

You have Downloaded, yet Another Great Resource to assist you with your Studies ③

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za



basic education

Department: Basic Education **REPUBLIC OF SOUTH AFRICA**

NATIONAL SENIOR CERTIFICATE

GRADE 12

MARKS: 200

These marking guidelines consist of 17 pages.

Copyright reserved

Please turn over

QUESTION 1: MULTIPLE-CHOICE (Generic)

1.6	C✓	(1) [6]
1.5	A✓	(1)
1.4	C ✓	(1)
1.3	A✓	(1)
1.2	C ✓	(1)
1.1	B✓	(1)

QUESTION 2: SAFETY (Generic)

2.1 Machine safety rule:

- Know how to switch the machine off/emergency stop. ✓
- Wear personal protective equipment (PPE). ✓
- Know how to use the machine. \checkmark
- Ensure that all guards are in place. ✓
- No tools lying on the machine. ✓
- Work piece is properly secured. ✓
- Check the condition of the machine. ✓
- Follow manufacture's specifications before operating a machine. ✓
- Operator must have authorization to working on a machine. ✓
- Make sure the machine is not locked out. ✓
- Ensure that the machine setup is correct and safe. ✓
- Ensure that the machine area is clean and safe. \checkmark
- (**Any 1 x 1**) (1)

(1)

2.2 **Drill press safety precautions:**

- To prevent injuries. ✓
- To improve accuracy. ✓
- To prevent work piece rotating/moving. ✓
- To prevent the drill bit from breaking. ✓

(Any 1 x 1)

2.3 Hydraulic press safety rules:

- Make sure the press is in a good working condition. \checkmark
- Take notice of the pre-determined maximum pressure of the hydraulic press. \checkmark
- Make sure the area around the press is clean and free of oil, grease and water. \checkmark
- Ensure that the platform is rigid and square to the cylinder. \checkmark
- Ensure that suitable jigs and prescribed equipment is available. \checkmark
- Check hydraulic pipes for leaks or cracks. ✓

(Any 2 x 1)

(2)

(2)

- Check supporting pins are not worn out and fitted properly. ✓
- Check fluid levels. ✓
- Compressive force must be applied at 90° to the object. ✓
- Check cable and pulleys on the platform if equipped. ✓
- Correct PPE. ✓
- Pressure gauge must be checked and calibrated. ✓
- Ensure that all guards are in place. ✓

2.4 **Reasons for wearing surgical gloves:**

- To prevent HIV/AIDS or any blood related infections being transmitted.✓
- To prevent contamination of the open wounds. \checkmark

2.5 **Safe handling of portable electrical equipment:**

- Ensure the electrical cord and plug, are in a good condition. \checkmark
- Ensure all safety guards are in place. ✓
- Ensure that the correct attachments (drill bits, blades etc.) are fixed in the correct way. ✓
- Do not force the machine / equipment. ✓
- Operate according to manufacturer instructions. ✓
- Avoid contact with water. ✓
- Keep the cable away from heat, oil, sharp edges and moving parts. \checkmark
- Make sure that the wires don't wrap around each other. ✓
- Avoid dropping the machine. ✓
- Check the condition of the equipment. \checkmark

(Any 2 x 1) (2)

2.6 **Responsibility of employer:**

- Provide and maintain working systems, work area, equipment and tools in a safe condition. ✓
- Eliminate or reduce any potential hazard. ✓
- Produce, handle, store and transport goods safely. ✓
- Ensure that every person employed complies with the requirements of this OHS Act. ✓
- Enforce measures if necessary in the interest of health and safety. \checkmark
- Appoint a person who is trained and who have the authority to ensure that the employee takes precautionary measures. ✓
- Inform employees of the hazards to his health and safety attached to any duty or work situation. ✓
- Provide first aid equipment. ✓

(Any 1 x 1) (1)

2.7 **Responsibility of employee:**

- Pay attention to their own and other people's health and safety. ✓
- Co-operate with the employer regarding the OHS Act. ✓
- Carry out a lawful order given to them.
- Report any situation that is unsafe or unhealthy. ✓
- Report all incidents and accidents. ✓
- Not to interfere with any safety equipment or misuse such equipment.
- Obey all safety rules. ✓

(Any 1 x 1) (1)

[10]

(2)

QUESTION 3: MATERIAL (Generic)

3.1 Filing test:

- Use the right \checkmark filing skills. \checkmark
- File on the tip or edge $\checkmark \checkmark$ of the metal.
- By applying chalk ✓ to the file surface. ✓

(Any 1 x 2) (2)

3.2 **Purpose of heat treatment of steel:**

Heat treatment of steel is done to change ✓ the properties/grain structure ✓ of steel.

