

You have Downloaded, yet Another Great Resource to assist you with your Studies ③

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

basic education

Department: Basic Education **REPUBLIC OF SOUTH AFRICA**

SENIOR CERTIFICATE EXAMINATIONS/ NATIONAL SENIOR CERTIFICATE EXAMINATIONS

PHYSICAL SCIENCES: CHEMISTRY (P2)

2019

MARKS: 150

TIME: 3 hours

This question paper consists of 15 pages and 4 data sheets.

Copyright reserved

Please turn over

INSTRUCTIONS AND INFORMATION

- 1. Write your examination number and centre number in the appropriate spaces on the ANSWER BOOK.
- 2. This question paper consists of TEN questions. Answer ALL the questions in the ANSWER BOOK.
- 3. Start EACH question on a NEW page in the ANSWER BOOK.
- 4. Number the answers correctly according to the numbering system used in this question paper.
- 5. Leave ONE line between two subquestions, e.g. between QUESTION 2.1 and QUESTION 2.2.
- 6. You may use a non-programmable calculator.
- 7. You may use appropriate mathematical instruments.
- 8. Show ALL formulae and substitutions in ALL calculations.
- 9. Round off your FINAL numerical answers to a minimum of TWO decimal places.
- 10. Give brief motivations, discussions, etc. where required.
- 11. You are advised to use the attached DATA SHEETS.
- 12. Write neatly and legibly.

(2)

(2)

(2)

QUESTION 1: MULTIPLE-CHOICE QUESTIONS

Various options are provided as possible answers to the following questions. Choose the answer and write only the letter (A–D) next to the question numbers (1.1 to 1.10) in the ANSWER BOOK, e.g. 1.11 D.

- 1.1 Which ONE of the following is a SECONDARY alcohol?
 - A Ethanol
 - B Butan-1-ol
 - C Butan-2-ol
 - D 2-methylbutan-1-ol
- 1.2 Which ONE of the following will RAPIDLY decolourise bromine water?
 - A CH₃CHCH₂
 - B CH₃CH₂CH₃
 - C CH₃COOCH₃
 - D CH₃CH₂COOH
- 1.3 A FUNCTIONAL ISOMER of ethyl propanoate is ...
 - A C_4H_9CHO .
 - $\mathsf{B} \quad \mathsf{C}_{5}\mathsf{H}_{11}\mathsf{O}\mathsf{H}.$
 - $C \qquad C_4H_9COOH.$
 - $\mathsf{D} \quad \mathsf{CH}_3(\mathsf{CH}_2)_3\mathsf{CHO}.$
- 1.4 Consider the balanced equation for a chemical reaction below.

 $2NO(g) + O_2(g) \rightarrow 2NO_2(g)$

The activation energy of the forward and reverse reactions are 156 kJ·mol⁻¹ and 175 kJ·mol⁻¹ respectively.

The heat of reaction, in $kJ \cdot mol^{-1}$, for this reaction is ...

- A –19.
- B +19.
- C +331.
- D –331.

1.5 The reaction given below reaches equilibrium in a closed container. The K_c value is 0,04 at a certain temperature.

 $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g) \qquad \triangle H < 0$

Which ONE of the following factors will change the K_c value to 0,4?

- A Increase in pressure
- B Decrease in pressure
- C Increase in temperature
- D Decrease in temperature
- 1.6 Which ONE of the following statements best describes a state of dynamic equilibrium?
 - A The limiting reagent has been used up.
 - B The forward and reverse reactions have stopped.
 - C The rates of the forward and reverse reactions are equal.
 - D The concentration of products equals the concentration of reactants.
- 1.7 During a titration to determine the concentration of an acid using a standard base, a learner pipettes the base into a conical flask. She then uses a small amount of water to rinse the inside of the flask so that all the base is part of the solution in the flask.

How will the extra water added to the flask affect the results of this titration?

The concentration of the acid ...

- A cannot be determined.
- B will be lower than expected.
- C will be higher than expected.
- D will be the same as expected.

