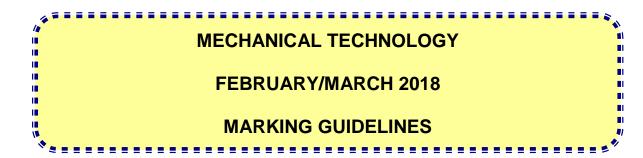


You have Downloaded, yet Another Great Resource to assist you with your Studies ③

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za



basic education

Department: Basic Education **REPUBLIC OF SOUTH AFRICA**

NATIONAL SENIOR CERTIFICATE

GRADE 12

MARKS: 200

These marking guidelines consist of 21 pages.

Please turn over

QUESTION 1: MULTIPLE-CHOICE QUESTIONS

1.1	C✓	(1)
1.2	C✓	(1)
1.3	B✓	(1)
1.4	D✓	(1)
1.5	C✓	(1)
1.6	D✓	(1)
1.7	A 🗸	(1)
1.8	A ✓	(1)
1.9	A ✓	(1)
1.10	B✓	(1)
1.11	A✓	(1)
1.12	C✓	(1)
1.13	B✓	(1)
1.14	A✓	(1)
1.15	D✓	(1)
1.16	A✓	(1)
1.17	C✓	(1)
1.18	A✓	(1)
1.19	B✓	(1)
1.20	A✓	(1) [20]

QUESTION 2: SAFETY

2.1 **Spring tester**

- Use correct attachments of the valve spring tester to compress the spring. ✓
- Do not exceed the prescribed pressure. ✓
- Ensure that the spring does not slip out. ✓

(ANY 2 x 1) (2)

2.2 Welding helmet

- To protect your eyes against the dangerous ultra-violet rays. ✓
- To protect your skin against the dangerous ultra-violet rays. ✓
- To protect your eyes against the sparks. ✓
- To protect your skin against the sparks. ✓

(ANY 1 x 1) (1)

(1)

2.3 **Spot welding**

■ To prevent the electrodes from overheating. ✓

2.4 Testers

2.4.1 Brinell tester

- The tester must be mounted on the rigid spot on a workbench
- The force must be applied at an angle of 90° to the test piece \checkmark
- Do not exceed the prescribed load \checkmark
- Make sure the test piece is placed securely into position ✓

(ANY 1 x 1) (1)

2.4.2 **Tensile tester**

- Make sure all safety guards are in place ✓
- Do not exceed the prescribed load \checkmark
- See that the test piece is securely placed in position \checkmark
- Make sure the dial indicator is mounted properly ✓

(ANY 1 x 1) (1)

2.4.3 **Torsion tester**

- Fasten the tester to the workbench \checkmark
- When you add pieces of different mass, you should attach them very gently otherwise you could get a skew reading of the torsion on the rod ✓
- Get specification (torsion) of the different materials and of the size rods you would like test ✓

(ANY 1 x 1) (1)

2.5 Bearing puller

Perpendicular or 90° to the bearing. ✓

(1)

2.6 Cylinder leakage tester

2.6.1	٠	To prevent damage to the seals and tester \checkmark
	•	To ensure the correct reading \checkmark

(ANY 1 x 1) (1)

- 2.6.2 To prevent damage to the tester and spark plug hole or • injector hole ✓
 - To ensure the correct reading \checkmark •

(ANY 1 x 1) (1)

[10]

4

(2)

QUESTION 3: TOOLS AND EQUIPMENT

3.1 **Testers**

3.1.1 **Cylinder leakage tester**

- Is used to determine a leakage in the cylinder ✓.
- Determine the volume of leakage ✓

3.1.2 **Fuel pressure tester**

- Is used to test the fuel operating pressure in the system ✓
- Is used to test the fuel pressure in the fuel line that runs to the direct injection. ✓

3.1.3 **Torsion tester**

- Is used to investigate the relationship between momentum or torque applied to material ✓
- Is used to investigate influence of material length on torsional deflection. ✓ (2)

3.2 **Reasons for high CO₂ reading**

- Lean fuel mixture setting ✓
- Low compression ✓
- Faulty high tension leads ✓

(ANY 2 x 1) (2)

(2)

3.3 MIGS/MAGS-welding

3.3.1 Reasons for using inert gas during MIGS/MAGS welding

- Stabilises the arc on the parent metal ✓
- Shields the arc and weld pool from atmospheric gases like oxygen ✓

3.3.2 Advantages of MIGS/MAGS welding

- Can weld in any position ✓
- Less operator skill required ✓
- Continuous welding can be done ✓
- Causes less deformation ✓
- Faster than arc welding ✓
- Minimal post weld cleaning ✓
- No slag removal is required ✓

