

You have Downloaded, yet Another Great Resource to assist you with your Studies ③

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

basic education

Department: Basic Education **REPUBLIC OF SOUTH AFRICA**

NATIONAL SENIOR CERTIFICATE

GRADE 12

MARKS: 200

These marking guidelines consist of 20 pages.

Copyright reserved

Please turn over

QUESTION 1: MULTIPLE-CHOICE (Generic)

1.1	B√	(1)
1.2	C✓	(1)
1.3	A✓	(1)
1.4	C ✓	(1)
1.5	A✓	(1)
1.6	C✓	(1) [6]

QUESTION 2: SAFETY (Generic)

2.1 Machine safety rule:

- Know how to switch the machine off / emergency stop. \checkmark
- Wear personal protective equipment (PPE). ✓
- Know how to use the machine. ✓
- Ensure that all guards are in place. ✓
- No tools lying on the machine. ✓
- Work piece is properly secured. ✓
- Check the condition of the machine. \checkmark
- Follow manufacture's specifications before operating a machine. ✓
- Operator must have authorization to working on a machine. ✓
- Make sure the machine is not locked out. ✓
- Ensure that the machine setup is correct and safe. ✓
- Ensure that the machine area is clean and safe. ✓
- (**Any 1 x 1**) (1)

(Any 1 x 1)

(1)

2.2 **Drill press safety precautions:**

- To prevent injuries. ✓
- To improve accuracy. ✓
- To prevent work piece rotating/moving. ✓
- To prevent the drill bit from breaking. ✓

2.3 **Hydraulic press safety rules:**

- Make sure the press is in a good working condition. ✓
- Take notice of the pre-determined maximum pressure of the hydraulic press. ✓
- Make sure the area around the press is clean and free of oil, grease and water. ✓
- Ensure that the platform is rigid and square to the cylinder. \checkmark
- Ensure that suitable jigs and prescribed equipment is available. \checkmark

(Any 2 x 1)

- Check hydraulic pipes for leaks or cracks. ✓
- Check supporting pins are not worn out and fitted properly. ✓
- Check fluid levels. ✓
- Compressive force must be applied at 90° to the object. ✓
- Check cable and pulleys on the platform if equipped. ✓
- Correct PPE. ✓
- Pressure gauge must be checked and calibrated. \checkmark
- Ensure that all guards are in place. ✓

2.4 **Reasons for wearing surgical gloves:**

- To prevent HIV/AIDS or any blood related infections being transmitted.✓
- To prevent contamination of the open wounds. ✓

2.5 **Safe handling of portable electrical equipment:**

- Ensure the electrical cord and plug, are in a good condition. ✓
- Ensure all safety guards are in place. ✓
- Ensure that the correct attachments (drill bits, blades etc.) are fixed in the correct way. ✓
- Do not force the machine/equipment. ✓
- Operate according to manufacturer instructions. ✓
- Avoid contact with water. ✓
- Keep the cable away from heat, oil, sharp edges and moving parts. \checkmark
- Make sure that the wires don't wrap around each other. \checkmark
- Avoid dropping the machine. \checkmark
- Check the condition of the equipment. \checkmark

2.6 **Responsibility of employer:**

- Provide and maintain working systems, work area, equipment and tools in a safe condition. ✓
- Eliminate or reduce any potential hazard. ✓
- Produce, handle, store and transport goods safely. ✓
- Ensure that every person employed complies with the requirements of this OHS Act. ✓
- Enforce measures if necessary in the interest of health and safety. ✓
- Appoint a person who is trained and who have the authority to ensure that the employee takes precautionary measures. ✓
- Inform employees of the hazards to his health and safety attached to any duty or work situation. ✓
- Provide first aid equipment. ✓

(Any 1 x 1) (1)

•

(2)

(2)

(Any 2 x 1) (2)