(2)

(2)

(2)

1.8 The standard reduction potentials for two substances used to set up a galvanic cell are as follows:

 $Sn^{2+} + 2e^{-} \Rightarrow Sn$ $E^{θ} = -0,14 V$ Cu²⁺ + 2e⁻ ⇒ Cu $E^{θ} = 0,34 V$

Which ONE of the following combinations gives the substances formed at each electrode when the cell is functioning?

	Cathode	Anode
А	Cu ²⁺	Sn
В	Sn	Cu ²⁺
С	Sn ²⁺	Cu
D	Cu	Sn ²⁺

- 1.9 Which ONE of the following half-reactions takes place at the POSITIVE ELECTRODE of an electrochemical cell used to electroplate an iron rod with silver?
 - $A \qquad Ag^+ + e^- \rightarrow Ag$
 - $\mathsf{B} \quad \mathsf{Fe}^{2\mathsf{+}} \mathsf{+} 2\mathsf{e}^{-} \mathsf{\to} \mathsf{Fe}$
 - $C \quad Ag \rightarrow Ag^{+} + e^{-}$
 - D Fe \rightarrow Fe²⁺ + 2e⁻
- 1.10 Which ONE of the following elements is a primary nutrient?
 - A Potassium
 - B Sulphur
 - C Oxygen
 - D Carbon

(2)

(2)

(2) [**20**]

QUESTION 2 (Start on a new page.)

Н н 0 н Ĩ CH₃ CH_3 l В Α H C С С С -H $-CH_2$ $CH_2 -$ Ĥ Ĥ Ĥ CH₃CCCH₂CH₃ С D Butyl propanoate Н Н Br Br Н Н Ċ -H H-С С С С С Н Н Н Н | H L Ĥ. Ĥ Ĥ Н Ε ٠H F С С н С H -H ·C Ĥ Ĥ Н 0 ٠H H-С Н Н

The letters **A** to **F** in the table below represent six organic compounds.

2.1	Is compound C SATURATED or UNSATURATED? Give a reason for the
	answer.

2.2 Write down the LETTER that represents each of the following:

	2.2.1	An ester	(1)
	2.2.2	A FUNCTIONAL ISOMER of butanal	(1)
	2.2.3	A compound with the general formula C_nH_{2n-2}	(1)
	2.2.4	A compound used as reactant in the preparation of compound ${\bf D}$	(1)
2.3	Write do	wn the STRUCTURAL FORMULA of:	
	2.3.1	The functional group of compound C	(1)
	2.3.2	Compound D	(2)
	2.3.3	A CHAIN ISOMER of compound A	(2)
2.4	Write do	wn the:	
	2.4.1	IUPAC name of compound F	(3)
	2.4.2	Balanced equation, using MOLECULAR FORMULAE, for the complete combustion of compound ${\bf A}$	(3) [17]

(2)

QUESTION 3 (Start on a new page.)

Three compounds are used to investigate one of the factors that influences boiling point. The results obtained are shown in the table below.

COMPOUND		MOLECULAR MASS (g·mol ⁻¹)	BOILING POINT (°C)
Α	Butane	58	- 0,5
В	Propan-1-ol	60	98
С	Ethanoic acid	60	118

3.1 In one investigation the boiling points of compound **B** and compound **C** are compared.

	3.1.1	Is this a fair investigation? Write down YES or NO. Refer to the data in the table and give a reason for the answer.	(2)
	3.1.2	Write down the independent variable for this investigation.	(1)
3.2	Which (Give a r	ONE of the compounds (A , B or C) has the highest vapour pressure? reason for the answer.	(2)
3.3	Refer to explain	o the intermolecular forces present in each compound and FULLY the trend in boiling points, as shown in the above table.	(5)
3.4	Which point? (compound, BUTAN-1-OL or PROPAN-1-OL, has the higher boiling Give a reason for the answer.	(2) [12]

QUESTION 4 (Start on a new page.)

4.1 The balanced equation for a polymerisation reaction is shown below.

Write down the:

4.1.1	Type of polymerisation reaction represented by the equation	(1)
4.1.2	IUPAC name of the monomer	(1)
4.1.3	IUPAC name of the polymer	(1)
_		

^{4.2} Propan-1-ol undergoes two different reactions, as shown in the diagram below.