(ANY 2 x 1) (2) [12]

QUESTION 4: MATERIALS

Characteristics of structures				
4.1.1	 Austenite Soft ✓ Coarse grain structure ✓ Non-magnetic ✓ 	(ANY 2 x 1)	(2)	
4.1.2	 Ferrite Soft ✓ Ductile ✓ Magnetic ✓ 			
		(ANY 2 x 1)	(2)	
Iron-ca	rbon equilibrium diagram			
4.2.1	 Lower critical point (AC₁) of steel The structure starts to change √√ 		(2)	
4.2.2		es √√		
		(ANY 1 x 2)	(2)	
• To	produce a hard face with a tough core. \checkmark		(2)	
• To	increase the lifespan of the camshaft \checkmark			
- 10	Similars Similaroos Sudood by Hardoning.	(ANY 2 x 1)	(2)	
			(1)	
	-		[13]	
	 4.1.1 4.1.2 Iron-ca 4.2.1 4.2.2 Reason To To Reason To To Heat tree 	 4.1.1 Austenite Soft ✓ Coarse grain structure ✓ Non-magnetic ✓ 4.1.2 Ferrite Soft ✓ Ductile ✓ Ductile ✓ Magnetic ✓ Iron-carbon equilibrium diagram 4.2.1 Lower critical point (AC₁) of steel The structure starts to change ✓✓ 4.2.2 Higher critical point (AC₃) of steel The structure turns into complete Austenite ✓✓ The steel completely loses its magnetic properties The structure turns into its finest grain size ✓✓ Reasons to enhance properties of a crankshaft To produce a hard face with a tough core. ✓ 	 4.1.1 Austenite Soft ✓ Coarse grain structure ✓ Non-magnetic ✓ 4.1.2 Ferrite Soft ✓ Ductile ✓ Magnetic ✓ 4.1.2 Ferrite Soft ✓ Ductile ✓ Magnetic ✓ 4.1.2 Ferrite Soft ✓ Ductile ✓ Magnetic ✓ 4.2.1 Lower critical point (AC₁) of steel The structure starts to change ✓✓ 4.2.2 Higher critical point (AC₃) of steel The structure turns into complete Austenite ✓✓ The steel completely loses its magnetic properties ✓✓ The structure turns into its finest grain size ✓✓ (ANY 1 × 2) Reasons to enhance properties of a crankshaft To produce a hard face with a tough core. ✓ To induce toughness ✓ Reasons for the tempering of a camshaft To increase the lifespan of the camshaft ✓ To eliminate brittleness caused by hardening. ✓ (ANY 2 × 1) Heat treatment process on piston rings 	

(2)

(2)

(2)

(3)

QUESTION 5: TERMONOLOGY

Key dimensions 5.1

The width of the key 5.1.1

$$Width = \frac{D}{4}$$
$$= \frac{120}{4}$$
$$\checkmark$$
$$= 30 mm$$

5.1.2 The thickness of the key

$$Thickness = \frac{D}{6}$$
$$= \frac{120}{6}$$
$$\checkmark$$
$$= 20 mm$$

5.1.3 The length of the key

$Length = D \times 1.5$	\checkmark	
$= 120 \times 1.5$		
= 180 <i>mm</i>	\checkmark	

5.2 Indexing

Indexing $=\frac{40}{2}$	
n	
$=\frac{40}{124}\div\frac{2}{2}$	\checkmark
$-\frac{20}{20}$	\checkmark
62 No full turns and 20 holes in a 62 hole circle	✓

No full turns and 20 holes in a 62 hole circle

5.3 Height of screw the screw thread

$$H = 0.866P$$

= 0.866 × 3
= 2.6 mm \checkmark (2)

5.4 Gear terminology

5.4.1	Addendum = m = 3 mm	✓			(1)
5.4.2	Dedendum = 1,157 m = 1,157 x = 3,47 mm	3 🗸	or	=1,25 m =1,25 x 3 ✓ =3,75 mm ✓	(2)
5.4.3	Clearance = 0,157 m = 0,157 x = 0,47 m	3 ✓	or	=0,25m =0,25 x 3 ✓ =0,75 mm ✓	(2)
5.4.4	$Module = \frac{PCD}{T}$ $PCD = m \times T \qquad \checkmark$ $= 3 \times 48$ $= 144mm \qquad \checkmark$				(2)
5.4.5	OD = PCD + 2m = 144 + 2(3) = 144 + 6 = 150 mm ✓				(2)
5.4.6	Cutting depth = 2,157 = 2,157 = 6,47 m	х З	or	=2,25m ✓ =2,25 x 3 =6,75 mm ✓	(2)
5.4.7	Circular pitch = m x π = 3 x π = 9,42 mr	√ n √			(2)
Setting	of the lathe and cutting	tool to	cut a me	tric V-screw thread:	(-)

