

You have Downloaded, yet Another Great Resource to assist you with your Studies ③

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

basic education

Department: Basic Education **REPUBLIC OF SOUTH AFRICA**

NATIONAL SENIOR CERTIFICATE

GRADE 12

MECHANICAL TECHNOLOGY: WELDING AND METALWORK

NOVEMBER 2018

MARKING GUIDELINES

.................

MARKS: 200

L.

11

10

These marking guidelines consist of 19 pages and Annexure A.

Please turn over

QUESTION 1: MULTIPLE-CHOICE QUESTIONS (GENERIC)

A✓		(1)
C√		(1)
A✓		(1)
B✓		(1)
D✓		(1)
A✓		(1)
	A ✓ C ✓ A ✓ D ✓	A ✓ C ✓ A ✓ D ✓ A ✓

TOTAL QUESTION 1: [6]

QUESTION 2: SAFETY (GENERIC)

2.1 Angle grinder: (Before using)

- The safety guard must be in place before starting. ✓
- Protective shields must be placed around the object being grinded to protect the people around. ✓
- Use the correct grinding disc for the job. ✓
- Make sure that there are no cracks in the disc before you start. ✓
- Protective clothing and eye protection are essential.
- Check electrical outlets and cord/plugs for any damages. ✓
- Ensure that lockable switch is disengaged. ✓
- Ensure that the disc and the nut are well secured. \checkmark
- Ensure that the removable handle is secured. ✓
- Remove all flammable material from the area. ✓
- Secure the work piece. ✓

2.2 Welding goggles:

- To protect your eyes against sparks ✓
- To protect your eyes against heat ✓
- To be able to see where to weld ✓
- To protect your eyes from UV rays / bright light ✓
- To protect your eyes from smoke ✓

2.3 **PPE for Hydraulic press:**

- Overall ✓
- Safety shoes ✓
- Safety goggle ✓
- Leather gloves ✓
- Leather apron ✓
- Face shield ✓

2.4 Workshop layouts:

- Process layout ✓
- Product layout ✓

2.5 **Employer's responsibility regarding first-aid:**

- Provision of first-aid equipment ✓
- First aid training ✓
- First-aid services by qualified personnel ✓
- Any first aid procedures ✓
- Display first aid safety signs ✓
- First aid personnel must be identified by means of arm bands or relevant personal signage ✓
 - (Any 2 x 1) (2)

TOTAL QUESTION 2: [10]

(Any 2 x 1)

(Any 2 x 1)

(Any 2 x 1) (2)

(2)

(2)

(2)

QUESTION 3: MATERIALS (GENERIC)

3.1 **Bending test:**

- Ductility ✓ ✓
- Malleability ✓ ✓
- Brittleness ✓ ✓
- Flexibility ✓ ✓

(Any 1 x 2) (2)

3.2 **Heat-treatment:**

3.2.1 **Annealing:**

- To relieve internal stresses ✓
- To soften the steel ✓
- To make the steel ductile ✓
- To refine the grain structure of the steel ✓
- To reduce the brittleness of the steel \checkmark
- (Any 2 x 1) (2)

(2)

(3)

(3)

3.2.2 **Case hardening:**

- To produce a wear resistant surface ✓ and it must be tough enough internally ✓ at the core to withstand the applied loads.
- Hard case ✓ and tough core. ✓

3.3 **Tempering process:**

- To reduce ✓ the brittleness ✓ caused by the hardening process.
- Relieve ✓ strain ✓ caused during hardening process.
- Increase ✓ the toughness ✓ of the steel.
- (Any 1 x 2) (2)

(Any 1 x 2)

3.4 **Factors for heat-treatment processes:**

- Heating temperature / Carbon content ✓
- Soaking (Time period at temperature) / Size of the work piece ✓
- Cooling rate / Quenching rate ✓

3.5 Hardening of steel:

- Steel is heated to 30 50°C above the higher critical temperature. (AC₃) ✓
- It is then kept at that temperature to ensure (soaking) that the whole structure is Austenite. ✓
- The steel is then rapidly cooled by quenching it in clean water, brine or oil. ✓

TOTAL QUESTION 3: [14]

Copyright reserved

QUESTION 4: MULTIPLE-CHOICE QUESTIONS (SPECIFIC)

4.1	B✓	(1)
4.2	A✓	(1)
4.3	B✓	(1)
4.4	B✓	(1)
4.5	A✓	(1)
4.6	B✓	(1)
4.7	D✓	(1)
4.8	D✓	(1)
4.9	C✓	(1)
4.10	C✓	(1)
4.11	A✓	(1)
4.12	D✓	(1)
4.13	B✓	(1)
4.14	B✓	(1)

TOTAL QUESTION 4: [14]