Write down the:

4.2.6	IUPAC name of compound Z	(2) [12]
4.2.5	Type of reaction represented by reaction 3	(1)
4.2.4	STRUCTURAL FORMULA of compound Y	(2)
4.2.3	IUPAC name of compound X	(2)
4.2.2	Function of concentrated H_2SO_4 in reaction 2	(1)
4.2.1	Type of reaction represented by reaction 2	(1)

(2)

QUESTION 5 (Start on a new page.)

Learners use the reaction of a sodium thiosulphate solution with dilute hydrochloric acid to investigate several factors that affect the rate of a chemical reaction. The balanced equation for the reaction is:

```
Na_2S_2O_3(aq) \ + \ 2HC\ell(aq) \ \rightarrow \ 2NaC\ell(aq) \ + \ SO_2(g) \ + \ S(s) \ + \ H_2O(\ell)
```

5.1 Define *reaction rate*.

Three investigations (I, II and III) are carried out.

5.2 INVESTIGATION I

The results obtained in INVESTIGATION I are shown in the graph below.

For this investigation, write down the:

5.2.1	Dependent variable	(1)
5.2.2	Conclusion that can be drawn from the results	(2)

5.3 INVESTIGATION II

The Maxwell-Boltzmann distribution curves, **A** and **B**, below represent the number of particles against kinetic energy for the reaction at two different temperatures.

- 5.3.1 What does line **P** represent?
- 5.3.2 Which curve (**A** or **B**) was obtained at the higher temperature?
- 5.3.3 Explain, in terms of the collision theory, how an increase in temperature influences the rate of a reaction. (4)

5.4 **INVESTIGATION III**

The potential energy diagrams, \mathbf{X} and \mathbf{Y} , below represent the reaction under two different conditions.

Give a reason why curve **Y** differs from curve **X**.

5.5 In one of the investigations, 100 cm³ of 0,2 mol·dm⁻³ HCl(aq) reacts with excess $Na_2S_2O_3(aq)$ and the solution is then filtered. After filtration of the solution, 0,18 g of sulphur is obtained. Calculate the PERCENTAGE YIELD of sulphur.

(1)

(6) **[18]**

(1)

(1)

(1)

QUESTION 6 (Start on a new page.)

The balanced equation below represents the reaction used in the Haber process to produce ammonia.

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g) \qquad \Delta H < 0$$

In industry the product is removed as quickly as it forms.

- 6.1 Write down the meaning of the double arrow used in the equation above. (1)
- 6.2 Give ONE reason why ammonia is removed from the reaction vessel as quickly as it forms.

The graph below shows the percentage yield of ammonia at different temperatures and pressures.

6.3 Write down the percentage yield of ammonia at a temperature of 450 °C and a pressure of 200 atmospheres.

(1)

6.4	Refer to Le Chatelier's principle to explain EACH of the following deductions made from the graph:		
	6.4.1	For a given pressure, the yield of ammonia at 500 °C is much lower than that at 350 °C	(3)
	6.4.2	For a given temperature, the yield of ammonia at 350 atmospheres is much higher than that at 150 atmospheres	(2)
6.5	A techni N ₂ (g).	cian prepares $NH_3(g)$ by reacting 6 moles of $H_2(g)$ and 6 moles of	
	6.5.1	Calculate the maximum number of moles of $NH_3(g)$ that can be obtained in this reaction.	(2)
	6.5.2	The above reaction now takes place in a 500 cm ³ container at a temperature of 350 °C and a pressure of 150 atmospheres. The system is allowed to reach equilibrium.	
		Use the graph above and calculate the equilibrium constant, $K_{\rm c},$ for this reaction under these conditions.	(7) [17]
QUESTI	ON 7 (Sta	art on a new page.)	
7.1	Define a	base in terms of the Arrhenius theory.	(2)
7.2	Explain h	now a weak base differs from a strong base.	(2)
7.3	Write do	wn the balanced equation for the hydrolysis of $NaHCO_3$.	(3)
7.4	A learne To do thi all of this orange is	r wishes to identify element X in the hydrogen carbonate, XHCO ₃ . Is she dissolves 0,4 g of XHCO ₃ in 100 cm ³ of water. She then titrates solution with a 0,2 mol dm ⁻³ hydrochloric acid (HC ℓ) solution. Methyl s used as the indicator during the titration.	
	7.4.1	Calculate the pH of the hydrochloric acid solution.	(3)
	7.4.2	Give a reason why methyl orange is a suitable indicator in this titration.	(1)
	At the end of the second secon	endpoint she finds that 20 cm ³ of the acid neutralised ALL the carbonate solution. The balanced equation for the reaction is:	
		$XHCO_3(aq) + HC\ell(aq) \rightarrow XC\ell(aq) + CO_2(g) + H_2O(\ell)$	

