

You have Downloaded, yet Another Great Resource to assist you with your Studies ③

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

basic education

Department: Basic Education **REPUBLIC OF SOUTH AFRICA**

SENIOR CERTIFICATE EXAMINATIONS/ NATIONAL SENIOR CERTIFICATE EXAMINATIONS

MECHANICAL TECHNOLOGY: AUTOMOTIVE

2019

MARKING GUIDELINES

MARKS: 200

These marking guidelines consist of 16 pages.

Copyright reserved

Please turn over

QUESTION 1: MULTIPLE-CHOICE QUESTIONS (GENERIC)

1.1	B✓	(1)
1.2	B✓	(1)
1.3	A✓	(1)
1.4	A✓	(1)
1.5	D✓	(1)
1.6	B✓	(1) [6]

DBE/2019

QUESTION 2: SAFETY (GENERIC)

2.1 Angle grinder:

- Do not use excessive force while grinding. ✓
- Ensure that the sparks do not endanger co-workers. ✓
- Keep hands clear from grinding disc. ✓
- Maintain a firm grip on the angle grinder. ✓
- Grinding disc fitted will not turn faster than the manufactures recommendation. ✓
- Make sure that there is no cracks or chips on the grinding disc
- Safety guard must be in place. ✓
- PPE must be worn. ✓
- Beware of lockable switches in the on position when the machine is plugged in and switched on. ✓
- Check for defective cables. ✓
- Secure work piece properly. ✓
- Grinding angle to be away from body to prevent sparks directly on clothing. ✓
- Make sure disc does not wobble during cutting. ✓

2.2 Welding goggles:

- To protect your eyes from the spatter / sparks. ✓
- To protect your eyes from the harmful rays / UV rays. ✓
- To ensure proper vision of the process. \checkmark

2.3 **PPE – Bench grinder:**

- Overall ✓
- Safety goggles / face shield ✓
- Safety shoes ✓

(Any 2 x 1) (2)

(Any 2 x 1)

(Any 2 x 1)

(2)

(2)

2.4 **Process and product workshop layout:**

- The product layout ensures that the machines are arranged in the sequence of the manufacturing process of a product. ✓
- The process layout is based on the type of manufacturing process needed in the making of the product. ✓
 (2)

2.5 **Employer's responsibility – equipment:**

- They must provide and maintain equipment. ✓
- Ensure that the equipment is safe to use by employees. ✓
- Provide safe storage for equipment. ✓
- Provide proper training of employees in the use of the equipment. \checkmark
- Enforce safety measures/ OHS acts and Regulations. ✓
- Employer must provide proper personal protective equipment (PPE) for the specific machines. ✓

(Any 2 x 1) (2) [10]

DBE/2019

QUESTION 3: MATERIALS (GENERIC)

3.1	 3.1 Tests to distinguish between metals: Bending test: ✓ hit with hammer. ✓ Filing test ✓ file material. (colour and ease) ✓ Machining test ✓ machine material. (type of shaving, ease colour) ✓ Sound ✓ drop on floor. (high or low frequency) ✓ Spark test ✓ Shape and colour of sparks ✓ 		ing, ease and	ıd
	-		(Any 4 x 2)	(8)
3.2	Heat-tre	eatment:		
	3.2.1	 Tempering: After hardening, the steel must be tempered. To relieve the strains induced. ✓✓ To reduce brittleness. ✓✓ 	(Any 1 x 2)	(2)
	3.2.2	 Normalising: To relieve the internal stresses. ✓✓ 		(2)
	3.2.3	 Hardening: To produce extremely hard steel. ✓✓ To enable it to resist wear and tear. ✓✓ 	(Any 1 x 2)	(2) [14]

QUESTION 4: MULTIPLE-CHOICE (SPECIFIC)