- Set the lathe to the correct speed for screw cutting ✓
 - Set the lead screw according to the required pitch ✓
 - Set the dial gauge to position with the required worm gear \checkmark
 - Set the compound slide to half the included angle of the thread (30°) \checkmark
 - Set the cutting tool centre height and 90° to the work piece with the help of a centre gauge ✓
 - Set cross slide and compound slide collars to zero with the tool touching the work piece ✓

(6) **[30]**

5.5

QUESTION 6: JOINING METHODS

6.1 Welding defects

6.1.1 Slag inclusion

- Welding speed too fast ✓ •
- Not removing the slag from the previous weld run before • welding the next run \checkmark
- Current too low ✓

6.1.2 **Incomplete penetrations**

- Welding speed too fast ✓ •
- Faulty joint design ✓ •
- Electrode too large ✓ •
- Current too low ✓ •

(ANY 2 x 1) (2)

(ANY 2 x 1)

(2)

6.2 Atmospheric contamination during MIGS/MAGS welding

- Inadequate shielding gas flow ✓ •
- Excessive shielding gas flow ✓ •
- Severely clogged nozzle ✓ •
- Damaged gas supply system ✓
- Excessive wind in the welding area \checkmark •

(ANY 2 x 1) (2)

6.3 Nick break test

- Make a hacksaw cut at both edges, through the centre of the weld \checkmark
- Place the saw-nicked specimen on two steel supports ✓ •
- Use a sledge hammer to break the specimen by striking it in the zone where you made the saw cuts ✓
- Defects like incomplete fusion, slag inclusion and brittleness will be • exposed in the break ✓
- Any defects bring it to the attention to the welder to rectify it \checkmark (5)

6.4 **Reasons for destructive tests**

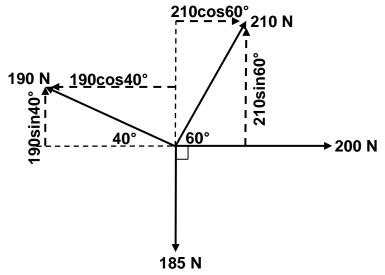
6.4.1	Bend test To determine the ductility/elongation $\checkmark \checkmark$ of the weld metal.	(2)
6.4.2	Machinability test To determine the welds hardness ✓ and its strength. ✓	(2)
X-ray te	est	

	(0)
To detect internal defects in the weld metal $\checkmark \checkmark$	(2)
	(-)

6.5

9

6.6 Weld crater


Forms where welding is resumed at the bottom of the previous weld instead	
of on the top $\checkmark \checkmark$	(2)

6.7 MIGS/MAGS welding

6.7.1	Welding process MIGS/MAGS welding ✓	(1)
6.7.2	 Labelling A. Parent metal ✓ B. Arc ✓ C. Electrode wire ✓ D. Gas shroud ✓ E. Shielding gas ✓ 	(5) [25]

QUESTION 7: FORCES

7.1 **Resultant**

$\Sigma HC = 200 + 210\cos 60 - 190\cos 40^{\circ}$	$\checkmark \checkmark \checkmark$	
=200+105-145.55	\checkmark	(A)
= 159,45 N	v	(4)
$\Sigma VC = 210 \sin 60^\circ + 190 \sin 40^\circ - 185$	$\checkmark\checkmark$	
=181,87 + 122,13 - 185 =119 N	\checkmark	(3)

Horizontal components	Magnitudes	Vertical components	Magnitudes
200N	200 N ✓	210NSin60 ^o	181,87N ✓
210N	105 N ✓	190NSin40 ⁰	122,13 N ✓
190N Cos40 ⁰	-145,45 N ✓	-185 N	-185 N
TOTAL	159,45 N ✓	TOTAL	119 N ✓

$$E^{2} = HC^{2} + VC^{2}$$

$$E = \sqrt{159,45^{2} + 119^{2}}$$

$$E = 198,96 N$$

$$Tan \quad \theta = \frac{VC}{HC}$$

$$= \frac{119}{159,45}$$

$$= 36,73^{\circ}$$

$$E = 198,96N \quad 36,73^{\circ} \text{ south of west}$$

$$OR$$

$$= 36^{\circ}44' \text{ minutes south of west}$$

$$(3)$$

7.2 Stress and Strain

7.2.1 Resistance area

$$A = \frac{\pi (D^2 - d^2)}{4} \checkmark$$

$$= \frac{\pi (0,056^2 - 0,038^2)}{4}$$

$$= 1,33 \times 10^{-3} m^2 \checkmark$$
(2)

