

You have Downloaded, yet Another Great Resource to assist you with your Studies ③

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

basic education

Department: Basic Education **REPUBLIC OF SOUTH AFRICA**

NATIONAL SENIOR CERTIFICATE

GRADE 12

MECHANICAL TECHNOLOGY: FITTING AND MACHINING

- - -

NOVEMBER 2018

MARKING GUIDELINES

MARKS: 200

1

These marking guidelines consist of 21 pages.

Please turn over

QUESTION 1: MULTIPLE-CHOICE QUESTIONS (GENERIC)

		TOTAL QUESTION 1:	[6]
1.6	A✓		(1)
1.5	D✓		(1)
1.4	B✓		(1)
1.3	A✓		(1)
1.2	C✓		(1)
1.1	A✓		(1)

QUESTION 2: SAFETY (GENERIC)

2.1 Angle grinder: (Before using)

- The safety guard must be in place before starting. ✓
- Protective shields must be placed around the object being grinded to protect the people around. ✓
- Use the correct grinding disc for the job. ✓
- Make sure that there are no cracks in the disc before you start. \checkmark
- Protective clothing and eye protection are essential. ✓
- Check electrical outlets and cord/plugs for any damages. ✓
- Ensure that lockable switch is disengaged. ✓
- Ensure that the disc and the nut are well secured. ✓
- Ensure that the removable handle is secured. ✓
- (Any 2 x 1) (2)

(2)

(2)

(2)

(Any 2 x 1)

(Any 2 x 1)

2.2 Welding goggles:

- To protect your eyes against sparks ✓
- To protect your eyes against heat ✓
- To be able to see where to weld ✓
- To protect your eyes from UV rays ✓

2.3 **PPE for Hydraulic Press:**

- Overall ✓
- Safety shoes / boots√
- Safety goggle ✓
- Leather gloves ✓
- Face shield ✓
- 2.4 Workshop layouts:
 - Process layout ✓
 - Product layout ✓

2.5 **Employer's responsibility regarding first-aid:**

- Provision of first-aid equipment ✓
- First aid training ✓
- First-aid services by qualified personnel ✓
- Any first aid procedures / treatment ✓
- Display first aid safety signs ✓
- First aid personnel must be identified by means of arm bands or relevant personal signage ✓

(Any 2 x 1) (2)

TOTAL QUESTION 2: [10]

QUESTION 3: MATERIALS (GENERIC)

3.1 **Bending test:**

- Ductility ✓ ✓
- Malleability ✓ ✓
- Brittleness ✓ ✓
- Flexibility ✓ ✓

(Any 1 x 2) (2)

3.2 **Heat-treatment:**

3.2.1 Annealing:

- To relieve internal stresses ✓
- To soften the steel ✓
- To make the steel ductile ✓
- To refine the grain structure of the steel ✓
- To reduce the brittleness of the steel \checkmark
- (Any 2 x 1) (2)

(2)

(2)

(3)

(3)

(Any 1 x 2)

(Any 1 x 2)

3.2.2 **Case hardening:**

- To require a wear resistant surface ✓ and it must be tough enough internally ✓ at the core to withstand the applied loads.
- Hard case ✓ and tough core. ✓

3.3 **Tempering process:**

- To reduce \checkmark the brittleness \checkmark caused by the hardening process.
- Relieve ✓ strain ✓ caused during hardening process.
- Increase ✓ the toughness of the steel. ✓

3.4 Factors for heat-treatment processes:

- Heating temperature / Carbon content ✓
 - Soaking (Time period at temperature) / Size of the work piece ✓
 - Cooling rate / Quenching rate ✓

3.5 Hardening of steel:

- Steel is heated to 30 50°C above the higher critical temperature. (AC₃) ✓
- It is then kept at that temperature to ensure (soaking) that the whole structure is Austenite. ✓
- The steel is then rapidly cooled by quenching it in clean water, brine or oil. ✓

TOTAL QUESTION 3: [14]

Copyright reserved

QUESTION 4: MULTIPLE-CHOICE QUESTIONS (SPECIFIC)

4.1	C✓	(1)
4.2	A✓	(1)
4.3	D✓	(1)
4.4	A✓	(1)
4.5	B✓	(1)
4.6	A✓	(1)
4.7	B✓	(1)
4.8	B✓	(1)
4.9	D✓	(1)
4.10	C✓	(1)
4.11	B✓	(1)
4.12	D✓	(1)
4.13	D✓	(1)
4.14	C✓	(1)

TOTAL QUESTION 4: [14]

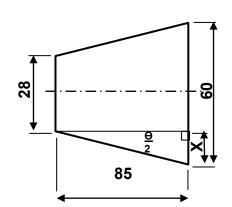
(2)

