

You have Downloaded, yet Another Great Resource to assist you with your Studies ③

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

basic education

Department: Basic Education **REPUBLIC OF SOUTH AFRICA**

NATIONAL SENIOR CERTIFICATE

GRADE 12

PHYSICAL SCIENCES: CHEMISTRY (P2)

NOVEMBER 2019

MARKS: 150

10

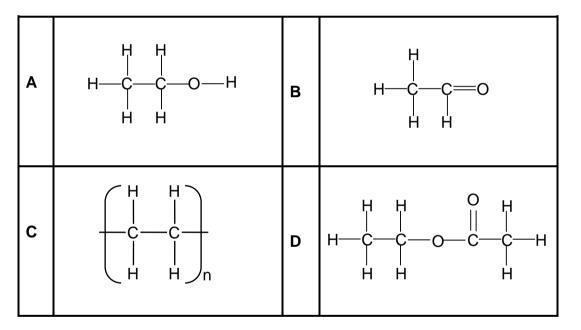
TIME: 3 hours

This question paper consists of 14 pages and 4 data sheets.

Please turn over

INSTRUCTIONS AND INFORMATION

- 1. Write your centre number and examination number in the appropriate spaces on the ANSWER BOOK.
- 2. This question paper consists of TEN questions. Answer ALL the questions in the ANSWER BOOK.
- 3. Start EACH question on a NEW page in the ANSWER BOOK.
- 4. Number the answers correctly according to the numbering system used in this question paper.
- 5. Leave ONE line between two subquestions, e.g. between QUESTION 2.1 and QUESTION 2.2.
- 6. You may use a non-programmable calculator.
- 7. You may use appropriate mathematical instruments.
- 8. You are advised to use the attached DATA SHEETS.
- 9. Show ALL formulae and substitutions in ALL calculations.
- 10. Round off your FINAL numerical answers to a minimum of TWO decimal places.
- 11. Give brief motivations, discussions, etc. where required.
- 12. Write neatly and legibly.


QUESTION 1: MULTIPLE-CHOICE QUESTIONS

Four options are provided as possible answers to the following questions. Choose the answer and write only the letter (A-D) next to the question numbers (1.1 to 1.10) in the ANSWER BOOK, e.g. 1.11 E.

- 1.1 Which ONE of the following compounds has the HIGHEST vapour pressure?
 - А HCOOH
 - В CH₃CHO
 - С CH₃CH₂OH
 - D CH₃CH₂CH₃

(2)

1.2 Which ONE of the formulae below represents the product of a **POLYMERISATION** reaction?

- 1.3 Which ONE of the following combinations are BOTH UNSATURATED HYDROCARBONS?
 - А Ethane and ethene
 - В Ethene and ethyne
 - С Ethane and ethanol
 - D Ethanoic acid and ethene

(2)

(2)

1.4 Which ONE of the following sets of values for activation energy (E_a) and heat of reaction (ΔH) is possible for a reaction?

	ACTIVATION ENERGY (E _a) (kJ·mol ⁻¹)	HEAT OF REACTION (∆H) (kJ·mol ⁻¹)
А	100	+100
В	50	+100
С	50	+50
D	100	-50

1.5 Consider the following balanced equation for a system at equilibrium:

$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$

How will the addition of a catalyst to the equilibrium mixture affect the YIELD and REACTION RATE?

	YIELD	REACTION RATE
А	Increases	Increases
В	Remains the same	Remains the same
С	Remains the same	Increases
D	Decreases	Increases

1.6 A hypothetical reaction reaches equilibrium at a certain temperature in a closed container according to the following balanced equation:

 $A(g) + 2B(g) \Rightarrow 3C(s) \quad \Delta H < 0$

Which ONE of the following changes to the equilibrium conditions will result in an INCREASE in the equilibrium constant, K_c ?

- A Increase in temperature
- B Decrease in temperature
- C Increase in pressure at constant temperature
- D Decrease in pressure at constant temperature

(2)

(2)

(2)

1.7 A hydrochloric acid solution, HCl(aq), and an acetic acid solution, CH₃COOH(aq), of EQUAL CONCENTRATIONS are compared.

How do the $H_3O^+(aq)$ concentration of HCl(aq) and the pH of HCl(aq) compare to that of CH₃COOH(aq)?