7.4.3 Identify element **X** by means of a calculation.

(6) **[17]**

QUESTION 8 (Start on a new page.)

The electrochemical cell below functions under standard conditions.

8.1 Give a reason why platinum is used as the electrode in half-cell **A**.

8.2 Write down the:

8.2.1	Energy conversion that takes place in this cell	(1)

- 8.2.2 Half-reaction that takes place at the cathode (2)
- 8.2.3 Cell notation for this cell (3)

8.3 Calculate the initial emf of this cell.

8.4 Silver chloride is an insoluble salt.

What will be the effect on the cell potential when a small amount of silver nitrate solution, $AgNO_3(aq)$, is added to half-cell **A**? Choose from INCREASES, DECREASES or REMAINS THE SAME. (2)

(2) [**13**]

(4)

(1)

QUESTION 9 (Start on a new page.)

The diagrams below represent two electrochemical cells.

P, Q, X and Y are carbon electrodes.

When cell **B** is functioning, the mass of electrode **X** increases.

9.1	What ty illustrate	vpe of electrochemical cell, GALVANIC or ELECTROLYTIC, is d above?	(1)
9.2	Write do	wn the half-reaction that takes place at electrode ${f Q}$.	(2)
9.3	The proc	ducts formed in the two cells are compared.	
	9.3.1	Name ONE substance that is produced in BOTH cells.	(1)
	9.3.2	Write down the LETTERS of the TWO electrodes where this product is formed. Choose from P , Q , X and Y .	(2)
9.4	Is electro	ode X the CATHODE or the ANODE? Give a reason for the answer.	(2)
9.5	Write do	wn the net (overall) cell reaction that takes place in cell B .	(3) [11]

QUESTION 10 (Start on a new page.)

- 10.1 The four steps in the manufacture of an inorganic fertiliser are listed below. These steps are NOT written in the order in which they occur.
 - Step I: Sulphuric acid reacts with ammonia to produce ammonium sulphate.
 - **Step II:** Sulphur dioxide reacts with oxygen to produce sulphur trioxide.
 - Step III: Oleum is diluted with water to produce sulphuric acid.
 - **Step IV:** Sulphur trioxide is bubbled in concentrated sulphuric acid to produce oleum.

Write down the:

10.1.1	Correct order in which the steps occur in the preparation of the inorganic fertiliser by using the numbers ${\bf I}$ to ${\bf IV}$	(1)
10.1.2	Balanced chemical equation for step I	(3)
10.1.3	NAME of the catalyst used in step II	(1)
10.1.4	Balanced chemical equation for step IV	(3)

- 10.1.5 Reason why sulphur trioxide is NOT dissolved in water in **step IV** (1)
- 10.2 The diagram below shows a bag of NPK fertiliser. One of the numbers of the NPK ratio on the bag is labelled as **X**.