3.3 **Reasons for tempering hardened steel:**

- To reduce ✓ the brittleness ✓ caused by the hardening process.
- To relieve ✓ strain ✓ caused during hardening process.
- To increase \checkmark the toughness \checkmark of the steel.
- To give hardened work piece a more ✓ fine-grained structure. ✓

(Any 2 x 2) (4)

3.4 Heat treatment processes on steel:

3.4.1 **Annealing:**

- The steel is heated to the prescribed temperature. ✓
- The steel is soaked at that temperature for the required time. \checkmark
- The steel is then cooled very slowly to produce maximum softness. ✓

3.4.2 Hardening:

- The steel is heated slightly higher than the upper critical temperature. (AC₃) ✓
- The steel is soaked at that temperature for the required time. ✓
- The steel is then rapidly cooled by quenching in rapid cooling medium. ✓

(3) [**14**]

(3)

QUESTION 4: MULTIPLE-CHOICE QUESTIONS (Specific)

4.1	D✓	(1)
4.2	A✓	(1)
4.3	C✓	(1)
4.4	D✓	(1)
4.5	B✓	(1)
4.6	D✓	(1)
4.7	D✓	(1)
4.8	C✓	(1)
4.9	A✓	(1)
4.10	C✓	(1)
4.11	A✓	(1)
4.12	C✓	(1)
4.13	B✓	(1)
4.14	D✓	(1) [14]

QUESTION 5: TERMINOLOGY (TEMPLATES) (Specific)

5.1	Abbreviation: OSU Other ✓ Side Up ✓	(2)
5.2	Plate girder: Is a combination of plates and angle iron ✓ welded together. ✓	(2)
5.3	Purpose of supplementary welding symbols: To indicate the additional/supplementary information regarding the weld. \checkmark	
5.4	 Fusion welds: Spot welding ✓ Projection ✓ Seam welding ✓ Foil seam welding ✓ Flash or resistance butt ✓ 	

- Gas welding ✓
- MIG/MAGS Welding ✓
- Arc welding ✓

5.5 **Supplementary weld symbols:**

5.5.1	Grind ✓	(1)
5.5.2	Flame 🗸	(1)
5.5.3	Machine 🗸	(1)
5.5.4	Flush ✓	(1)
5.5.5	Convex ✓	(1)

5.6 Material calculations:

Mean diameter = Outside diameter – plate thickness ✓

= 300 - 20 ✓ = 280 mm ✓

Mean circumference = $\pi \times$ mean diameter \checkmark

$$= \pi \times 280 \quad \checkmark$$

= 879.65 mm, $\checkmark \quad \checkmark$ (7)

5.7 Weld dimensions:

- 30°: the included angle in degree ✓
- 5: root gap or root opening in mm ✓

QUESTION 6: TOOLS AND EQUIPMENT (Specific)

6.1.1 **Power saw/Reciprocating saw:**

- The blade is tensioned in the frame ✓ and cuts in a forward stroke and the blade is lifted in the backward (reciprocating) motion. ✓
- The blade assembly is raised and lowered ✓ by hydraulic controls to ensure that the cutting pressure is optimum. ✓

6.1.2 Manual guillotine:

- This guillotine is operated by a foot/hand pedal/lever that activates a pressure plate/blade guard. ✓
- The blade cuts the material. ✓
- The cut material is ejected at the back of the machine. \checkmark
- Extension bars lengthen the work surface and support longer pieces of material. ✓

(2)

(4)

(4)

[23]

6.1.3 Horizontal pyramid rolls:

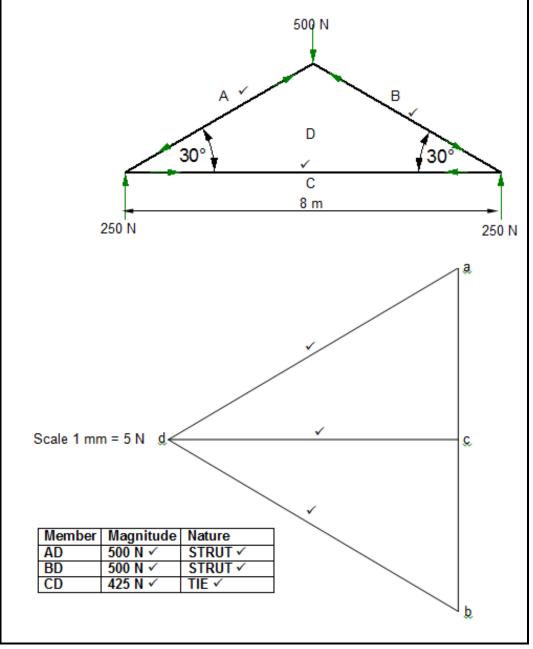
- Electrical/Power or hand driven. ✓
- The rollers are arranged so that, when viewed from the side, they give the impression of a pyramid. ✓
- All rollers are mounted in a horizontal position, with the bottom two fixed and rotating in unison. ✓
- The top roller is adjustable (up or down); applying downward pressure on the metal plate being rolled that will cause it to deflect and form the round shape. ✓