	[H₃O⁺] of HCℓ(aq)	pH of HCℓ(aq)
А	Higher than	Higher than
В	Higher than	Lower than
С	Equal to	Equal to
D	Higher than	Equal to

1.8 Two hypothetical half-reactions and their respective reduction potentials are shown below:

 $\begin{array}{lll} B^+(aq) \ + \ e^- \rightleftharpoons B(s) & E^\theta = -1.5 \ V \\ A^{2+}(aq) \ + \ 2e^- \rightleftharpoons A(s) & E^\theta = 2.5 \ V \end{array}$

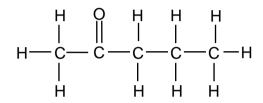
A galvanic cell is set up using the above substances.

Which ONE of the following statements is CORRECT for this galvanic cell?

- A B(s) is the reducing agent.
- B A(s) is the oxidising agent.
- C The mass of B(s) will increase.
- D The mass of A(s) will decrease.
- 1.9 In an electrolytic cell ...
 - A the anode is the positive electrode.
 - B oxidation takes place at the cathode.
 - C electrons flow from the cathode to the anode.
 - D the mass of the anode increases.
- 1.10 Which ONE of the following is used as a catalyst in the Ostwald process?
 - A Iron
 - B Copper
 - C Platinum
 - D Vanadium (V) oxide

-

(2)


(2)

(2)

NS

QUESTION 2 (Start on a new page.)

- 2.1 The IUPAC name of an organic compound is 4,4-dimethylpent-2-yne.
 - 2.1.1 Write down the GENERAL FORMULA of the homologous series to which this compound belongs. (1)
 - 2.1.2 Write down the STRUCTURAL formula of this compound. (3)
- 2.2 The organic compound below has one positional isomer and one functional isomer.

2.2.1 Define the term *positional isomer.* (2)

For this compound, write down the:

(2)

- 2.2.3 Structural formula of its FUNCTIONAL isomer (2)
- 2.3 Consider the condensed structural formula of an organic compound below.

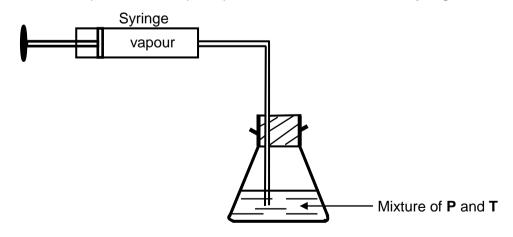
2.3.1Is this a PRIMARY, SECONDARY or TERTIARY alcohol?
Give a reason for the answer.(2)2.3.2Write down the IUPAC name of the above compound.(2)2.3.3Write down the IUPAC name of the MAJOR ORGANIC PRODUCT
formed when this compound undergoes an elimination reaction.(2)

QUESTION 3 (Start on a new page.)

The boiling points of five organic compounds (P, Q, R, S and T) are studied.

COMPOUND	IUPAC NAME
Р	Pentanal
Q	2,2-dimethylbutane
R	3-methylpentane
S	Hexane
т	Pentan-1-ol

3.1 Define the term *boiling point*.


The boiling points of compounds **Q**, **R** and **S** are compared.

3.2 Give a reason why this is a fair comparison.

The boiling points of **Q**, **R** and **S** are given below (NOT necessarily in the correct order).

55 °C	49,7 °C	68 °C

- 3.3 Which ONE of the three boiling points is most likely the boiling point of compound **R**? Explain the answer.
- 3.4 A mixture of equal amounts of **P** and **T** is placed in a flask and heated to a temperature below their boiling points. Assume that no reaction or condensation takes place. The vapour produced is collected in a syringe.

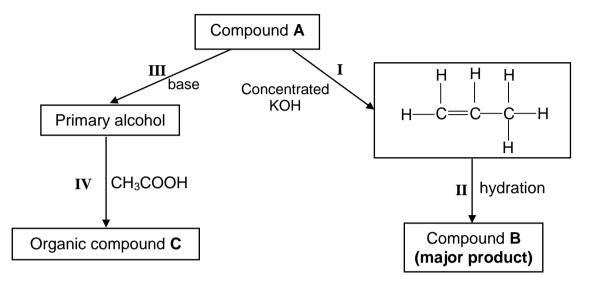
- 3.4.1 Which compound (**P** or **T**) will be present in a greater amount in the SYRINGE?
- (2)

(3) **[12]**

3.4.2 Explain the answer to QUESTION 3.4.1 by referring to the TYPES and STRENGTHS of intermolecular forces.

Copyright reserved

Please turn over


(2)

(1)

(4)

QUESTION 4 (Start on a new page.)

The flow diagram below shows how compound **A** can be used to prepare other organic compounds. The numbers **I**, **II**, **III** and **IV** represent different organic reactions.

Use the information in the flow diagram to answer the following questions.