If the mass of potassium in the bag is 3,33 kg, calculate the value of **X**. (4)

[13]

TOTAL: 150

DATA FOR PHYSICAL SCIENCES GRADE 12 PAPER 2 (CHEMISTRY)

GEGEWENS VIR FISIESE WETENSKAPPE GRAAD 12 VRAESTEL 2 (CHEMIE)

TABLE 1: PHYSICAL CONSTANTS/TABEL 1: FISIESE KONSTANTES

NAME/NAAM	SYMBOL/SIMBOOL	VALUE/WAARDE
Standard pressure Standaarddruk	p ^θ	1,013 x 10 ⁵ Pa
Molar gas volume at STP Molêre gasvolume by STD	V _m	22,4 dm ^{3.} mol ⁻¹
Standard temperature Standaardtemperatuur	Τ ^θ	273 K
Charge on electron Lading op elektron	е	-1,6 x 10 ⁻¹⁹ C
Avogadro's constant Avogadro-konstante	N _A	6,02 x 10 ²³ mol ⁻¹

TABLE 2: FORMULAE/TABEL 2: FORMULES

Physical Sciences/P2

DBE/2019

2 SC/NSC TABLE 3: THE PERIODIC TABLE OF ELEMENTS TABEL 3: DIE PERIODIEKE TABEL VAN ELEMENTE

	1 (1)		2 (II)		3		4	5	6	7	8	9	10	11	12	13 (III)	14 (IV)	15 (V)	16 (VI)	17 (VII)	18 (VIII)
	(1)	1	()							A	tomic r	number				()	()	(•)	(•••)	(•)	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
2,1	1 H 1							KEY/SL	EUTEL		Atoom	getal									2 He 4
	3		4					Electr	onegat	ivitv	29	Sv	mbol			5	6	7	8	9	10
õ	Li	υ	Re					Elektro	onegati	witeit	່ 😴 Cu	I ← ^S i	mbool			° B	υ. C	₽ N	Ω Ω	°, F	Ne
~	7	-	q						j		63,5	5						14	16	4 I 19	20
	11		12								└ <u></u>					13	14	15	16	17	18
6	Na	N	Ma						Appi	oximate	e relativ	e atomi	c mass			ις. Λ Ο	°, Ci	τ. D	ъ, с	°. C0	۸r
0	1 1 a	-	INIY 24						Bena	aderde r	elatiew	e atoom	massa					N F	N 33		
	23		24		21		22	22	24	25	26	27	20	20	20	21	20	31	32	30,0	40
8	19	0	20	e	21	2	22 T :	23 9 V	24 9 C -	25 10 M In	20 8 Г о	× C =	20 © NI:	29 0 0	9 7	9 C	ω Ο Ο Ο Ο Ο		54 7 Co	8 D.	
°,	N	Τ,	La	-	20	۲.		÷. A	÷ Cr	÷ ivin	÷ Fe	÷. C0	÷ NI	÷Cu	÷ Zn	÷ Ga	÷ Ge	ລ໌ AS	~ 5e	∾ BL	ĸr
	39		40		45	_	48	51	52	55	56	59	59	63,5	65	70	73	75	79	80	84
	37		38		39	_	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
0,8	Rb	1,0	Sr	1,2	Υ	1,4	Zr	Nb	l⇔ Mo	o [∞] TC	Ru 🕅	ਨੂੰ Rh	ra Pd	<u></u> Ag	Ç Cd	¦∵ In	n 🚆 Sn	n [∞] Sb	ਨੂੰ Te	2,5	Хе
	86		88		89		91	92	96		101	103	106	108	112	115	119	122	128	127	131
	55		56		57		72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
0,7	Cs	0,9	Ba		La	1,6	Ηf	Та	W	Re	Os	lr	Pt	Au	Hg	€ T €	[∞] Pb	ຕີ Bi	on Po	S At	Rn
	133		137		139		179	181	184	186	190	192	195	197	201	204	207	209			
	87		88		89																
7,0	Fr	6'(Ra		Ac			50	50	60	64	60	62	64	CE	66	67	60	60	70	74
Ŭ		Ŭ	226					56	59 Dr			02 Curr	63 E.	04 Od	00 Th	00 D.	0/	68 Em	69 T		
								Ce	Pr	Na	Pm	Sm	EU	Ga	al	Dy	НО	Er	Im	YD	LU
								140	141	144		150	152	157	159	163	165	167	169	173	175
								90	91	92	93	94	95	96	97	98	99	100	101	102	103
								Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
								232		238			-					_			