4.1	D✓	(1)
4.2	A✓	(1)
4.3	C✓	(1)
4.4	A or C 🗸	(1)
4.5	B✓	(1)
4.6	B✓	(1)
4.7	A✓	(1)
4.8	C✓	(1)
4.9	B✓	(1)
4.10	B✓	(1)
4.11	C✓	(1)
4.12	B✓	(1)
4.13	A✓	(1)
4.14	D✓	(1) [14]

(2)

(2)

(2)

(5)

QUESTION 5: TOOLS AND EQUIPMENT (SPECIFIC)

5.1 **Compression test:**

Dry test ✓

5.1.2 **Reasons for low compression:**

- Worn cylinders ✓
- Worn piston rings ✓
- Worn piston ✓
- Leaking inlet valve ✓
- Leaking exhaust valve ✓
- Leaking cylinder head gasket ✓
- Cracked cylinder ✓
- Cracked piston ✓

5.2 **Static imbalance:**

A small mass or weight \checkmark is applied to the wheel rim diametrically opposite the heavy spot until the wheel is in balance. \checkmark

5.3 Cylinder leakage tester:

5.3.1 **Components of cylinder leakage tester:**

A. Spark plug adapter / connector ✓

- B. Meter / gauge ✓
- C. Flexible air hose ✓
- D. Compressed air coupling \checkmark
- E. Control valve / knob ✓

5.3.2 **Cylinder leakage test reasons:**

- Loss in power. ✓
- Low compression. ✓
- To determine if the cylinder head gasket has blown. ✓
- Oil consumption due to excessive leakage past the oil piston rings. ✓
- To identify leaking valves. ✓

(Any 2 x 1) (2)

(Any 2 x 1)

5.4 **Reasons for a high CO reading:**

- High idle speed ✓
- Too rich mixture ✓
- Ignition misfire ✓
- Clogged air filter ✓
- Improper operation of the fuel supply system ✓
- Faulty choke (choke stuck in closed position ✓
- Faulty injectors ✓
- Faulty thermostat/coolant sensor ✓
- Non-functioning PCV vale system ✓
- Faulty catalytic converter ✓
- 5.5 Wheel alignment gauge:
 - 5.5.1 Bubble gauge ✓
 - 5.5.2 **Caster reading:**
 - Ensure that the wheels are straighten and the turntables are on zero. ✓
 - Fit the guage to the centre of the wheel. ✓
 - Turn the front of the wheel 20° inwards. \checkmark
 - Zero the castor scale. ✓
 - Turn the wheel through 40° in the opposite direction. \checkmark
 - Take the reading on the castor scale. \checkmark
 - Do the same for the other wheel. ✓ (5)

5.6 **Diagnostic scanner:**

- The vehicle identification number (VIN). ✓
- The make and the model of the vehicle. \checkmark
- The engine type. ✓

•

(Any 2 x 1) (2)

(Any 2 x 1)

(1)

(2) [**23**]

(2)

(2)

QUESTION 6: ENGINES (SPECIFIC)

6.1 Balancing of engine:

6.1.1 **Engine crankshaft:**

- Static balance ✓
- Dynamic balance ✓

6.1.2 Methods to balance a crankshaft:

 Static balance: By fitting balance mass pieces to the crank webs or by removing metal from the crank

webs. 🗸

 Dynamic balance: Vibration is reduced by removing metal from certain parts orfrom parts of the crank webs. ✓

6.1.3 **Factors that cause vibration:**

- Mechanical unbalance caused by unbalanced moving parts.
- Power unbalancing caused by uneven pressure on the pistons and crankshaft. ✓
- The crankshaft and flywheel assembly is not statically balanced. ✓
- The crankshaft and flywheel is not dynamically balanced.
 ✓

(Any 2 x 1) (2)

(Any 2 x 1)

6.2 **Firing order factors:**

- The position of the cranks on the crankshaft. \checkmark
- The arrangement of the cams on the camshaft. \checkmark
- The number of cylinders. ✓

6.3 Vibration damper:

It is a mass fitted to the crankshaft \checkmark on the opposite side of the flywheel to counteract the torsional vibration of the crankshaft. \checkmark

