ✓ = 51,99 mm. ✓	(2)
3.4	Multimeter measurements:	
	 DC current measurement ✓ 	
	 DC voltage measurement ✓ AC measurement ✓ 	
	 Resistance measurement ✓ 	
	 Diode measurement ✓ 	
	 Continuity measurement ✓ 	(-)
	(Any 2 x 1)	(2)
3.5	Trace the cylinder leakage in an engine:	
	 Listen to at the carburettor for a hissing noise. ✓ 	
	 Listen at the exhaust pipe for a hissing noise. ✓ Listen for hissing noise in the dipstick hole. ✓ 	
	 Listen to hissing noise by removing the filler cap on the tappet cover. ✓ 	
	 By checking whether there are bubbles in the radiator water for blown cylinder head gasket or cracked cylinder block. ✓ 	
	(Any 2 x 1)	(2)
3.6	Uses of cooling pressure tester:	
	• To test if the pressure cap on the cooling system operates according to the prescribed pressure of the system. ✓	

• To pump compressed air into the cooling system to determine whether they are any water leakage in the system. ✓

(2) **[12]**

QUESTION 4: MATERIALS

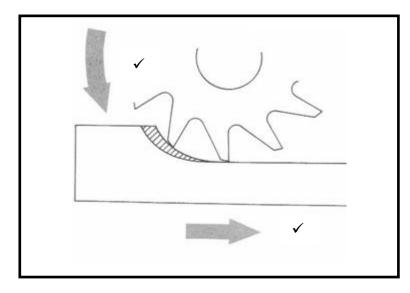
4.1	Propertie	es/characteristics:		
	4.1.1	Cementite:Hard and brittle √√		(2)
	4.1.2	 Pearlite: Good ductility ✓ Very hard ✓ Strong and tough ✓ Resistance to deformation ✓ 	(Any 2 x 1)	(2)
4.2	Iron –ca	rbon equilibrium diagram		
	4.2.1	lron –carbon equilibrium diagram ✓		(1)
	4.2.2	A – Ferrite + Pearlite \checkmark B – Austenite + Ferrite \checkmark C – Austenite \checkmark D – Austenite + Cementite \checkmark E – Ferrite + Cementite \checkmark		(5)
	4.2.3	Austenite:		
		Soft, ✓ grain structure fine ✓		(2)
4.3	720 °C ✓			(1) [13]


QUESTION 5: TERMINOLOGY

Indexing =
$$\frac{40}{n}$$

= $\frac{40}{118} \div \frac{2}{2}$
= $\frac{20}{59}$

No full turns and 20 holes in a 59-hole plate


5.2 Milling processes:

• Up-cut milling

~

• Downcut milling

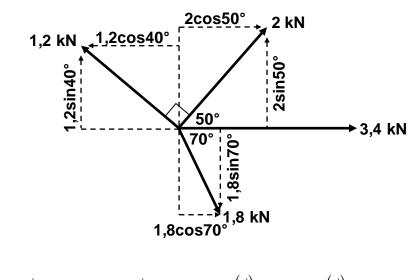
(2)

(2)

5.3	Calcula	te: Gib head k	key:			
	5.3.1			$=\frac{D}{4}$ = $\frac{102}{4}$ = 25,5 mm	√ √	(2)
	5.3.2		Thickne	$Pess = \frac{D}{6}$ $= \frac{102}{6}$ $= 17 \text{ mm}$	√ √	(2)
	5.3.3		Length	n= D×1.5 = 102×1.5 = 153 mm	\checkmark	(2)
	5.3.4		Thickness at sm	= 1 t = 1	$\frac{L}{100} \checkmark \\ 7 - \frac{153}{100} \checkmark \\ 7 - 1,53 \checkmark \\ 5,47 \text{ mm} \checkmark $	(4)
5.4	Calcula	te – Spur gea	r:			
	5.4.1	Addendum	= m = 3 mm ✓			(1)
	5.4.2	Dedendum	= 1,157m = 1,157 x 3 ✓ = 3,47 mm ✓	or	= 1,25m = 1,25 x 3 ✓ = 3,75 mm ✓	(2)
	5.4.3	Clearance	= 0,157m = 0,157 x 3 ✓ = 0,47 mm ✓	or	= 0,25m = 0,25 x 3 ✓ = 0,75 mm ✓	(2)
	5.4.4	PCD = m = 3>	\checkmark			(2)