4.1	Name the homologous series to which compound A belongs.		(1)
4.2	Write down the TYPE of reaction represented by:		
	4.2.1	Ι	(1)
	4.2.2	III	(1)
	4.2.3	IV	(1)
4.3	Consider reaction III. Write down the:		
	4.3.1	TWO reaction conditions for this reaction	(2)
	4.3.2	IUPAC name of the primary alcohol that is formed	(2)
4.4	Draw the	STRUCTURAL FORMULA for compound B .	(2)
4.5	Consider reaction IV. Write down the:		
	4.5.1	Structural formula of organic compound C	(2)
	4.5.2	NAME or FORMULA of the catalyst that is used	(1) [13]

(2)

(3)

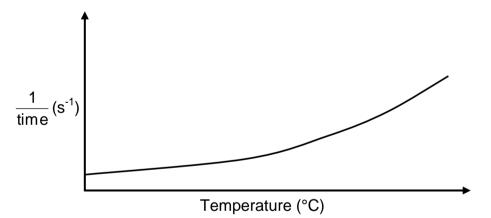
9 NSC

QUESTION 5 (Start on a new page.)

The calcium carbonate $(CaCO_3)$ in antacid tablets reacts with dilute hydrochloric acid $(HC\ell)$ according to the following balanced equation:

$$CaCO_{3}(s) + 2HC\ell(aq) \rightarrow CaC\ell_{2}(aq) + CO_{2}(g) + H_{2}O(\ell) \quad \triangle H < 0$$

5.1 Is the above reaction EXOTHERMIC or ENDOTHERMIC? Give a reason for the answer.


An antacid tablet of mass 2 g is placed in $HC\ell(aq)$. After 30 s the mass of the tablet was found to be 0,25 g.

5.2 Calculate the average rate (in $g \cdot s^{-1}$) of the above reaction.

The antacid tablet contains 40% calcium carbonate. Another antacid tablet of mass 2 g is allowed to react completely with HCt(aq).

5.3 Calculate the volume of carbon dioxide, $CO_2(g)$ that will be collected at STP. Assume that all the $CO_2(g)$ produced is from the calcium carbonate. (5)

The reaction rate of similar antacid tablets with excess HCl(aq) of concentration 0,1 mol·dm⁻³ at DIFFERENT TEMPERATURES is measured. The graph below was obtained.

Use the information in the graph to answer the following questions.

- 5.4 Write down ONE controlled variable for this investigation. (1)
- 5.5 Write down a conclusion that can be made from the graph. (2)
- 5.6 Use the collision theory to fully explain the answer to QUESTION 5.5 (3)
- 5.7 Redraw the graph above in the ANSWER BOOK. On the same set of axes, sketch the curve that will be obtained if HCl(aq) of concentration 0,2 mol·dm⁻³ is now used. Label this curve **Y**.

(2) **[18]**

(2)

(1)

10 NSC

QUESTION 6 (Start on a new page.)

Initially 60,8 g pure carbon dioxide, $CO_2(g)$, is reacted with carbon, C(s), in a sealed container of volume 3 dm³. The reaction reaches equilibrium at temperature **T** according to the following balanced equation:

$$C(s) + CO_2(g) \rightleftharpoons 2CO(g)$$

- 6.1 Define the term *chemical equilibrium*.
- 6.2 At equilibrium it is found that the concentration of the carbon dioxide is $0,054 \text{ mol}\cdot\text{dm}^{-3}$.

Calculate the:

- 6.2.1 Equilibrium constant, K_c , for this reaction at temperature **T** (7)
- 6.2.2 Minimum mass of C(s) that must be present in the container to obtain this equilibrium (3)
- 6.3 How will EACH of the following changes affect the AMOUNT of CO(g) at equilibrium?

Choose from INCREASES, DECREASES or REMAINS THE SAME.

- 6.3.1 More carbon is added to the container
- 6.3.2 The pressure is increased by reducing the volume of the container at constant temperature.Use Le Chatelier's principle to explain the answer. (3)
- 6.4 The table below shows the percentages of CO₂(g) and CO(g) in the container at different temperatures.

TEMPERATURE (°C)	% CO ₂ (g)	% CO(g)
827	6,23	93,77
950	1,32	98,68
1 050	0,37	99,63
1 200	0,06	99,94

- 6.4.1 Is the reaction EXOTHERMIC or ENDOTHERMIC? Refer to the data in the table and explain the answer. (3)
- 6.4.2 Use the information in the table to determine temperature **T**. Show clearly how you arrived at the answer.