6.4 **Supercharger:**

6.4.1	Type of supercharger:			
	Centrifugal type ✓	(1)		

6.4.2 Supercharger parts:

- A. Air inlet port ✓
- B. Air outlet port \checkmark
- C. Rotor (impeller) ✓
- D. Vane (fins) ✓

(2)

(2)

6.5 Advantages of engine with supercharger:

- More power is developed compared to a similar engine without a supercharger. ✓
- An engine with a supercharger is more economical per given kilowatt output. ✓
- Less fuel is used compared to engine mass. ✓
- Power loss above sea level is eliminated. ✓
- Do not suffer lag. ✓
- Cheaper, easier to install, service and maintain. ✓
- Increases volumetric efficiency. ✓

6.6 **Operation of the turbocharger:**

- The exhaust gases from the engine are routed to the turbine wheel to enable the turbine wheel to spin at a very high speed. ✓
- The gases are then channelled out of the housing and wheel assembly into the normal exhaust system. ✓
- As the turbine wheel spins, it turns a common shaft, which in turn spins the compressor wheel. ✓
- The compressor draws air in through the compressor inlet. \checkmark
- It delivers the compressed air through the outlet and the induction port then into the cylinders. ✓
- This boosted pressure delivered to the cylinders increases the volumetric efficiency of the engine. ✓
- Then it also increases the engine's performance. \checkmark

6.7 **Turbo charger disadvantage against a super charger:**

- Require lubrication. ✓
- Suffers from lag. ✓
- Tend to heat the air, reducing density. ✓
- Needs to be controlled from over-revving by the waste gate. ✓
- Some turbochargers require a special shut-down procedure before the ignition can be switched off. ✓
- More expensive to install. ✓

(Any 2 x 1) (2)

6.8 **High altitude:**

At high altitude less oxygen is available for combustion \checkmark and therefore the performance will be weaker than at sea level. \checkmark

(2)

(7)

(2) [**28**]

(Any 2 x 1)

9

DBE/2019

(2)

QUESTION 7: FORCES (SPECIFIC)

7.1 **Compression Ratio**

Is the ratio between the total volume of a cylinder when the piston is at bottom dead centre \checkmark to the volume of the charge in a cylinder when the piston is at top dead centre. \checkmark

7.2 **Compression ratio calculations:**

7.2.1
Swept Volume =
$$\frac{\pi D^2}{4} \times L$$
 \checkmark
= $\frac{\pi (8,4)^2}{4} \times 9,0$ \checkmark
= 498,76 cm³ \checkmark (3)

7.2.2 Compression Ratio =
$$\frac{SV + CV}{CV}$$

 $CV = \frac{SV}{CR - 1}$ \checkmark
 $= \frac{498,76}{8,5 - 1}$ \checkmark
 $= \frac{498,76}{7,5}$
 $= 66,50 \text{ cm}^3 \checkmark$ (3)

7.2.3 **New bore diameter:**

Compression Ratio =
$$\frac{SV}{CV} + 1$$

9,5-1= $\frac{SV}{66,50}$
 $\frac{\pi D^2}{4} \times L = 66,50 \times 8,5$
 $D^2 = \frac{66,50 \times 8,5 \times 4}{\pi \times 9}$
 $= 79,97 \text{ cm}^3$
 $D = \sqrt{79,97}$
 $= 8,94 \text{ cm}$
 $= 89,4 \text{ mm}$

(6)