5.4.5	OD = PCD + 2m = 180 + 2(3) = 180 + 6 \checkmark = 186 mm \checkmark			(2)
5.4.6	Cutting depth = 2,157 m = 2,157 x 3 \checkmark = 6,47 mm \checkmark	or	= 2,25 m = 2,25 x 3 ✓ = 6,75 mm ✓	(2)
5.4.7	Circular pitch = m x π = 3 x π \checkmark = 9,43 mm \checkmark			(2) [30]

QUESTION 6:	JOINING METHODS


6.1	Slag inc	lusion ✓		(1)
6.2	 Sha Unit Ove Unc Per Roc 	ape of profile ✓ formity of surface ✓ erlap ✓ dercutting ✓ netration bead ✓ of groove ✓ ack free ✓ (Any 4	x 1)	(4)
6.3	WeJoirElection	s of incomplete penetration: Id speed too fast ✓ nt design faulty ✓ ctrode too large ✓ rrent too low ✓		
		(Any 2	x 1)	(2)
6.4	 Adji Cor Cor Cor 	tion of lack of fusion ust electrode size ✓ rrect preparation of joint ✓ rrect weld current ✓ rrect arc length ✓ rrect weld speed ✓ (Any 2	x 1)	(2)
6.5	Destruc	ctive test		
	6.5.1	Machinability test 🗸		(1)
	6.5.2	Nick-break test ✓		(1)
	6.5.3	Bend test ✓		(1)
6.6	 Clear Spration Exce Allow Spratic crack 	netration test n the weld that needs to be tested. ✓ y dye onto the surface and leave to penetrate. ✓✓ ess dye is cleaned away with a cleaning agent. ✓ y surface to dry. ✓ y a developer onto the surface to bring out the dye trapped in <. ✓ dye will show all the surface defects. ✓	1 the	(7)

6.7 Functions of MIG/MAGS components

	0.7.1	Feeds the consumable electrode wire to the welding gun at a constant predetermined speed. $\checkmark \checkmark$	(2)
	6.7.2	Welding gun Activates the supply of gas, power and wire feed $\checkmark \checkmark$	(2)
6.8		e of inert gas t gas shields the molten pool from the atmospheric gases. $\checkmark\checkmark$	(2) [25]

QUESTION 7: FORCES

7.1 Forces

 $\Sigma HC = 3.4(\sqrt{}) + 1.8\cos 70^{\circ} (\sqrt{}) - 1.2\cos 40^{\circ} (\sqrt{}) + 2\cos 50^{\circ} (\sqrt{})$ = 3.4 + 0.62 - 0.92 + 1.29 = 4.39 kN ($\sqrt{}$)

 $\sum VC = 1,2\sin 40 (\sqrt{)} + 2\sin 50^{\circ} (\sqrt{)} - 1,8\sin 70^{\circ} (\sqrt{)})$ = 0,77 + 1,53 - 1,69 = 0,61 kN (\sqrt{)}

OR

Horizontal component	Magnitudes	Vertical component	Magnitudes
-1,2cos40°√	-0,92 kN	1,2sin40√	0,77
3,4 ✓	3,4kN	0	0
2cos50°√	1,29kN	2sin50° ✓	1,53
1,8cos70°√	0,62kN	-1,8sin70°√	1,69
TOTAL	4,39kN ✓	TOTAL	0,61kN ✓

$$R^{2} = HC^{2} + VC^{2}$$

$$R = \sqrt{4,39^{2} + 0,61^{2}} \qquad \checkmark$$

$$R = 4,43kN \qquad \checkmark$$

$$Tan \theta = \frac{VC}{HC}$$

$$= \frac{0,61}{4,39} \qquad \checkmark$$

$$\theta = 7,91^{\circ}$$

 $R = 4,43 \text{ N at } 7,91^{\circ} \text{ north of east}$ (13)