2.7 **Responsibility of employee:**

- Pay attention to their own and other people's health and safety. ✓
- Co-operate with the employer regarding the OHS Act. ✓
- Carry out a lawful order given to them. ✓
- Report any situation that is unsafe or unhealthy. ✓
- Report all incidents and accidents. ✓
- Not to interfere with any safety equipment or misuse such equipment.
- Obey all safety rules. ✓
- QUESTION 3: MATERIAL (Generic)

3.1 Filing test:

- Use the right ✓ filing skills. ✓
- File on the tip or edge $\checkmark \checkmark$ of the metal.
- By applying chalk ✓ to the file surface. ✓
- 3.2 **Purpose of heat treatment of steel:**

Heat treatment of steel is done to change \checkmark the properties/grain structure \checkmark of steel.

3.3 **Reasons for tempering hardened steel:**

- To reduce \checkmark the brittleness \checkmark caused by the hardening process.
- To relieve ✓ strain ✓ caused during hardening process.
- To increase \checkmark the toughness \checkmark of the steel.
- To give hardened work piece a more ✓ fine-grained structure. ✓

(Any 2 x 2) (4)

3.4 Heat treatment processes on steel:

3.4.1 **Annealing:**

- The steel is heated to the prescribed temperature. ✓
- The steel is soaked at that temperature for the required time. ✓
- The steel is then cooled very slowly to produce maximum softness. ✓

3.4.2 Hardening:

- The steel is heated slightly higher than the upper critical temperature. (AC₃) ✓
- The steel is soaked at that temperature for the required time. ✓
- The steel is then rapidly cooled by quenching in rapid cooling medium. ✓

(3) **[14]**

(3)

(Any 1 x 1)

(Any 1 x 2)

(1) [**10**]

(2)

(2)

QUESTION 4: MULTIPLE-CHOICE QUESTIONS (Specific)

4.1	A✓	(1)
4.2	D✓	(1)
4.3	B/A ✓	(1)
4.4	A✓	(1)
4.5	B/A ✓	(1)
4.6	B✓	(1)
4.7	B✓	(1)
4.8	A✓	(1)
4.9	C✓	(1)
4.10	B✓	(1)
4.11	D✓	(1)
4.12	B✓	(1)
4.13	A✓	(1)
4.14	B✓	(1) [14]

QUESTION 5: TERMINOLOGY (Lathe and Milling Machine) (Specific)

5.1 **Taper turning:**

5.1.1 Small diameter:

$$d = D - 2(AB) \qquad \checkmark = 200 - 2(20,98) \qquad \checkmark = 158,04 \text{ mm} \qquad \checkmark$$

OR

$$Tan\frac{\theta}{2} = \frac{D - d}{2L} \checkmark$$
$$tan4^{\circ} = \frac{200 - d}{2(300)} \checkmark$$
$$tan4^{\circ} \times 600 = 200 - d \checkmark$$
$$d = 200 - (tan4^{\circ} \times 600) \checkmark$$
$$d = 158,04 \text{ mm} \checkmark$$

OR

$$d = D - 2AB \checkmark$$

= 200 - 2(300 × tan4°) $\checkmark \checkmark \checkmark$
= 158,04 mm \checkmark

(5)

5.1.2 Setting over of tailstock:
Setting over : 20,98 mm over 300 mm
Thus "X" mm over 400 mm
$$300$$
"X" = 20,98 × 400 \checkmark
"X" = $\frac{20,98 \times 400}{300}$ \checkmark
"X" = 27,97 mm \checkmark

Set over =
$$\frac{L(D-d)}{2l}$$

= $\frac{400(200-158,04)}{2(300)}$
= 27.97 mm

5.2 **Parallelkey:**

5.2.1 Width:
Width =
$$\frac{D}{4}$$

= $\frac{42}{4}$
= 10,5 mm

5.2.2 **Thickness:** Thickness= $\frac{D}{6}$ = $\frac{42}{6}$ = 7 mm

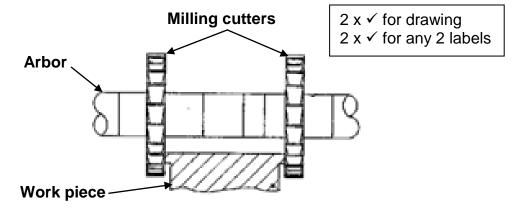
5.3 Advantages of down cut milling:

- A better finish is obtained. ✓
- Friction is reduced. ✓
- High speed cutting is possible. ✓
- Less power required. ✓
- Coolant is carried down to the teeth to where it is required. \checkmark

 \checkmark

- Tends to force the work piece onto the machine table there for deeper cuts can be made. ✓
- Less vibration. ✓

(Any 2 x 1) (2)


(3)

(2)

(2)

Copyright reserved

5.4 **Straddle milling:**

QUESTION 6: TERMINOLOGY (Indexing) (Specific)

6.1 **Spur gear terminology:**

6.1.1	Module: Module= $\frac{PCD}{T}$ = $\frac{126}{42}$	√		
	= 3	\checkmark	(2)	
6.1.2	Working depth:			

WD=2×m \checkmark =2×3 =6mm \checkmark

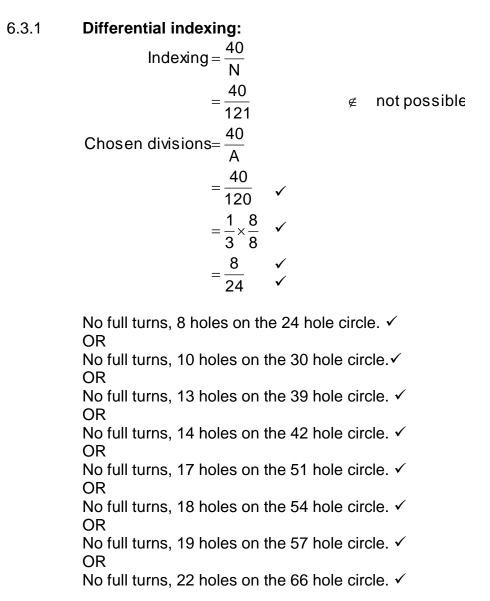
6.1.3 **Cutting depth:**

Cuttingdepth=2,157×m			$=$ 2,25 \times m		
= 2,157×3	\checkmark	or	$=2,25 \times 3$	\checkmark	
=6,47mm	\checkmark		=6,75mm	\checkmark	(2)

6.2 **Angular indexing:**

Indexing =
$$\frac{n}{9^{\circ}} = \frac{34^{\circ}}{9^{\circ}}$$
 \checkmark
= $3\frac{7}{9} \times \frac{6}{6}$ \checkmark
= $3\frac{42}{54}$ \checkmark

3 full turns and 42 holes on the 54 hole circle. \checkmark


(4)

(2)

(4)

[18]

6.3 Indexing:

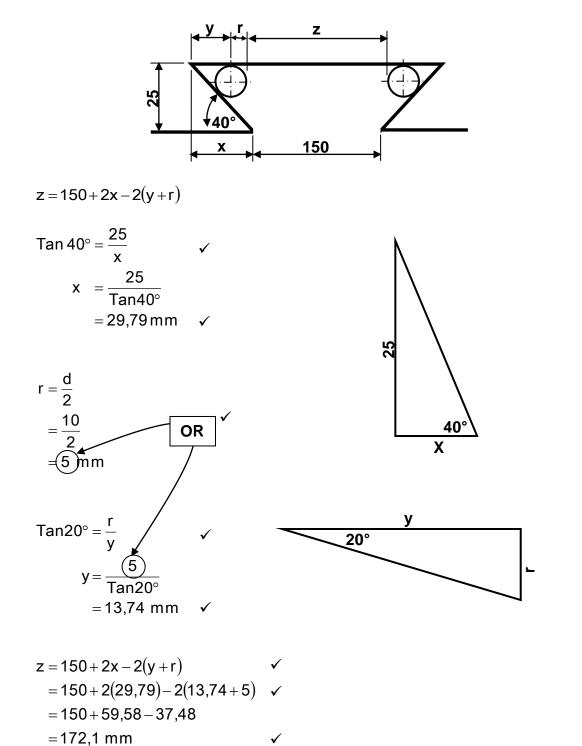
6.3.2 Change gears:

$$\frac{Dr}{Dn} = \frac{A - N}{A} \times \frac{40}{1}$$

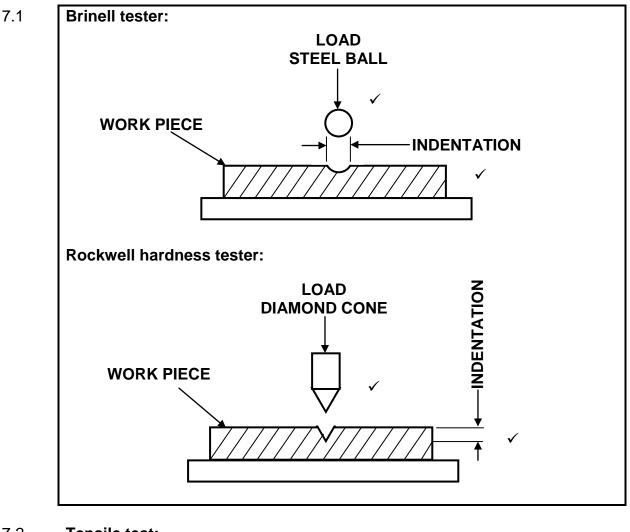
$$= \frac{120 - 121}{120} \times \frac{40}{1} \quad \checkmark$$

$$= \frac{-1}{120} \times \frac{40}{1} \quad \checkmark$$

$$= \frac{-40}{120}$$


$$= \frac{-1}{3} \times \frac{24}{24} \quad \checkmark$$

$$\frac{Dr}{Dn} = \frac{24}{72} \quad \checkmark$$


Copyright reserved

(5)

6.4 **Calculate distance Z between rollers:**

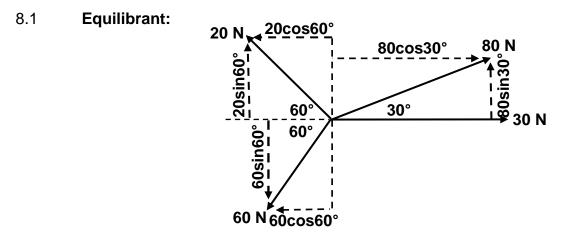
QUESTION 7: TOOLS AND EQUIPMENT (Specific)

7.2 **Tensile test:**

- Tensile strength ✓
- Elasticity ✓
- Ductility ✓
- Plasticity ✓

(Any 2 x 1) (2)

(4)

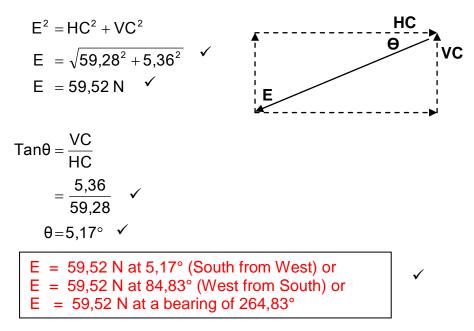

7.3 **Depth micro-meter reading:**

50,00 ✓ 16,00 ✓ 0,00 ✓	
<u> 0,33 </u> √ <u>66,33 mm </u> ✓	(5)
Screw thread ✓ micro meter ✓	(2) [13]

Copyright reserved

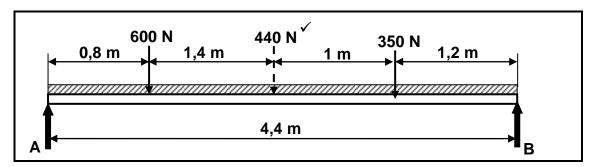
7.4

QUESTION 8: FORCES (Specific)