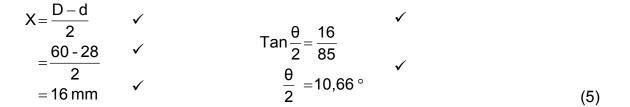
QUESTION 5: TERMINOLOGY (LATHE AND MILLING MACHINE) (SPECIFIC)

5.1 Advantages of using the tailstock to cut an external taper:

- Long an accurate taper can be cut. ✓
- The automatic feed can be used which result in a good finish. ✓

5.2 **Calculate the compound slide set-over:**


$$Tan\frac{\theta}{2} = \frac{D-d}{2L} \qquad \checkmark$$


$$Tan\frac{\theta}{2} = \frac{60-28}{2\times85} \qquad \checkmark$$

$$= 0,188$$

$$\frac{\theta}{2} = 10,66^{\circ} \qquad \checkmark \checkmark$$

5.3 **Centre gauge:**

- To measure the form and angle of the screw cutting tool angle while grinding the tool ✓
- To set the screw cutting tool square/perpendicular to the axis of the work piece ✓

5.4 **Parallel key:**

Length:

Length = $1,5 \times$ diameter

(3)

(2)

5.5 Advantages of up-cut milling:

- Deeper cuts can be made as the cutting pressure on the cutter is lower than down cut milling. ✓
- The process enables hard steel to be cut, because the total cutting pressure is absorbed by the material at the back of the edge. ✓
- Metal with hard scale, such as castings or forgings, the cut is started under the scale where the material is softer which extends the life of the cutter. ✓
- A quicker/course feed can be used. \checkmark
- The strain on the cutter and arbour will be less. \checkmark
- Vibration is limited ✓
- Good finish ✓
- Low noise level ✓

(Any 2 x 1) (2)

5.6 **Disadvantage of down-cut milling:**

- Vibration in the arbour is unavoidable. \checkmark
- A fine feed must be used. ✓
- When milling a material with hard scale the milling cutter will be damaged. ✓
- Process takes time because of slower feed. ✓
- Noisy process. ✓
- Bad finish because of vibration. \checkmark

5.7 **Methods of centring a milling cutter:**

- Square and ruler method. ✓
- Set-over method by milling machine dial. ✓
- Dial indicator method ✓
- Using reference points on digital read out equipment ✓

(Any 2 x 1) (2)

(2)

TOTAL QUESTION 5: [18]

(Any 2 x 1)

QUESTION 6: TERMINOLOGY (INDEXING) (SPECIFIC)

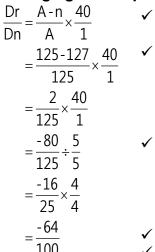
6.1 **Spur gear:**

Chordal tooth thickness:

6.2 **Calculate simple indexing:**

Simple Indexing =
$$\frac{40}{N}$$

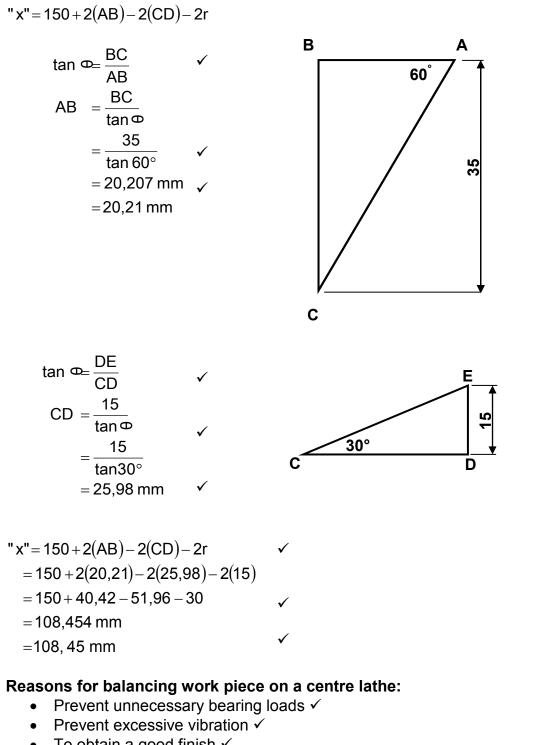
= $\frac{40}{13}$ \checkmark
= $3\frac{1}{13}$ \checkmark
= $3\frac{1}{13} \times \frac{3}{3}$
= $3\frac{3}{39}$ \checkmark


3 full turns and 3 holes in a 39 hole circle

(4)