7.2 Stress and Strain

$$A = \frac{\pi (D^2 - d^2)}{4} \checkmark$$

$$A = \frac{\pi (0.098^2 - 0.067^2)}{4}$$

$$= 4.02 \times 10^{-3} m^2 \checkmark$$

$$\sigma = \frac{F}{A}$$

$$\sigma = \frac{40000}{4,02 \times 10^{-3}}$$

$$\sigma = 9950248,76Pa$$

$$\sigma = 9,95 \text{ MPa}$$

7.2.2 **Strain**:

$$\epsilon = \frac{\sigma}{E} \qquad \checkmark$$

$$\epsilon = \frac{9,95 \times 10^{6}}{90 \times 10^{9}} \qquad \checkmark$$

$$= 0,11 \times 10^{-3}$$
or 1,11 \times 10^{-4} \qquad \checkmark \qquad (3)

Copyright reserved

(5)

7.2.3 Change in length $\epsilon = \frac{\Delta l}{ol}$ $\Delta l = \epsilon \times ol$ $= (0,11 \times 10^{-3}) \times 0,08$ $= 8.8 \times 10^{-6} m$ $= 8.8 \times 10^{-3} mm$ (3)

7.3 Moments

Calculate A. Moments about B

$$\sum RHM = \sum LHM \qquad \checkmark (A \times 11,6) = (200 \times 5,8) + (928 \times 5,8) + (600 \times 2,8) \qquad \checkmark 11,6A = 1160 + 5382,4 + 1680 \qquad \checkmark \frac{11,6A}{11,6} = \frac{8222,4}{11,6} \qquad \checkmark A = 708,83 N \qquad \checkmark$$

Calculate B. Moments about A

$$\sum_{\substack{\text{LHM}=\sum \text{RHM}\\(B\times 11,6)=(600\times 8,8)+(928\times 5,8)+(200\times 5,8)\\11,6B=5280+5382,4+1160\\\frac{11,6B}{11,6}=\frac{11822,40}{11,6}\\B=1019,17\text{ N}}$$

(6) **[30]**

QUESTION 8: MAINTENANCE

8.1	Preventative maintenance Can be described as maintenance of equipment or system before a fault occurs. $\checkmark \checkmark$	(2)
8.2	Lock out Locking out means that the machine's start switch cannot be activated without the knowledge of a servicing technician otherwise an accident would occur. $\sqrt[4]{}$	(2)
8.3	Clutch free-play The distance the pedal moves before the slack is taken from the linkage and release bearing. $\checkmark\checkmark$	(2)
8.4	Viscosity index Viscosity index is a measure of how much the oil's viscosity changes as temperature changes. \checkmark	(1)
8.5	 Replace clutch plate: Worn friction linings. ✓ Weak or broken springs. ✓ Glazed friction linings due to overheating. ✓ Oil on friction linings. ✓ 	(2)
8.6	Grease – high viscosity To ensure that the grease coats and sticks \checkmark to the bearing surfaces it is lubricating. \checkmark	(2)
8.7	Cutting fluid Mixture of soluble oil \checkmark and water. \checkmark	(2)
8.8	Viscosity of cutting fluid Has a low viscosity to allow easy flow \checkmark and effective dissipation of excess heat. \checkmark	(2) [15]

QUESTION 9: SYSTEMS AND CONTROL

9.1 Gear drives

9.1.1 **Rotation frequency of the output shaft**

$$\frac{N_{INPUT}}{N_{OUTPUT}} = \frac{T_B \times T_D}{T_A \times T_C}$$

$$N_{OUTPUT} = \frac{T_A \times T_C}{T_B \times T_D} \times N_{INPUT}$$

$$N_{IOUTPUT} = \frac{18 \times 16}{36 \times 46} \times 1660$$

$$= 288,70 \text{ r/min}$$

9.2.2 Velocity Ratio

$$VR = \frac{N_{INPUT}}{N_{OUTPUT}}$$

$$= \frac{1660}{288,70}$$

$$= 5,75:1 \qquad \checkmark \qquad (2)$$

9.2 Belt Drives

9.2.1 Rotation frequency of the driver pulley

$$V = \frac{\pi(D+t) \times N}{60} \qquad \checkmark$$

$$N = \frac{V \times 60}{\pi(D+t)} \qquad \checkmark$$

$$N = \frac{36 \times 60}{\pi(230+12) \times 10^{-3}} \qquad \checkmark$$

$$= 2841,11 \text{ r/min} \qquad \checkmark$$

(4)