Please turn over

ndi	III CANSIES	□ E˘ (V)
≠	2F ⁻	+ 2,87
⇒	Co ²⁺	+ 1,81
#	2H ₂ O	+1,77
≠	$Mn^{2+} + 4H_2O$	+ 1,51
≠	2Cℓ [_]	+ 1,36
≠	2Cr ³⁺ + 7H ₂ O	+ 1,33
⇒	2H ₂ O	+ 1,23
#	Mn ²⁺ + 2H ₂ O	+ 1,23
≠	Pt	+ 1,20
≠	2Br [−]	+ 1,07
⇒	NO(g) + 2H ₂ O	+ 0,96
≠	Hg(ℓ)	+ 0,85
⇒	Ag	+ 0,80
→	$NO_{2}(q) + H_{2}O$	+ 0,80
_	Fe ²⁺	+ 0.77
-	H ₂ O ₂	+ 0.68
_	2I ⁻	+ 0.54
	Cu	+ 0,52
≠	S + 2H ₂ O	+ 0,45
≠	40H ⁻	+ 0,40
≠	Cu	+ 0,34
≠	SO ₂ (g) + 2H ₂ O	+ 0,17
<u> </u>	Cu ⁺	+ 0.16
	Sn ²⁺	+ 0,15
#	H ₂ S(g)	+ 0,14
≠	H ₂ (g)	0,00
#	Fe	- 0,06
#	Pb	- 0,13
≠	Sn	- 0,14
#	Ni	- 0,27
≠	Co	- 0,28
⇒	Cd	- 0,40
⇒	Cr ²⁺	- 0,41
#	Fe	- 0,44
⇒	Cr	- 0,74
#	Zn	- 0,76
⇒	H ₂ (g) + 20H	- 0,83
⇒	Ur Ma	- 0,91
⇒	Δβ	- 1,18
=	Ma	- 1,00
=	Na	- 2,30 - 2 71
≠ _	Са	- 2,7 T
-	Sr	- 2,89
+	Ba	- 2.90
- =	Cs	- 2.92
~		,
⇒	ĸ	- 2,93
		\Rightarrow $2H_2O$ \Rightarrow $2C\ell^ \Rightarrow$ $2Cr^{3^+} + 7H_2O$ \Rightarrow $2H_2O$ \Rightarrow $Mn^{2^+} + 2H_2O$ \Rightarrow Pt \Rightarrow $2Br^ \Rightarrow$ $NO(g) + 2H_2O$ \Rightarrow $Hg(\ell)$ \Rightarrow Ag \Rightarrow $NO_2(g) + H_2O$ \Rightarrow Re^{2^+} \Rightarrow $RO_2(g) + 2H_2O$ \Rightarrow Cu \Rightarrow $SO_2(g) + 2H_2O$ \Rightarrow $AOH^ \Rightarrow$ $SO_2(g) + 2H_2O$ \Rightarrow $AOH^ \Rightarrow$ Cu \Rightarrow $SO_2(g) + 2H_2O$ \Rightarrow $AOH^ \Rightarrow$ Cu \Rightarrow $SO_2(g) + 2H_2O$ \Rightarrow Cu^+ \Rightarrow $SO_2(g) + 2H_2O$ \Rightarrow Cu^+ \Rightarrow $SO_2(g) + 2DO$ \Rightarrow $Re^ \Rightarrow$ $Re^ \Rightarrow$ $Re^ \Rightarrow$ Re^- <tr td=""> Re^- <t< td=""></t<></tr>