7.3 **Power calculations:**

7.3.1 Force = (125 × 10)
=1250 N
$$\checkmark$$

Torque = Force × radius
=1250 × 0,3 \checkmark
= 375 Nm \checkmark (3)
7.3.2 Indicated Power = P×L×A ×N×n
P=950KPa \checkmark
L= $\frac{140}{1000}$
=0,14m \checkmark
A = $\frac{\pm D^2}{4}$ \checkmark
= $\frac{\pm 0,12^2}{4}$
=11,31×10⁻³ m \checkmark
N = $\frac{2400}{60 \times 2}$ \checkmark
= 20 power strokes/sec \checkmark
n = 4 cylinders
Indicated Power = P×L×A ×N×n \checkmark
=950×0,14×11,31×10⁻³ × 20×4 \checkmark
=120,34 kW \checkmark (9)
7.3.3 Brake Power = 2π×N×T \checkmark
=2π40×375 W \checkmark
=94247,78 W or =94,25 kW \checkmark (3)
7.3.4 Mechanical Efficiency = $\frac{BP}{IP} \times 100\%$ \checkmark
= $\frac{94,25}{120,34} \times 100\%$ \checkmark
=78,32% \checkmark (3)

Copyright reserved

8.1 **Oil pressure test - Manufacturers' specification:**

Oil pressure at engine idle speed. ✓

QUESTION 8: MAINTENANCE (SPECIFIC)

- Oil pressure when the engine is cold. ✓
- Oil pressure when the engine is hot. ✓
- Oil pressure on high revolutions. ✓

8.2 Exhaust pressure test:

- Determine if the catalytic converter is blocked. \checkmark
- Determine if silencer is blocked. ✓
- Decrease in power output. ✓
- Lack of high speed power. ✓
- Poor fuel consumption. ✓
- Overheating. ✓
- A leaking exhaust system. ✓

8.3 Radiator cap test:

- Install the cap on the cooling system pressure tester. ✓
- Increase the pressure in the tester while watching the pressure gauge. \checkmark
- The pressure cap should release air at a rated pressure stamped on the cap. \checkmark
- Cap should hold pressure for at least one minute. ✓ (4)

8.4 **Fuel-pressure test – manufacturers' specifications:**

- Fuel pressure before fuel pump. \checkmark
- Fuel pressure before the carburettor. ✓
- Fuel pressure at idle speed. ✓
- Fuel pressure at high revolutions. ✓
- Fuel pressure before the injectors pump. ✓
- Fuel pressure after the injectors pump. ✓

(Any 4 x 1) (4)

(Any 3 x 1) (3)

(2)

DBE/2019

(2)

(2)

(2)

8.5 **Compression test:**

8.5.1

High tension lead: The ignition system will be disabled \checkmark to prevent electrical shock. ✓ 8.5.2 Fuel injectors disconnected: • To prevent unburned fuel entering the exhaust system \checkmark and from entering the tester. \checkmark • To prevent fuel from entering ✓ the cylinders and causing oil dilution. ✓ (Any 1 x 2) 8.5.3 Throttle valve fully open: To obtain the correct amount of air entering the cylinder \checkmark and to obtain a correct reading. ✓ 8.5.4 **Recording the readings:**

The reading obtained during the compression test can be compared to the specification reading \checkmark to check if the pressure is correct or not. ✓ (2)

8.6 Wet test-procedure:

- Add oil to that cylinder which has a low reading. ✓
- Carry out compression test as for dry test, if the reading increases it indicates that the piston rings are worn. \checkmark

(2) [23]

QUESTION 9: SYSTEMS AND CONTROL (AUTOMATIC GEARBOX) (SPECIFIC)

9.1	Method • By circ • Circ	Is of cooling the automatic transmission: using a special oil cooler alongside the engine cooling radiator and ulating transmission fluid through it. ✓ culating transmission fluid through the bottom radiator tank. ✓	
9.2	 Advantages of automatic transmission: It reduces driving fatigue. ✓ Greater reduction of wheel spin under bad road conditions. ✓ The vehicle can be stopped suddenly without the engine stalling. ✓ The system dampers all engine torsional vibrations. ✓ (Any 2 x 1) 		
			(2)
9.3	Purpos To reliev	e of automatic gearbox: ve the driver of clutch ✓ and gear shift operation. ✓	(2)
9.4	Gear ra The hig the gear	ratio on torque: higher the gear ratio the lower the torque transferred ✓ and the lower ear ratio the higher the torque transferred. ✓	
9.5	Advanta • Tore • Sme • Min • To a	ages of torque converter: que increases automatically. ✓ ooth transfer of torque. ✓ imum servicing is required. ✓ absorb shocks. ✓ (Any 2 x 1)	(2)
9.6	Automa	atic gearbox:	
	9.6.1	Brake band ✓	(1)
	9.6.2	Brake band labels: A.Lever shaft ✓ B.Lever ✓ C.Strut ✓ D.Brake band ✓ E.Anchor ✓ F.Band adjuster ✓	(6)
	963	Brake bands function:	(-)
	0.0.0	To enable the annulus to come into a stationary position to change to another ratio. \checkmark	(1) [18]