(3)

✓

 \checkmark

9.2.2 **Power transmitted**

$$\frac{T_1}{T_2} = 2,5$$

$$T_1 = 2,5 \times T_2$$

$$= 2,5 \times 110$$

$$= 275 N$$

$$P = (T_1 - T_2)V \qquad \checkmark P = (275 - 110) \times 36 = 5940W \qquad \checkmark = 5,94 kW \qquad \checkmark$$
(4)

9.3 Hydraulics

9.3.1 Fluid pressure

$$A_{B} = \frac{\pi D^{2}}{4}$$

$$= \frac{\pi \times 0.075^{2}}{4}$$

$$= 4.42 \times 10^{-3} \text{ m}^{2}$$

$$P_{B} = \frac{F}{A_{B}}$$

= $\frac{700 \times 10}{4.42 \times 10^{-3}}$ Pa

= 1583710,41Pa

= 1583,71 kPa ✓

. ,

(4)

(2) **[25]**

Effort on piston A 9.3.2

$$A_{A} = \frac{\pi D^{2}}{4}$$

$$= \frac{\pi \times 0.04^{2}}{4}$$

$$= 1,256 \times 10^{-3} \text{ m}^{2}$$

$$P_{A} = \frac{F_{A}}{A_{A}}$$

$$F_{A} = P_{A} \times A_{A}$$

$$= (1583,71 \times 10^{3}) \times (1,256 \times 10^{-3})$$

$$= 1,990,10 \text{ N}$$

$$= 1,99 \text{ kN}$$

ABS 9.4

Prevents wheel from locking during heavy breaking. $\checkmark\checkmark$	(2)
---	-----

Seat belt 9.5

A seat belt has to be activated for its safety to be functional. $\checkmark\checkmark$

(Any 2 x 1)

(Any 1 x 1)

(2)

(1)

(6)

QUESTION 10: TURBINES

10.1 Impulse Turbine

- Waterwheel \checkmark
- Pelton ✓
- Turgo ✓
- Michell Banki/Crossflow/Ossberger√
- Jonval turbine ✓
- Reverse overshot waterwheel \checkmark
- Archimedes' screw turbine ✓

10.2 Water turbine

- 10.2.1 Water turbine ✓
 - Kaplan-turbine ✓
 - Reaction turbine ✓
- 10.2.2 **Parts**
 - A Wicked gate ✓
 - B Rotor ✓
 - C Stator ✓
 - D Shaft ✓
 - E Water-flow ✓
 - F Blades \checkmark

10.2.3 Advantages of water turbine

- Low maintenance ✓
- No need for lubrication ✓
- Fewer moving parts ✓
- Environmental friendly ✓
- Cost effective ✓

(Any 2 x 1) (2)

10.3 Turbines

10.3.1 Advantage of supercharger:

- Increases the output power of the engine. \checkmark
- A smaller engine fitted with a centrifugal blower delivers the same power as a larger engine. ✓
- It eliminates lack of oxygen above sea level. \checkmark
- Increases the volumetric efficiency of the engine. \checkmark
- With the aid of the intercooler both the power and the torque output of the engine are increased. ✓

(Any 2 x 1) (2)

19

Advantages of steam turbines: 10.3.2

- It is compact. ✓ •
- No lubrication is required. \checkmark •
- Steam turbine speeds can be more accurately regulated. \checkmark •
- A variety of fuels can be used to obtain steam. \checkmark •
- Steam turbines are more economical. ✓ •
- Higher speeds can be obtained as compared to internal • combustion engine. \checkmark
- Convert heat energy into mechanical energy. ✓ •

(Any 2 x 1) (2)

10.3.3 Advantages of gas turbines:

- Very high power to weight ratio \checkmark
- Smaller than most reciprocating engines of the same power • rate √
- Moves in one direction only, with far less vibration \checkmark •
- Low operating pressures ✓ ٠
- High operating speeds ✓ •
- Low lubricating oil cost and consumption \checkmark •

(Any 2 x 1) (2)

10.4 Turbo lag

It is a delay \checkmark between pushing on the accelerator \checkmark and feeling turbo kick in. √

(3) [20]

TOTAL: 200