7.2.2 **Stress**

$$Stress = \frac{force}{area} \checkmark$$

$$Stress = \frac{20 \times 10^{3}}{1,33 \times 10^{-3}} \checkmark$$

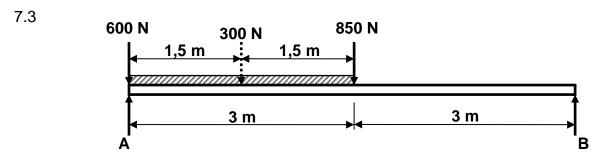
$$= 15037593,98 \ Pa$$

$$Stress = 15,04 MPa \checkmark$$
(3)

7.2.3 **Strain**

$$Strain = \frac{\Delta l}{\partial L} \qquad \checkmark$$

$$Strain = \frac{50 \cdot 49,975}{50} \qquad \checkmark$$


$$Strain = \frac{0,025}{50}$$

$$= 0,5 \times 10^{-3} \qquad \checkmark$$
(3)

7.2.4 Young's Modulus of Elasticity

Youngs Modulus of Elasticity =
$$\frac{Stress}{Strain}$$

 $E = \frac{15,04 \times 10^6}{0,5 \times 10^{-3}}$
= 30,08 × 10⁹ Pa
= 30,08 GPa \checkmark (3)

7.3 Moments

Calculate B. Moments about A:

$$\sum LHM = \sum RHM$$

$$(B \times 6) = (300 \times 1,5) + (850 \times 3)$$

$$\frac{6B}{6} = \frac{3000}{6}$$

$$B = 500 N$$

Calculate A. Moments about B:

$$\sum RHM = \sum LHM \qquad \checkmark (A \times 6) = (850 \times 3) + (300 \times 4,5) + (600 \times 6) \qquad \checkmark 6A = 2550 + 1350 + 3600 \frac{6A}{6} = \frac{7500}{6} A = 1250 N \qquad \checkmark$$

(6) **[30]**

QUESTION 8: MAINTENANCE

8.1 Reason using SAE 20W50

This to ensure that the oil is able to satisfy the operational \checkmark requirements over a range of temperature \checkmark from start-up to running hot.

8.2 Maintain V-belt drive systems

- Check the contact surfaces of the pulley to prevent the belt from being damaged.√
- Check the belt condition and replace if it is worn. ✓
- Correct installation procedure must be followed. ✓
- Belt drives should be well guarded to prevent foreign objects to come into contact with the belts and pulleys. ✓
- Keep guard mesh free of papers, rags, etc. that can cause insufficient air flow. ✓
- Check that the belt deflection is according to specification. ✓
- Store replacement belts in a cool, well ventilated place. ✓
- Correct alignment of pulleys. ✓

(ANY 2 x 1) (2)

8.3 Flash point

It is the lowest temperature \checkmark at which the oil gives off vapours \checkmark which can ignite. \checkmark

(3)

(2)

8.4 **Maintaining cutting fluid**

- Avoid contamination of the cutting fluid by draining and regularly replacing it. \checkmark
- Always clean the machine's splash tray of metal cutting after use. \checkmark
- Regularly wipe cutting fluid splashes of machine parts. ✓
- Ensure that the sump is topped up from time to time and check that there is sufficient flow of cutting fluid to the cutting tool. \checkmark

(ANY 2 x 1) (2)

8.5 **Functions of the clutch plate**

- It provides friction between the flywheel and pressure plate. ✓
- It serves as a link between the clutch and the gearbox main shaft. \checkmark (2)

8.6 **Reasons for skimming the flywheel**

- To remove the grooves caused by the clutch plate. \checkmark
- To ensure a full contact surface between the flywheel and the clutch plate. \checkmark
- To prolong the life of the clutch plate. ✓

(ANY 2 x 1) (2)

8.7 **Properties of grease**

- It must be water resistant, it must not mix with water \checkmark
- Prevents rust/corrosion ✓
- Good for load pressures ✓
- High melting point ✓
- Low freezing point ✓
- Prevent gumming ✓
- Be able to lubricate ✓
- High viscosity ✓

(ANY 2 x 1) (2)

[15]

(3)