6.3 **Differential indexing:**

6.3.1 Indexing required: Indexing $=\frac{40}{n}=\frac{40}{127}$ $=\frac{40}{A}=\frac{40}{125}\div\frac{5}{5}$ $=\frac{8}{25}$ Indexing =8 holes on the 25 hole circle \checkmark (3) 6.3.2


Change gears required:

 $=\frac{-64}{100}$ (5)

6.3.3 Direction of rotation of index plate: The index plate will turn the opposite \checkmark direction as the index crank handle. (1)

6.4 **Calculate distance "x" between rollers:**

- To obtain a good finish ✓
- To prevent clatter on the gear teeth \checkmark
- To prevent the spindle from bending \checkmark

(Any 2 x 1) (2)

(9)

TOTAL QUESTION 6: [28]

6.5

QUESTION 7: TOOLS AND EQUIPMENT (SPECIFIC)

7.1 Hardness testers:

- Brinell-hardness tester ✓
- Rockwell-hardness tester ✓
- Vickers ✓

(Any 2 x 1) (2)

Moment tester: To determine the reactions \checkmark on either side of a simply loaded beam. \checkmark (2)

7.3 **Tensile test:**

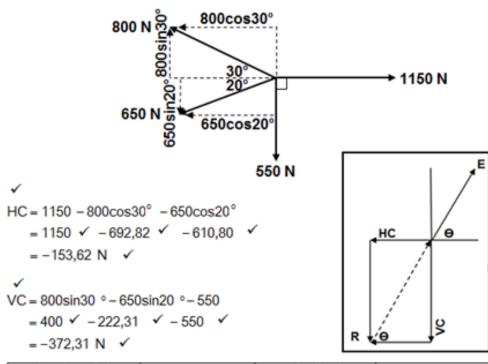
7.2

A piece of material is subjected to an increasing axial load \checkmark while measuring \checkmark the corresponding elongation \checkmark of the material. (3)

7.4 **Depth micro-meter:**

Reading = 100 + 11,00 + 0,50 + 0,09= 111,59 mm (5)

7.5 **Measure depth:**


Vernier calliper ✓

(1)

TOTAL QUESTION 7: [13]

QUESTION 8: FORCES (SPECIFIC)

8.1 Forces:

Horizontal components ✓	Magnitudes	Vertical components ✓	Magnitudes
1150	1150 N 🗸	800Sin30°	400 N ✓
-800Cos30°	-692,82 N ✓	-650Sin20°	- 222,31 N ✓
-650Cos20°	-610,80 N ✓	-550	-550 N 🗸
TOTAL	-153,62 N ✓	TOTAL	-372,31 N 🗸

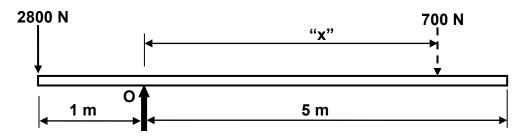
$$E^{2} = HC^{2} + VC^{2} \qquad \checkmark$$

$$\sqrt{E^{2}} = \sqrt{153,62^{2} + 372,31^{2}}$$

$$E = 402,76N \qquad \checkmark$$

$$Tan \theta = \frac{VC}{HC} \qquad \checkmark$$

$$= \frac{372,31}{153,62}$$


$$\theta = 67,58^{\circ} \qquad \checkmark$$

Equilibrant = 402,76 N en 67,58° North from East ✓

(15)

Horizontal Components ✓	Magnitudes	Vertical Components ✓	Magnitudes
1150cos0°	1150N ✓	1150sin0°	0N
800cos150°	-692,82N ✓	800sin150°	400N ✓
650cos200°	-610,80N ✓	650sin200°	-222,31N ✓
550cos270°	0N	550sin270°	-550N ✓
TOTAL:	-153,62N ✓	TOTAL:	-372,31N ✓

8.2 Moments:

Calculate "x": Take moments about O.

$$\Sigma RHM = \Sigma LHM$$

$$700 \times "x" = 2800 \times 1$$

$$700 \times "x" = 2800$$

$$x" = \frac{2800}{700}$$

$$x" = 4m$$

8.3 **Stress and Strain:**

8.3.1 **Type of stress:** Compressive stress ✓

8.3.2 **Stress:**

$$A = \frac{\#(D^2 - d^2)}{4}$$

$$= \frac{\#(0,04^2 - 0,03^2)}{4}$$

$$A = 0,55 \times 10^{-3} \text{ m}^2 \qquad \checkmark$$

$$B = \frac{F}{4} \qquad \checkmark$$

A
=
$$\frac{50 \times 10^3}{0,55 \times 10^{-3}}$$

 $\Rightarrow 90,91 \times 10^6$ Pa
 $\Rightarrow 90,91$ MPa

(NO UNIT – NO MARK)