 $\Sigma HC = 30 + 80 \text{cos} 30^\circ - 20 \text{cos} 60^\circ - 60 \text{cos} 60^\circ$

$$\checkmark \checkmark \checkmark \checkmark \checkmark$$

= 30 + 69,28 - 10 - 30
= 59,28 N \checkmark


 $\Sigma VC = 20sin60^{\circ} + 80sin30^{\circ} - 60sin60^{\circ}$

 $\checkmark \checkmark \checkmark \checkmark$ = 17,32+40-51,96 = 5,36 N \checkmark

OR						
HC	Magnitudes	VC	Magnitudes			
30	30 🗸	20sin60°	17,32 ✓			
80cos30°	69,28 🗸	80sin30°	40 🗸			
-20cos60°	-10 🗸	-60sin60°	-51,96 🗸			
-60cos60°	-30 🗸					
TOTAL	59,28 N ✓	TOTAL	5,36 N ✓			

8.2 Moments:

Distributed load:

 $= 100 N/m \times 4.4 m$

=440N ✓

Calculate A:

Moments about B: ∑RHM=ΣLHM $(A \times 4,4) = (350 \times 1,2) + (440 \times 2,2) + (600 \times 3,6)$ ✓ $\frac{4,4A}{4,4} = \frac{3548}{4,4}$ ✓ A = 806,36 N ✓

Calculate B:

Moments about A. ∑LHM=ΣRHM $(B \times 4,4) = (600 \times 0,8) + (440 \times 2,2) + (350 \times 3,2)$ ✓ $\frac{4,4B}{4,4} = \frac{2568}{4,4}$ ✓ B = 583,64 N ✓

1	Q	۱
ſ	O	,
•		•

8.3 **Stress-strain:**

- 8.3.1 Compressive stress ✓
- 8.3.2 **Stress:**

A =
$$\frac{\pi (D^2 - d^2)}{4}$$

= $\frac{\pi (0.04^2 - 0.025^2)}{4}$ \checkmark
A = 0.77 $\times 10^{-3}$ m² \checkmark

$$\sigma = \frac{F}{A}$$

$$= \frac{600}{0,77 \times 10^{-3}} \checkmark$$

$$\sigma = 779220,78 \text{ Pa or}$$

$$= 0,78 \times 10^{6} \text{ Pa or}$$

$$= 0,78 \text{ MPa}$$

8.3.3 Change in length:

$$E = \frac{\sigma}{\epsilon}$$

$$\epsilon = \frac{\sigma}{E} \qquad \checkmark$$

$$= \frac{0.78 \times 10^{6}}{90 \times 10^{9}} \qquad \checkmark$$

$$\epsilon = 8.66 \times 10^{-6} \qquad \checkmark$$

$$\begin{aligned} \boldsymbol{\varepsilon} &= \frac{\Delta I}{oI} \\ \Delta I &= \boldsymbol{\varepsilon} \times oI \\ &= \left(8,67 \times 10^{-6}\right) \times \left(100\right) \quad \checkmark \\ &= 0.87 \times 10^{-3} \text{ mm} \quad \checkmark \end{aligned}$$

(1)

(4)

(Any 2 x 1)

QUESTION 9: MAINTENANCE (Specific)

9.1 **Types of maintenance:**

- Preventative ✓
- Predictive ✓
- Reliable centred ✓

9.2 Malfunctioning of belt drives:

- Lubrication between belt and pulley causing belt slip. ✓
- Pulleys not properly secured to shafts. ✓
- Incorrect pulley alignment. ✓
- Overloading the system. ✓
- Incorrect belt tension. ✓
- Worn belts. ✓
- Faulty/damaged tensioner pulley. ✓
- Lack of maintenance. ✓

9.3 **Replace the chain on a chain drive system:**

- Release the tension on the chain and remove from sprocket. ✓
- Check the condition and alignment of the sprockets. ✓
- Fit the new specified chain and lubricate. ✓
- Apply adequate tension to the chain. ✓
- Check for proper operation. ✓