3 SC/NSC TABLE 4A: STANDARD REDUCTION POTENTIALS TABEL 4A: STANDAARDREDUKSIEPOTENSIALE

Increasing oxidising ability/Toenemende oksiderende vermoë

Increasing reducing ability/Toenemende reduserende vermoë

Increasing reducing ability/Toenemende reduserende vermoë

TABLE 4B: STANDARD REDUCTION POTENTIALS
TABEL 4B: STANDAARDREDUKSIEPOTENSIALE

Half-reactions	E ^θ (V)		
Li ⁺ + e [−]	≠	Li	- 3,05
K ⁺ + e [−]	⇒	К	- 2,93
$Cs^+ + e^-$	≠	Cs	- 2,92
Ba ²⁺ + 2e ⁻	≠	Ва	- 2,90
Sr ²⁺ + 2e ⁻	≠	Sr	- 2,89
Ca ²⁺ + 2e [−]	#	Са	- 2,87
Na ⁺ + e ⁻	#	Na	- 2,71
Mg ²⁺ + 2e ⁻	≠	Mg	- 2,36
Al ³⁺ + 3e ⁻	⇒	Ał	- 1,66
Mn ²⁺ + 2e⁻	≠	Mn	- 1,18
Cr ²⁺ + 2e ⁻	≠	Cr	- 0,91
2H ₂ O + 2e [−]	≠	$H_2(g) + 2OH^-$	- 0,83
Zn ²⁺ + 2e ⁻	⇒	Zn	- 0,76
Cr ³⁺ + 3e [−]	⇒	Cr	- 0,74
Fe ²⁺ + 2e ⁻	⇒	Fe	- 0,44
Cr ³⁺ + e [−]	≠	Cr ²⁺	- 0,41
Cd ²⁺ + 2e ⁻	≠	Cd	- 0,40
Co ²⁺ + 2e ⁻	≠	Со	- 0,28
Ni ²⁺ + 2e [−]	#	Ni	- 0,27
Sn ²⁺ + 2e [−]	⇒	Sn	- 0,14
Pb ²⁺ + 2e ⁻	⇒	Pb	- 0,13
Fe ³⁺ + 3e ⁻	⇒	Fe	- 0,06
2H ⁺ + 2e ⁻	#	H ₂ (g)	0,00
S + 2H ⁺ + 2e ⁻	⇒	H ₂ S(g)	+ 0,14
Sn ⁺⁺ + 2e ⁻	⇒	Sn ²	+ 0,15
Cu ²⁺ + e [−]	#	Cu	+ 0,16
$SO_4^{2-} + 4H^+ + 2e^-$	⇒	SO ₂ (g) + 2H ₂ O	+ 0,17
Cu ²⁺ + 2e ⁻	⇒	Cu	+ 0,34
$2H_2O + O_2 + 4e^-$	≠	40H ⁻	+ 0,40
$SO_2 + 4H^+ + 4e^-$	#	S + 2H ₂ O	+ 0,45
Cu ⁺ + e ⁻	⇒	Cu	+ 0,52
l ₂ + 2e ⁻	⇒	2I ⁻	+ 0,54
O ₂ (g) + 2H ⁺ + 2e [−]	⇒	H_2O_2	+ 0,68
Fe ³⁺ + e [−]	⇒	Fe⁴⁺	+ 0,77
$NO_{3}^{-} + 2H^{+} + e^{-}$	⇒	$NO_2(g) + H_2O$	+ 0,80
$Ag^+ + e^-$	⇒	Ag	+ 0,80
Hg ²⁺ + 2e ⁻	#	Hg(ℓ)	+ 0,85
$NO_{3}^{-} + 4H^{+} + 3e^{-}$	≠	NO(g) + 2H ₂ O	+ 0,96
Br ₂ (ℓ) + 2e ⁻	⇒	2Br⁻	+ 1,07
Pt ²⁺ + 2 e [−]	≠	Pt	+ 1,20
$MnO_2 + 4H^+ + 2e^-$	≠	Mn ²⁺ + 2H ₂ O	+ 1,23
$O_2(g) + 4H^+ + 4e^-$	⇒	2H ₂ O	+ 1,23
$Cr_2O_7^{2-} + 14H^+ + 6e^-$	#	2Cr ³⁺ + 7H ₂ O	+ 1,33
Cl ₂ (g) + 2e ⁻	#	2C{-	+ 1,36
$MnO_{4}^{-} + 8H^{+} + 5e^{-}$	≠	Mn ²⁺ + 4H ₂ O	+ 1,51
H ₂ O ₂ + 2H ⁺ +2 e [−]	≠	2H ₂ O	+1,77
Co ³⁺ + e ⁻	≠	Co ²⁺	+ 1,81
F ₂ (g) + 2e ⁻	⇒	2F ⁻	+ 2,87

Increasing oxidising ability/*Toenemende oksiderende vermoë*

Copyright reserved