(4)

(1)

8.3.3 Change in length:

$$E = -\frac{b}{\omega}$$

$$\omega = \frac{b}{E}$$

$$= \frac{90,91 \times 10^{6}}{90 \times 10^{9}}$$

$$= 1,01 \times 10^{-3} \qquad \checkmark$$

(IF ANY UNIT IS GIVEN - NO MARK)

$$\begin{array}{c} \swarrow = \underbrace{\triangleleft}_{L} & \checkmark \\ \swarrow = \underbrace{\triangleleft}_{L} & \checkmark \\ = (1,01 \times 10^{-3}) \times (80) & \checkmark \\ = 0,08 \text{ mm} & \checkmark \end{array}$$

$$(5)$$

8.3.4 Safety factor:

Safety factor =	Break stress	\checkmark	
-	Safe working stress		
Safe working stress =	Break stress		
	Safety factor		
=	$=\frac{600\times10^{6}}{100}$	\checkmark	
	4		
=	=150×10 ⁶ Pa		
=	=150 MPa	\checkmark	(3)

TOTAL QUESTION 8: [33]

QUESTION 9: MAINTENANCE (SPECIFIC)

9.1 Lack of preventative maintenance:

- Risk of injury or death. ✓
- Financial loss due to damage suffered as a result of part failure and the waste of material. ✓
- Loss of valuable production time. ✓

9.2 **Causes for the malfunctioning of chain drive systems:**

- Lack of or incorrect lubrication ✓
- Lack of maintenance ✓
- Overloading ✓
- Misalignment of sprockets ✓
- Incorrect chain tension ✓
- Contamination of chain drive system such as dust or sand \checkmark

(Any 2 x 1) (2)

(Any 2 x 1)

(3)

(2)

9.3 **Procedures to reduce the physical wear on a belt drive system:**

- Check the belt alignment. \checkmark
- Checking the belt tension. ✓
- Prevent overloading of the system. ✓
- Keep the pulleys and belt clean. ✓
- Check that all covers are secure. ✓

9.4 **Procedures to replace the belt on a belt drive system:**

- Ensure that the machine is switched off \checkmark
- Release the tension on the belt \checkmark
- Remove the belt from the pulleys \checkmark
- Fit the correct size replacement belt onto the pulleys \checkmark
- Check the pulley alignment \checkmark
- Apply adequate tension according to specification and lock the system ✓

(Any 5 x 1) (5)

9.5 **Properties of materials:**

9.5.1 **Poly vinyl chloride (PVC):**

- Flexible ✓
- Rubber-like substance ✓
- Makes a dull sound when dropped ✓
- Tough ✓
- Act as an insulator ✓
- It is durable ✓
- Highly resistant to oxidative material ✓
- Oil, water and chemical resistant ✓

9.5.2 Carbon fibre:

- Strong ✓
- Tough ✓
- Light weight ✓
- Good electrical conductor ✓

(Any 1 x 1) (1)

(1)

(Any 1 x 1)

9.6	Difference	between	"Thermoplastic"	and	"Thermo	hardened	
	(thermosett	ing)" comp	osites:				
	Thermoplastics can be reheated and deformed. / Recyclable ✓						
	Thermo hardened cannot be reheated. / Non-recyclable 🗸						(2)

9.7 Examples of thermo hardened composites:

- Carbon fibre or (Any application) ✓
- Glass fibre or (Any application) ✓
- Bakelite or (Any application) ✓
- Teflon or (Any application) ✓

(Any 2 x 1) (2)

TOTAL QUESTION 9: [18]

(2)

QUESTION 10: JOINING METHODS (SPECIFIC)

10.1 Square thread:

The lead of the thread: 10.1.1 $Lead = pitch \times no of starts$ \checkmark $= 5 \times 2$ =10 mm

10.1.2 The helix angle of the thread:

Helix angle tan ₌	lead	1
	pitchcercumfrence	v
_	10	\checkmark
_	$\overline{\texttt{H}\times\left(\text{outside dia}-\frac{1}{2}\text{pitch}\right)}$	✓
=	$\frac{10}{\varkappa \times (82-2,5)}$	\checkmark
	0,0400 2,29°/2°17'24"	√

~

OR

Helix angle tan
$$\Phi = \frac{\text{lead}}{\text{pitchdiameter}}$$
 \checkmark
$$= \frac{10}{82 - 2.5} \qquad \checkmark \checkmark$$
$$\Phi = 7.17^{\circ}/7^{\circ}10'12'' \qquad \checkmark \qquad (5)$$