9.4 Wear on a gear drive system:

- Check and replenish of lubrication levels. ✓
- Ensuring the gears are properly secured to shafts. ✓
- Cleaning and replacement of oil filters. ✓
- Reporting excessive noise, wear, vibration and overheating for expert attention. ✓

(Any 2 x 1) (2)

9.5 **Material:**

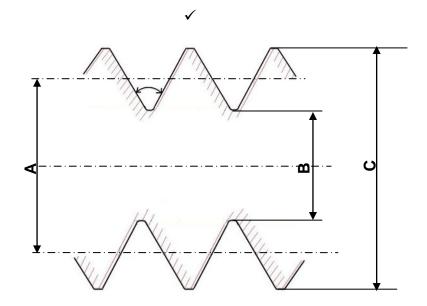
9.5.1 **Nylon:**

- Bushes ✓
- Gears ✓
- Pulleys ✓
- Fishing line ✓
- Clothing ✓
- Sails ✓
- Ropes ✓
- Sport equipment ✓
- Powder coating ✓

(Any 1 x 1) (1)

Copyright reserved

(5)


(2)

(3)

	9.5.2	 Glass fibre: Used in boats ✓ Motor vehicle bodies ✓ Transparent roof sheets ✓ Petrol tanks ✓ Swimming pools ✓ Furniture ✓ Fruit and salad bowls ✓ Ornaments ✓ Fishing rods ✓ Sporting equipment ✓ 	(Any 1 x 1)	(1)
9.6	Thermo	plastic or Thermo hardened composites:		
	9.6.1	Teflon: Thermoplastic ✓		(1)
	9.6.2	Bakelite: Thermo hardened / Thermo setting ✓		(1)
9.7	 Cont Surfa Tem Slidit Type 	ent of friction: tact pressure ✓ ace roughness ✓ perature ✓ ng velocity ✓ e (amount) of lubricant ✓ e of material ✓	(Any 2 x 1)	(2) [18]

QUESTION 10: JOINING METHODS (Specific)

10.1 Screw thread diameters:

A = Pitch diameter/Effective diameter \checkmark

B = Minor diameter/Root diameter ✓

C = Major diameter/Crest diameter/Outside diameter/Nominal diameter/Basic diameter ✓

10.2 Lead of a screw thread: (3)

The lead is the distance a thread \checkmark will move axially \checkmark in one full revolution. \checkmark

10.3 Square screw thread:

10.3.1 Screw thread lead:

 $Lead = pitch \times no of starts$

$$= 4 \times 3 \qquad \checkmark$$
$$= 12 \, \text{mm} \quad \checkmark$$

10.3.2 Mean/pitch circumference:

Mean/pitch circumference =
$$\pi \left(OD - \frac{P}{2} \right)$$
 \checkmark
= $\pi \left(68 - \frac{4}{2} \right)$ \checkmark
= 207,35 mm \checkmark

(4)

(2)

(3)

10.3.3	Helix angle:	
	Helix angle $\tan \theta = \frac{1}{1}$	
	mean/pitch circumference	
	$=\frac{12}{207,35} \qquad \checkmark$ $\theta = 3,31^{\circ} \qquad \checkmark$	
	$\theta = 3,31^{\circ}$	(2)
10.3.4	Leading angle: Leadingtoolangle= 90° -(helix angle+clearance angle) = 90° -(3,31°+3°) \checkmark	
	=83,69° ✓	(2)
10.3.5	Following angle: Followingtoolangle= 90° +(helix angle-clearance angle) = 90° +($3,31^{\circ}$ - 3°) \checkmark	
	= 90,31°	(2)

QUESTION 11: SYSTEMS AND CONTROL (Drive Systems) (Specific)

11.1 Advantages of a gear drive:

- Compact assembly ✓
- More power can be transmitted/Stronger ✓
- No slip occurs ✓
- Less maintenance ✓

(Any 2 x 1) (2)

[18]