QUESTION 5: TERMINOLOGY (TEMPLATES) (SPECIFIC)

5.1 Template loft: The template loft is separated from the workshop because... • it is quieter. ✓ • the lighting is better. ✓ • all equipment is at hand. ✓ it is a permanent base. ✓ marking on the floor enhance accuracy. ✓ (Any 2 x 1) (2) 5.2 Purpose of purlins: The purlins support \checkmark the roof covering \checkmark Stabilizes ✓ the trusses. ✓ • (Any 1 x 2) (2) 5.3 A steel ring calculation:

5.3.1 **Dimensions of the required material:**

Mean diameter = Outside diameter – plate thickness		
= 880 - 50	\checkmark	
= 830mm	✓	
Mean circurmference = ⊨ × Meandiameter	\checkmark	

Nean circurmference = $\vdash \times Nean diameter$			
	= ⊨×830	\checkmark	
	= 2607,52mm	\checkmark	

2608 mm of 50 x 50 mm \checkmark square steel bar is required to fabricate the ring.

5.3.2

(4)

(7)

5.4 **Resistance weld symbols:**

5.4.1	Spot weld ✓	(1)
5.4.2	Seam weld ✓	(1)

5.5 Welding symbols:

- A. Tail ✓
- B. Weld symbol (Fillet weld) ✓
- C. Pitch of weld \checkmark
- D. Site weld ✓
- E. Arrow ✓
- F. Weld all round ✓

(6)

TOTAL QUESTION 5: [23]

QUESTION 6: TOOLS AND EQUIPMENT (SPECIFIC)

6.1. Working Principles:

6.1.1 **Guillotine:**

- A bottom cutting blade is fixed horizontally. ✓
- With a top cutting blade moving downwards. ✓
- It is driven by an electric motor, flywheel, gearbox and axle ✓ by eccentric motion / action / hydraulic action. ✓

OR

• It is activated manually by foot ✓ with lever action. ✓ (4)

6.1.2 **Bending rolls:**

- A bending roll has two fixed rollers next to each other rotating in unison (Manually or Electrical motor). ✓
- A third roller is adjustable, moving in between the two rollers. ✓
- The third roller applies downward pressure onto the metal. ✓
- That causes the metal to deflect and ultimately form the round shape desired. ✓

6.2. **Regulators on gas cylinders:**

Regulators reduce \checkmark the cylinder pressure \checkmark to operating or working pressure. \checkmark

6.3 **Press machine:**

- The press machine is used for installing ✓ or removing ✓ components on mechanical devices / machines. ✓
- To press ✓ profiles ✓ onto material ✓
- 6.4 **MIGS/MAGS welding process:**
 - A Weld pool / weld bead / molten metal ✓
 - B Electrode wire / electrode ✓
 - C Gas shroud / electrical contact / nozzle / contact tip ✓
 - D Shielding gas ✓

(4)

(4)

(3)

(3)

TOTAL QUESTION 6: [18]

(Any 1 x 3)

QUESTION 7: FORCES (SPECIFIC)

7.1 Forces in members:

SCALE: Vector diagram 1 mm = 5 N

MEMBER	MAGNITUDE	NATURE
AE	260 N ✓	STRUT ✓
BF	135 N ✓	STRUT ✓
CG	317,5 N ✓	STRUT ✓
FG	27,5 N ✓	STRUT ✓
ED	130 N ✓	TIE 🗸
EF	27,5 N ✓	TIE 🗸
GD	160 N ✓	TIE ✓

NOTE:

Use a tolerance of 2 mm + and - on the vector diagram. = a tolerance of 10 N + and - on the answer.

7.2 Bending moments:

7.2.1 Moments about RR

$$\begin{array}{c}
\checkmark & \checkmark & \checkmark \\
RL \times 10 = (8 \times 8) + (4 \times 5) + (6 \times 2) \\
RL = \frac{96}{10} & \checkmark \\
RL = 9,6kN & \checkmark \\
Rements about RL \\
\checkmark & \checkmark \\
RR \times 10 = (6 \times 8) + (4 \times 5) + (8 \times 2) \\
RR = \frac{84}{10} & \checkmark \\
RR = 8,4kN & \checkmark \\
\end{array}$$
(8)

7.2.2 Bending moments at point A, B, C, D and E:

Scale 2 mm = 1 kN.m Moment at A = 0 kN.m \checkmark B = RL×2= 19,2 kN.m \checkmark C = (RL×5)-(8×3) = 24 kN.m \checkmark D = (RL×8)-(8×6)-(4×3) = 16,8 kN.rr \checkmark E = (RL×10) -(8×8) -(4×5)-(6×2) = 0 kN.m \checkmark (5)