QUESTION 10: SYSTEMS AND CONTROL (AXLES, STEERING GEOMETRY AND ELECTRONICS) (SPECIFIC)

10.1 **Preliminary wheel alignment check:**

- Kerb mass against the manufacturers specifications. ✓
- Uneven wear on the tyres. ✓
- Tyre pressure. ✓
- Run-out on the wheels. ✓
- Correct preload on the wheel bearings. ✓
- Kingpins and bushes. ✓
- Suspension ball joints for wear, locking and lifting. ✓
- Suspension bushes for excessive free movement. ✓
- Steering box play and whether secure on chassis. ✓
- Tie-rod ends. ✓
- Sagged springs, which include riding height. ✓
- Ineffective shock absorbers. ✓.
- Spring U-bolts. ✓
- Chassis for possible cracks and loose cross-members. ✓

(Any 5 x 1) (5)

(2)

10.2 **Toe-out on turns:**

This toe-out effect in a turn gives a true rolling motion to the front wheels \checkmark in a corner without scuffing. \checkmark (2)

10.3 **Dynamic balance of the wheel and tyre assembly:**

Dynamic balance of the wheel and tyre assembly refers to the equal distribution of all weights around the axis of rotation in all rotation parts. \checkmark (1)

10.4 **Reasons of the speed control system:**

- The speed control system is to control the throttle opening electronically. ✓
- To keep the vehicle speed constant. ✓

10.5 **Disadvantages of the speed control:**

- The system is expensive. \checkmark
- High maintenance costs if the system becomes faulty. ✓ (2)

10.6 **Diode:**

The function of the diode is to permit current to flow in only one direction \checkmark and to block it from flowing in the opposite direction. \checkmark (2)

DBE/2019

10.7	Advanta Immi Low Less Com Prev 	ges of an electric fuel pump: ediate supply of fuel when the ignition switch is turned on. \checkmark operational noise. \checkmark discharge pulsation of fuel. \checkmark apact and light design. \checkmark rents fuel leak and vapour lock. \checkmark	(2)
10.8	Aspects Prec Good Wide Good No le Siler Dura To c	that an injector needs to fulfil: ise fuel flow rate \checkmark d linearity \checkmark e active range \checkmark d spray characteristics \checkmark eakage \checkmark nt operation \checkmark ability \checkmark ope with different needs for different engines \checkmark (Any 2 x 1)	(2)
10.9	Ackerman principle:		
	10.9.1	Ackerman angle steering principle / geometry. 🗸	(1)
	10.9.2	Parts: A – Rear axis ✓ B – Longitudinal axis ✓ C – Steering arms ✓ D – Front wheels ✓ E – Extended centre lines from steering arms ✓ F - Intersection ✓	(6)
	10.9.3	If the centre lines of the steering arms are extended \checkmark they will intersect on the longitudinal axis of the vehicle. \checkmark	(2)
10.10	Alternator:		
	10.10.1	Rotor assembly ✓	(1)
	10.10.2	Parts: A – slip ring ✓ B – brushes ✓ C – pole pieces ✓	(3)
	10.10.3	The function of the rotor assembly is to provide a rotating electro-magnet to generate current. \checkmark	(1) [32
		TOTAL:	200