QUESTION 9: SYSTEMS AND CONTROL

9.1 Gear drives

9.1.1 Rotation frequency of input shaft

$$\frac{N_A}{N_F} = \frac{T_B \times T_D \times T_F}{T_A \times T_C \times T_E}$$

$$N_A = \frac{T_B \times T_D \times T_F \times N_F}{T_A \times T_C \times T_E}$$

$$= \frac{36 \times 46 \times 80 \times 160}{20 \times 18 \times 42}$$

$$= 1401,90 \, r/\min$$

9.1.2 Velocity ratio

$$VR = \frac{N_A}{N_F} \qquad \checkmark VR = \frac{1401,90}{160} \qquad \checkmark = 8,76:1 \qquad \checkmark$$
(2)

Copyright reserved

(2)

9.2 Belt drives

9.2.1

1 Rotation frequency of driver pulley

$$N_{DR} \times D_{DR} = N_{DN} \times D_{DN}$$

$$N_{DR} = \frac{N_{DN} \times D_{DN}}{D_{DR}}$$

$$= \frac{733,33 \times 0,36}{0,24}$$

$$= 2000 r/\min$$

$$2000r/\min$$
 \checkmark (3)

9.2.2 **Power transmitted**

$$P = \frac{(T_1 - T_2)\pi Dn}{60}$$

$$P = \frac{(360 - 90)\pi \times 0.36 \times 733.33}{60} \checkmark$$

$$= 3732.20 Watts$$

$$= 3.73 \ kW \checkmark$$

9.2.3 Belt speed

Belt speed
$$=\frac{\pi DN}{60}$$

 $=\frac{\pi \times 0.36 \times 733.33}{60}$
 $=13.83m.s^{-1}$ \checkmark (2)

9.3 Hydraulics

9.3.1 Fluid pressure

$$A_{B} = \frac{\pi D^{2}}{4}$$

$$= \frac{\pi 0.04^{2}}{4}$$

$$= 1.26 \times 10^{-3} m^{2} \qquad \checkmark$$

$$P_{B} = \frac{F}{A_{B}} \qquad \checkmark$$

$$= \frac{275}{1,26 \times 10^{-3}} \qquad \checkmark$$

$$= 218253,97 \ Pa$$

$$or \qquad \checkmark$$

$$= 218,25 \ kPa$$

9.3.2 Diameter of piston B

$$P_B = P_A$$

$$P_B = \frac{F_B}{A_B}$$

$$A_B = \frac{F_B}{P_B}$$

$$A_B = \frac{5,56 \times 10^3}{218,25 \times 10^3}$$

$$A_B = 25,48 \times 10^{-3} m^2$$

✓

✓

✓

✓

$$A_{B} = \frac{\pi D^{2}}{4}$$

$$D_{B} = \sqrt{\frac{A_{B} \times 4}{\pi}}$$

$$= \sqrt{\frac{25,48 \times 10^{-3} \times 4}{\pi}}$$

$$= 0,18 m$$
or
$$= 180 mm$$

(4)

9.4 **ABS**

ABS prevents wheels from skidding \checkmark when breaking hard \checkmark in difficult conditions. (2)

9.5 ECU

Electronic Control Unit 🗸	(1)

9.6 Traction Control

- Prevent wheels from spinning. \checkmark
- Improves road holding ✓

(ANY 1 x 1) (1) [25]

QUESTION 10: TURBINES

10.1 **Reaction turbines**

- Francis ✓
- Kaplan √
- Tyson √
- Gorlov √ (ANY 2 x 1) (2)

10.2 Supercharger boost

Boost refers to the increase in intake manifold pressure \checkmark that exceeds normal atmospheric pressure \checkmark (2)

10.3 Blowers

- Roots ✓
- Centrifugal ✓
- Vane-type ✓
- Twin screw type ✓

(ANY 2 x 1) (2)

10.4 Gas turbine

- A = Clean air inlet \checkmark
- $B = Compression \checkmark$
- $C = Combustion \checkmark$
- $D = Exhaust \checkmark$
- $E = Turbine \checkmark$
- F = Combustion chamber \checkmark

10.5 **Application of a gas turbine**

- Jet engines ✓
- Naval ships ✓
- Hi-performance vehicles and boats ✓
- Generating electricity ✓

(ANY 2 x 1) (2)

10.6 Advantages of a gas turbine

- Less complex than internal combustion piston engines \checkmark
- Only one moving part (Common shaft for: compressor and turbine) ✓
- Operate at higher revolutions per minute ✓ (ANY 2 x 1) (2)

10.7 Waste gate

A waste gate is a valve that diverts exhaust gases away from the turbine wheel \checkmark to regulate the turbine/compressor speed and boost. \checkmark

10.8 Oil cooler

To cool the oil \checkmark that lubricates the turbocharger bearings and shaft. \checkmark (2)

[20]

(2)

(6)

TOTAL: 200