NOTE: Use a tolerance of 2 mm + and – on the bending moment diagram. Copyright reserved

Please turn over

7.3 **Stress and strain:**

$$A = \frac{4}{4}$$

$$A = \frac{4}{(0,02)}$$

$$A = 0,314 \times 10^{-3} \text{ m}^2$$

Stress =
$$\frac{1000}{\text{Area}}$$

Load = Stress × Area
Load = $(80 \times 10^6) \times (0,314 \times 10^{-3})$
Load = 25,133 kN \checkmark

(7)

TOTAL QUESTION 7: [45]

(Any 2 x 1)

QUESTION 8: JOINING METHODS (WELD INSPECTION) (SPECIFIC)

8.1 Factors to be observed during oxy-acetylene welding:

- Correct flame for the work on hand. ✓
- Correct angle of welding torch and welding rod. ✓
- Depth penetration and amount of fusion. ✓
- The rate of progress along the joint. ✓
- The distance of the nozzle from the parent metal. \checkmark

8.2 **Abbreviation 'HAZ':**

Heat Affected Zone ✓

8.3 Causes of weld defects:

8.3.1 **Spatter:**

- Disturbance in the molten weld pool. ✓
- Too low welding voltages. ✓
- Too high welding current / amps. ✓
- Inadequate shielding gas flow. ✓
- Too fast travel speed ✓
- Arc length too long ✓
- Wet electrode ✓
- Wrong polarity ✓
- Arc length too short ✓
- Wrong included electrode angle ✓
- Wrong electrode used ✓
- Arc blow ✓

8.3.2 Undercutting:

- Too fast travel speed ✓
- Rapid solidification ✓
- Too low arc voltage ✓
- Arc length too long ✓
- Excessive welding current ✓
- Too slow movement over weld ✓
- Current / amps too high ✓
- Electrode too big ✓
- Wrong electrode ✓
- Wrong included electrode angle ✓
- Excessive weaving ✓
- Wrong joint design ✓

(Any 2 x 1) (2)

(2)

(1)

(Any 2 x 1) (2)

8.3.3 **Incomplete penetration:**

- Welding current too low ✓
- Too fast travel speed ✓
- Incorrect electrode angle ✓
- Poor edge preperation ✓
- Insufficient root gap ✓
- Electrode too big ✓
- Wrong electrode ✓
- No pre-heating done ✓
- Wrong shielding gas used ✓
- Too long arc ✓

(Any 2 x 1) (2)

8.4 **Types of cracks:**

8.4.1 **Transverse cracks:**

- Pre-heating the base metal ✓
- Using lower strength consumables / welding rod ✓
- Slow cooling after welding ✓
- Use clamping device. ✓
- Weld toward the unrestrained side of the weld. ✓

(Any 2 x 1) (2)

8.4.2 **Centreline cracks:**

- Ensure that width-to-depth ratio is 1:1. ✓
- Decrease the current to decrease excess penetration. ✓
- Decreasing welding voltage setting or slowing travel speed to achieve a flat to convex weld surface. ✓
- Use clamping device. ✓

(Any 2 x 1) (2)

(2)

8.5 **Differences between non-destructive and destructive tests:**

- Non-destructive test does not destroy the welded joint. ✓
- Destructive test destroys the welded joint. ✓

8.6 **Ultrasonic test:**

- No defects will occurs during a ultrasonic test ✓✓
- Detect internal ✓ flaws as well as surface flaws. ✓
- Porosity ✓✓
- Slag inclusions ✓✓
- Cracks ✓ ✓

8.7	 Nick break test for internal defects: Slag inclusion ✓ Porosity ✓ Lack of fusing ✓ Oxidised metal ✓ Burned metal ✓ 	
	(Any 2 x 1)	(2)
8.8	 Machinability test: To determine the hardness ✓ and strength ✓ of the welded joint. To determine ✓ the machinability. ✓ (Any 1 x 2) 	(2)
8.9	 Visual requirements of welds: Shape of the profile ✓ Uniformity of the surface ✓ Overlap ✓ Free from any external defects ✓ Penetration bead ✓ 	
	• Root groove ✓ (Any 2 x 1)	(2)
	TOTAL QUESTION 8:	[23]

QUESTION 9: JOINING METHODS (STRESSES AND DISTORTION) (SPECIFIC)

9.1 **Residual stress:**

Residual stresses are stresses that exist \checkmark in a metal after cooling / welding. \checkmark

9.2 Factors affecting grain size:

- The amount of cold work. ✓
- The temperature and time of annealing process. ✓
- The composition and constitution. \checkmark
- The recrystallisation temperature of cold worked metal. \checkmark
- The melting point. ✓

(Any 2 x 1) (2)

(2)

9.3 **Quenching medias:**

- Oil ✓
- Water ✓
- Sand ✓
- Air ✓
- Brine / Salt water ✓
- Lime ✓
- Liquid salts ✓
- Molten lead ✓
- Ash ✓

(Any 2 x 1) (2)

(4)

9.4 **Weld distortion**:

Distortion in a weld results from the uneven expansion and contraction (warping) ✓ of the weld metal ✓ and adjacent base metal ✓ during the heating and cooling cycle ✓ of the welding process.