6.2 **Bench Grinder:**

- To sharpen cutting tools and drill bits. ✓
- To removing rough edges. ✓
- To removing excess material. ✓

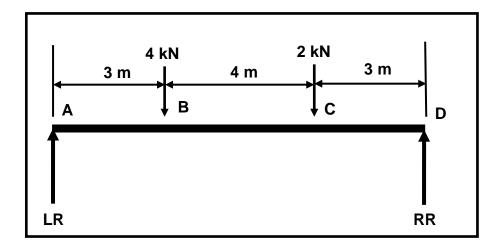
6.3 Materials that can be cut with a plasma cutter:

- Mild steel ✓
- Alloy steels ✓
- Stainless steels ✓
- Non-ferrous metals ✓


(Any 3 x 1) (3) [18]

(4)

(3)


QUESTION 7: FORCES (Specific)

(12)

7.2.1 Reactions at supports RL and RR: Take moments about RR:

$$LR \times 10 = (4 \times 7) + (2 \times 3)$$
$$LR = 3.4 \text{ kN} \checkmark$$

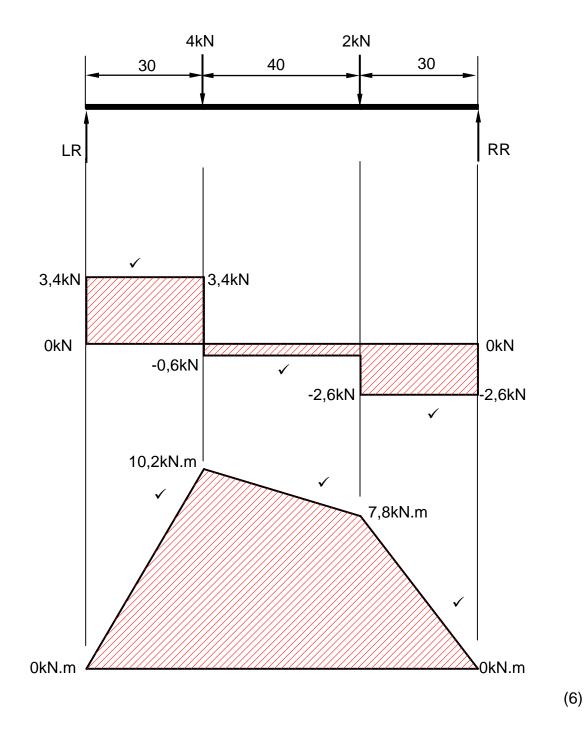
Take moments about LR:

$$RR \times 10 = (2 \times 7) + (4 \times 3)$$

RR = 2,6 kN \checkmark (6)

7.2.2 Bending moments: $BM_A = 0 \times 3, 4 = 0 \text{ kN.m } \checkmark$ $BM_B = (3 \times 3, 4) - (0 \times 4) = 10,2 \text{ kN.m } \checkmark$ $BM_C = (7 \times 3, 4) - (4 \times 4) - (0 \times 2) = 7,8 \text{ kN.m } \checkmark$ $BM_D = (10 \times 3, 4) - (7 \times 4) - (3 \times 2) + (0 \times 2, 6) = 0 \text{ kN.m } \checkmark$ (4)

7.2.3Shear forces:


$$SF_{A} = 0 kN \quad OR \quad UF_{A} = 3,4 kN \quad \checkmark$$

$$SF_{B} = 3,4 - 4 = -0,6 kN \quad \checkmark$$

$$SF_{C} = 3,4 - (4 + 2) = -2,6 kN \quad \checkmark$$

$$SF_{D} = 0 kN \quad OR \quad UF_{D} = 2,6 kN \quad \checkmark$$
(4)