11.2 Hydraulics:

11.2.1 Fluid pressure:

$$A_{B} = \frac{\pi D_{B}^{2}}{4}$$
$$= \frac{\pi (0,2)^{2}}{4} \checkmark$$
$$= 31,42 \times 10^{-3} \text{ m}^{2} \checkmark$$

$$P = \frac{F_{B}}{A_{B}}$$

$$= \frac{15 \times 10^{3}}{31,42 \times 10^{-3}} \qquad \checkmark$$

$$= 477,40 \times 10^{3} Pa$$

$$= 477,40 kPa \qquad \checkmark$$

(5)

11.2.2 **Distance 'X':**

$$A_{A} = \frac{\pi D_{A}^{2}}{4}$$
$$= \frac{\pi (0,075)^{2}}{4}$$
$$= 4,42 \times 10^{-3} \text{ m}^{2} \quad \checkmark$$

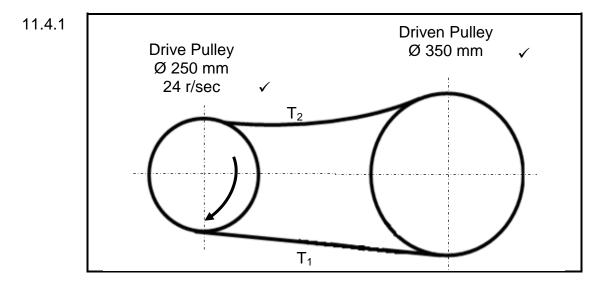
$$V_{B} = V_{A}$$

$$A_{B} \times L_{B} = A_{A} \times L_{A} \qquad \checkmark$$

$$L_{B} = \frac{A_{A} \times L_{A}}{A_{B}} \qquad \checkmark$$

$$= \frac{(4,42 \times 10^{-3}) \times (0,12)}{(31,42 \times 10^{-3})} \qquad \checkmark$$

$$= 16,88 \times 10^{-3} \text{ m}$$


$$= 16,88 \text{ mm} \qquad \checkmark$$

11.3 Advantages of pneumatics:

- Compressed air is easy and cheap to generate. \checkmark
- Leakages are not messy no oil spills. ✓
- Positive and negative pressure can be generated. ✓
- More compact. ✓
- Easily maintain due to fewer working parts. ✓

(Any 2 x 1) (2)

11.4 Belt-drive system:

(2)

(6)

11.4.2	Belt speed: v = πDn	\checkmark			
	$= \pi \times 0,25 \times 24$	\checkmark			
	$v = 18,85 m.s^{-1}$	OR	18,85 m/s ✓		(3)
11.4.3	Power transmitted: $P = (T_1 - T_2)v$ = (300 - 120)18,85	√ √	$P = (T_1 - T_2)\pi Dn$ = (300-120)\pi \times 0,25 \times 24	√ √	
	= 180×18,85 = 3393Watt = 3,39 kW	✓ ✓ OR	= 180×18,85 = 3393Watt = 3,39 kW	√	(4)

11.5 Gear drive system: Number of teeth on gear C:

$$\frac{N_{A}}{N_{D}} = \frac{T_{B} \times T_{D}}{T_{A} \times T_{C}} \qquad \checkmark$$
$$N_{A} = \frac{T_{B} \times T_{D} \times N_{D}}{T_{A} \times T_{C}} \qquad \checkmark$$
$$= \frac{80 \times 60 \times 120}{30 \times 40} \qquad \checkmark$$
$$= 480 \text{ r/min} \qquad \checkmark$$

OR

$$N_{C} \times T_{C} = N_{D} \times T_{D} \qquad N_{A} \times T_{A} = N_{B} \times T_{B}$$

$$N_{C} = \frac{N_{D} \times T_{D}}{T_{C}} \qquad \checkmark \qquad N_{A} = \frac{N_{B} \times T_{B}}{T_{A}} \qquad \checkmark$$

$$= \frac{120 \times 60}{40} \qquad = \frac{180 \times 80}{30}$$

$$= 180 \text{ r/min} \qquad \checkmark \qquad = 480 \text{ r/min} \qquad \checkmark \qquad (4)$$
[28]

TOTAL: 200