9.5 **Factors that affect distortion and residual stress:**

- If the expansion that occurs when metal is heated is resisted ✓ then deformation will occur. ✓
- When contraction that occurs on cooling is resisted ✓ then a stress will be applied. ✓
- If this applied stress causes movement ✓ then distortion occurs. ✓
- If the applied stress does not cause movement ✓ then there will be residual stress in the welded joint. ✓

(Any 2 x 2) (4)

9.6 **Result when metal is cooled rapidly:**

- Rapid cooling of metal results in large temperature differences ✓ between the internal and external areas ✓ of the metal that set up stresses, ✓ which cause cracks ✓ on the surface.
- It will harden ✓✓ and the grain structure ✓ will change. ✓

(Any 1 x 4) (4)

TOTAL QUESTION 9: [18]

(Any 2 x 1)

(Any 2 x 1)

(2)

(2)

(2)

QUESTION 10: MAINTENANCE (SPECIFIC)

10.1 **Reasons maintenance:**

- Promote cost saving ✓
- Improves safety ✓
- Increases equipment efficiency ✓
- Fewer equipment failure ✓
- Improves reliability of equipment \checkmark

10.2 Lockout on machines:

To ensure that nobody can turn on the machine \checkmark while maintenance is being carried out. \checkmark

10.3 **Reasons for service records:**

- Assist in the monitoring of the condition of the machines. \checkmark
- Assist in upholding warrantees. ✓
- Assist in keeping a history of maintenance and repairs. ✓
- 10.4 **Methods of reducing friction:**
 - By reducing both drill speed and feed speed. ✓
 - By applying lubrication. (cutting fluid) ✓
 - Use the correct drill bit ✓
 - Drill a pilot hole ✓

- (Any 2 x 1) (2)
- TOTAL QUESTION 10: [8]

QUESTION 11: TERMINOLOGY (DEVELOPMENT) (SPECIFIC)

11.1 **Use of transformers:**

Transformers are used to connect \checkmark ducting sections of dissimilar \checkmark shapes to each other. \checkmark

11.2 **On-centre hopper:**

(1)

(1)

(3)

Off-centre hopper:

Copyright reserved

11.3 **Truncated cone:**

11.3.1 Base circumference:

Circumference =
$$\vDash$$
 Base diameter \checkmark
= \eqsim 1400 \checkmark
= 4398,23 mm \checkmark

(3)

11.3.2 Main radius (AC):

Triangles ABC and CED has the same shape:

AC : DC = BC :EC
Thus
$$\frac{AC}{DC} = \frac{BC}{EC}$$
 \checkmark
From where AC = $\frac{BC \times DC}{EC}$ \checkmark

and CE =
$$\frac{\text{Base Dia} - 800}{2}$$
 \checkmark
= $\frac{1400 - 800}{2}$ \checkmark
CE = 300 mm \checkmark

For : DC

$$DC^{2} = DE^{2} + CE^{2} \checkmark$$

$$DC = \sqrt{1200^{2} + 300^{2}} \checkmark$$

$$DC = 1236,93 \text{ mm} \checkmark$$
rounded = 1237 mm

$$AC = \frac{BC \times DC}{EC}$$

$$= \frac{700 \times 1237}{300} \checkmark$$

$$= 2886,17 \text{ mm} \checkmark$$
rounded = 2886 mm (10)

11.3.3 Small radius (AD):

$$AD = AC - DC \checkmark$$

= 2886 - 1237 \sqrt{
AD} = 1649 mm (1649,24 mm) \sqrt{ (3)}

TOTAL QUESTION 11: [21]

GRAND TOTAL: 200

Annexure A Question 7.1

The CM need to redraw to check the scale and to photocopy it to a transparency.

					-	31.75 mm	
						28.87 mm	
member	mm	N	nature]	60.00	a	
AE	52			/			40.00 mm
BF	29				f	1	
CG	63					b	
FG	6			<u>5.77 mm</u>			-
ED	25			g		d f	
EF	6						
GD	32					55.00 mm	60.00 mm
AB	40					33.00 11111	
BC	60			63.51 r	nm		
CD	55				00.00		L L
AD	45					й С	L
					\	\sim	

Question 7.2.3