7.2.4 **SF and BM diagrams:**

7.3 **Stress and Strain:**

7.3.1 Stress:

$$A = \frac{\pi d^2}{4} \checkmark$$

$$= \frac{\pi \times 0.01^2}{4}$$

$$A = 7.85 \times 10^{-5} \text{ m}^2 \checkmark$$

Stress =
$$\frac{\text{Load}}{\text{Area}}$$
 \checkmark
= $\frac{50 \times 10^3}{7,85 \times 10^{-5}}$ \checkmark
= 6369426752 Pa
= 636,94MPa \checkmark (5)

7.3.2 **Strain:**

Strain =
$$\frac{\Delta L}{OL}$$
 \checkmark
= $\frac{0.6 \times 10^{-3}}{20}$ \checkmark
= 3×10^{-5} \checkmark (3)

7.3.3 Final length: Final length = $OL + \Delta L$ \checkmark = $20 + 0.6 \times 10^{-3}$

$$= 20,0006 \,\mathrm{m}$$
 \checkmark (2)

7.3.4 Young's modulus:

$$E = \frac{Stress}{Strain} \checkmark$$

$$E = \frac{636,94 \times 10^{6}}{3 \times 10^{-5}} \checkmark$$

$$E = 2,1231 \times 10^{13} Pa$$

$$E = 21231,33 GPa \checkmark$$

(3) **[45]**

QUESTION 8: JOINING METHODS (Inspection of weld) (Specific)

8.1 **Causes of arc-welding defects:**

8.1.1 **Undercutting:**

- To high welding current ✓
- Electrode at incorrect angle ✓
- Excessive weaving ✓
- Arc length too long ✓
- Travel speed to high ✓

(Any 2 x 1) (2)

(Any 2 x 1)

(Any 2 x 1)

(2)

(2)

8.1.2 **Causes of slag inclusion:**

- Defective consumables. ✓
- Inadequate shielding gas. ✓
- Joint contamination. 🗸
- Too low current. ✓
- Improper slag removal from previous weld. ✓
- Excessive weaving ✓
- Electrode at incorrect angle ✓
- 8.2 Factors determining gas pressure for oxy acetylene welding:
 - The nozzle size. ✓
 Thickness of material. ✓ (2)

8.3 **Factors determining current setting for welding:**

- Base metal type. ✓
- Base metal thickness. ✓
- Electrode diameter. ✓
- Position of the weld. ✓

8.4 **Preventative measures for weld defects:**

8.4.1 **Porosity:**

•

- Cleaning the welding surface. ✓
- Use dry electrodes. ✓
- Avoid rust on electrode. ✓
- Ensure that supply of shielding gas is not interrupted. ✓
 - Avoid welding in windy conditions. ✓
- Use correct arc length. ✓

(Any 2 x 1) (2)

	 8.4.2 Incomplete penetration: Set to correct current setting. ✓ Apply the correct electrode angle. ✓ Increase the travel speed. ✓ Use the correct root gap. ✓ Ensure the correct joint preparation. ✓ 	(Any 2 x 1)	(2)
8.5	 Guided bend test: Lack of fusion. ✓ Incomplete penetration. ✓ Cracks in the weld metal. ✓ Quality of the weld at the face and root of the weld. ✓ 	(Any 2 x 1)	(2)
8.6	 Visual inspection process: Shape of profile. ✓ Uniformity of the surface. ✓ Overlap. ✓ Undercutting. ✓ Penetration bead. ✓ Root groove. ✓ Slag inclusion. ✓ Spatter. ✓ Cracks. ✓ 		(3)
8.7	 X-ray test: The X-ray or gamma ray source is placed in front of th tested. ✓ The film is put behind the object being tested. ✓ The source is activated and the X-rays/gamma penepiece. ✓ 		

- As they pass through the areas of lower density (air pockets, cracks or inclusions) ✓ the rays expose the film as lighter on the negative, indicating a welding defect. ✓
- Film or picture need to be analyzed. \checkmark

(6) [**23**]

(2)

QUESTION 9: JOINING METHODS (Stresses and Distortion) (Specific)

9.1 **Distortion:**

Weld distortion is the warping of the base plate \checkmark caused by heat from the welding arc/flame. \checkmark

9.2 Effect of cold working on steel:

- To break down the crystal structure elongating the grains. \checkmark
- It gives the metal greater hardness and tensile strength. \checkmark
- It reduces ductility. ✓
- Steel can be made to recrystallize under the action of heat. ✓ (4)