10.1.3 The leading tool angle:

Leading tool angle =
$$90^{\circ}$$
 - (helix angle + clearance angle)
= 90° - (2,29° + 3°)
= $84,71^{\circ}/84^{\circ}42'36''$

OR

Leading tool angle =
$$90^{\circ}$$
 - (helix angle + clearance angle) \checkmark
= 90° - (7,17° + 3°)
= 79,83° / 79°49'48" \checkmark (2)

10.1.4 **The following tool angle:**

Following toolangle = $90^{\circ} + (\text{helix angle} - \text{clearance angle}) \checkmark$ = $90^{\circ} + (2,29^{\circ} - 3^{\circ})$ = $89,29^{\circ}/89^{\circ}17'24''$

OR

Following toolangle =
$$90^{\circ}$$
 + (helix angle - clearance angle) \checkmark
= 90° + (7,17^{\circ} - 3^{\circ})
= $94,17^{\circ}/94^{\circ}10'12''$ \checkmark (2)

10.2 Measurements of a screw thread :

10.2.1	Metric screw thread ✓	(1)
10.2.2	Crest / Major / External / Basic / Nominal / Outside diameter \checkmark	(1)
10.2.3	Pitch ✓	(1)
A – Helix B – Clea C – Lead	of a square thread cutting tool: angle ✓ rance angle ✓ ding tool angle ✓ owing tool angle ✓	(4)

TOTAL QUESTION 10: [18]

10.3

QUESTION 11: SYSTEMS AND CONTROL (DRIVE SYSTEMS) (SPECIFIC)

11.1 Advantages of a belt drive system compared to a chain drive system:

- Silent operation ✓
- Less expensive ✓
- Drive can take place over a longer distance ✓
- No lubrication needed ✓

(Any 2 x 1) (2)

11.2 Hydraulics:

11.2.1

Fluid pressure:

$$A_{A} = \frac{F_{A}^{2}}{4} \qquad \checkmark$$

$$= \frac{F(0,032)^{2}}{4}$$

$$= 0,8 \times 10^{-3} \text{ m}^{2} \qquad \checkmark$$

$$p = \frac{F_{A}}{A_{A}} \qquad \checkmark$$

$$= \frac{120}{0,8 \times 10^{-3}}$$

$$= 0,1492 \times 10^{6} \text{ Pa}$$

$$= 0,15 \text{ MPa or } 149207,76 \text{ Pa} \qquad \checkmark$$
(NO UNIT – NO MARK)

(4)

 \checkmark

✓

11.3 Hydraulic symbols: One-way valve

(1)

(4)

11.5 **Gear drives:**

Belt drives:

 $N_{DR}D_{DR} = N_{DN}D_{DN}$

 $N_{\text{DR}} = \frac{N_{\text{DN}} \times D_{\text{DN}}}{D_{\text{DR}}}$

= 256 r/min

 $=\frac{80\times240}{75}$

11.4

11.5.1 Rotation frequency of the output:

Rotation frequency of the drive pulley:

 \checkmark

 $\frac{N_{A}}{N_{D}} = \frac{Product of Driven gears}{Product of Driver gears}$ $\frac{N_{D}}{N_{A}} = \frac{T_{A} \times T_{C}}{T_{B} \times T_{D}} \checkmark$ $N_{D} = \frac{T_{A} \times T_{C} \times N_{A}}{T_{B} \times T_{D}} \checkmark$ $= \frac{20 \times 25 \times 3000}{35 \times 30} \checkmark$ $N_{D} = \frac{1428,57 \text{ r/min}}{60} \checkmark$ $= 23,81 \text{ r/sec} \checkmark$

 $N_{\rm B} \times T_{\rm B} = N_{\rm A} \times T_{\rm A}$

 $N_{\rm B} = \frac{N_{\rm A} \times T_{\rm A}}{T_{\rm B}}$

 $=\frac{3000\times20}{35}$

= 1714,29 r/min 🗸

OR

 \checkmark

$$N_{\rm B} = N_{\rm C} = 1714,29 \, \text{r/min}$$

Copyright reserved

Please turn over

(6)

11.5.2 Gear ratio: Gear ratio = $\frac{\text{Product of the number of teeth on driven gears}}{\text{Product of the number of teeth on driver gears}} \checkmark$ = $\frac{35}{20} \times \frac{30}{25}$ = 2,1 : 1 \checkmark (3) Work done:

 \checkmark

Work done = $F \times s$

11.6

 $= 250 \times 15$

- = 3750 Joule or N.m \checkmark
- TOTAL QUESTION 11: [28]
 - TOTAL: 200

(2)