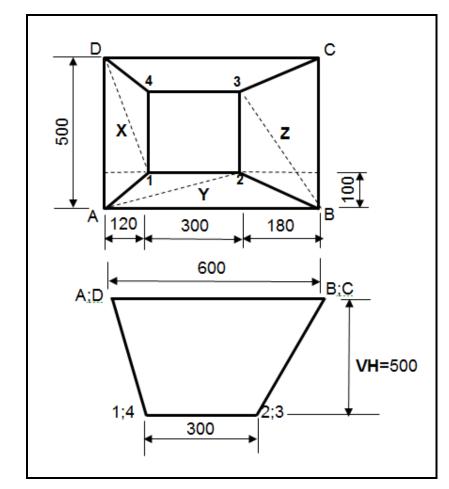
9.3 **Factors that affect distortion and residual stress:**

- If the expansion that occurs when metal is heated is resisted ✓ then deformation will occur. ✓
- When contraction that occurs on cooling is resisted ✓ then a stress will be applied. ✓
- If this stress causes movement ✓ then distortion occurs. ✓
- If this stress does not cause movement ✓ then there will be residual stress in the welded joint. ✓

(Any 2 x 2) (4)

9.4 **Rate of cooling:**

- The size of the work piece. \checkmark
- Weld thickness. ✓
- Thermal conductive properties of parent metal. (Type of material) \checkmark (3)


9.5 **The iron-carbon equilibrium diagram:**

- A. Ferrite and pearlite ✓
- B. Ferrite and austenite ✓
- C. Austenite ✓
- D. Cementite and austenite \checkmark
- E. Pearlite and cementite ✓

(5) [**18**] QUESTION 10: MAINTENANCE (Specific)

10.1 Lockout on machines: To ensure that nobody can turn on the machine \checkmark while maintenance is being carried out. ✓ (2) 10.2 Tagging plates: It has multiple holes, so that more than one technician can lock out the machine simultaneously. ✓ (1) 10.3 Aspects of plant and equipment maintenance: Do not ignore maintenance. ✓ • Do not ignore reports of damaged or unsafe equipment. • Do not ignore faulty or damaged equipment. ✓ • Do not ignore inspection. ✓ • (Any 2 x 1) (2)10.4 Maintenance guidelines of the horizontal band saw: Check electrical wiring and isolation. ✓ • Change the band saw blade as required. \checkmark • Check band wheels at every blade change. \checkmark • Monitor band wheel bearings. ✓ • Inspect band guides. ✓ • Inspect the condition of the guards. \checkmark • Check blade tension and alignment. ✓ • Inspect the hydraulic system and oil level. ✓ • Check vice for wear on both stationary and movable parts. \checkmark Align vice with the blade. \checkmark • Inspect the chip removal system daily. • (Any 2 x 1) (2)10.5 Effect of overloading of the rolling machine: It limits the lifespan \checkmark of bearings, gearbox and motor components. \checkmark (2)[09]

QUESTION 11: DEVELOPMENT (Specific)

11.1 Square to rectangular hopper off centre:

11.1.1 True lengths of A-1:

Vertical height = 500 mm

True length (A-1):

$$A - 1 = \sqrt{120^{2} + 100^{2} + 500^{2}} \checkmark$$

= $\sqrt{14400 + 10000 + 250000} \checkmark$
= 523,83 mm $\checkmark \checkmark$ (4)

11.1.2 True length (A-2):

Vertical height = 500 mm

$$A - 2 = \sqrt{100^2 + 420^2 + 500^2} \quad \checkmark$$

= $\sqrt{10000 + 176400 + 250000} \quad \checkmark$
= 660,61mm $\checkmark \quad \checkmark$

(4)

11.1.3 **True length (B-2):**

Vertical height = 500 mm

$$B - 2 = \sqrt{100^{2} + 180^{2} + 500^{2}} \quad \checkmark$$

= $\sqrt{10000 + 32400 + 250000} \quad \checkmark$
= 540,74 mm $\checkmark \quad \checkmark$ (4)

11.1.4 **True length (B-3):**

Vertical height = 500 mm

$$B-3 = \sqrt{180^{2} + 400^{2} + 500^{2}} \quad \checkmark$$

= $\sqrt{32400 + 160000 + 250000} \quad \checkmark$
= 665,13mm $\checkmark \checkmark$ (4)

11.1.5 True length(D-1):

Vertical height = 500 mm

$$D-1 = \sqrt{120^2 + 400^2 + 500^2} \quad \checkmark$$

= $\sqrt{14400 + 160000 + 250000} \quad \checkmark$
= 651,46mm $\checkmark \quad \checkmark$

(4) [20] [200]