(3) **[22]**

QUESTION 7 (Start on a new page.)

A hydrogen bromide solution, HBr(aq), reacts with water according to the following balanced chemical equation:

$$HBr(aq) + H_2O(\ell) \rightleftharpoons Br^-(aq) + H_3O^+(aq)$$

The K_a value of HBr(aq) at 25 °C is 1 x 10^9 .

- 7.1 Is hydrogen bromide a STRONG ACID or a WEAK ACID? Give a reason for the answer.
- 7.2 Write down the FORMULAE of the TWO bases in the above reaction.
- 7.3 HBr(aq) reacts with $Zn(OH)_2(s)$ according to the following balanced equation:

$$Zn(OH)_2(s) + 2HBr(aq) \rightarrow ZnBr_2(aq) + 2H_2O(\ell)$$

An unknown quantity of $Zn(OH)_2(s)$ is reacted with 90 cm³ of HBr(aq) in a flask. (Assume that the volume of the solution does not change during the reaction.)

The EXCESS HBr(aq) is then neutralised by 16.5 cm^3 of NaOH(aq) of concentration 0.5 mol·dm⁻³. The balanced equation for the reaction is:

 $HBr(aq) + NaOH(aq) \rightarrow NaBr(aq) + H_2O(l)$

- 7.3.1 Calculate the pH of the HBr solution remaining in the flask AFTER the reaction with $Zn(OH)_2(s)$. (7)
- 7.3.2 Calculate the mass of $Zn(OH)_2(s)$ INITIALLY present in the flask if the initial concentration of HBr(aq) was 0,45 mol·dm⁻³.

(6) **[17]**

(2)

(2)

Copyright reserved

QUESTION 8 (Start on a new page.)

A standard electrochemical cell is set up using two standard half-cells, as shown in the diagram below.

	$C\ell_2(g)$	
8.1	State the energy conversion that takes place in this cell.	(1)
8.2	What is the function of component Q ?	(1)
X is a r	metal. A voltmeter connected across the cell initially registers 1,49 V.	
8.3	Use a calculation to identify metal X .	(5)
8.4	Write down the NAME or FORMULA of the reducing agent.	(1)
8.5	The reading on the voltmeter becomes ZERO after this cell operates for several hours.	
	8.5.1 Give a reason for this reading by referring to the rates of oxidation and reduction half-reactions taking place in the cell.	(1)
	A silver nitrate solution, AgNO $_3$ (aq), is NOW added to the chlorine half-cell and a precipitate forms.	
	8.5.2 How will the reading on the voltmeter be affected? (Choose from INCREASES, DECREASES or REMAINS the same)	(1)
	8.5.3 Use Le Chatelier's principle to explain the answer to QUESTION 8.5.2.	(2) [12]

9.3

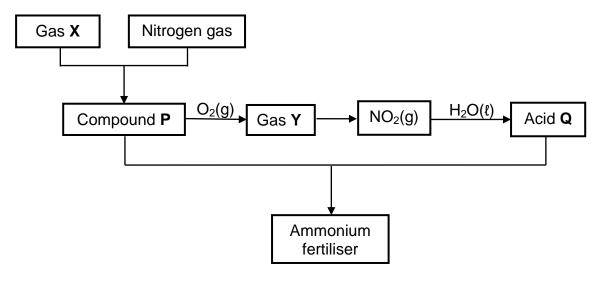
(2)

NSC

QUESTION 9 (Start on a new page.)

Chlorine is produced industrially by the electrolysis of a concentrated sodium chloride solution, NaCl(aq).

The balanced equation for the net (overall) cell reaction is as follows:


$$2NaCl(aq) + 2H_2O(l) \rightarrow H_2(g) + 2NaOH(aq) + Cl_2(g)$$

- Define the term *electrolysis*. 9.1
- 9.2 For the above reaction, write down the:

	the Table of Standard Reduction Potentials to explain why sodium not reduced during this process.	(3) [8]
9.2.2	NAME or FORMULA of the oxidising agent	(1)
9.2.1	Half-reaction that takes place at the cathode	(2)

QUESTION 10 (Start on a new page.)

The flow diagram below shows the processes involved in the industrial preparation of an ammonium fertiliser.

10.1 Write down the NAME or FORMULA of:

10.1.1	Gas X	(1)
	_	

- 10.1.2 Gas **Y** (1)
- 10.1.3 Acid **Q** (1)
- 10.2 Write down the:

10.2.1	TYPE of chemical reaction that converts compound P into gas Y	(1)
--------	---	-----

10.2.2 Balanced equation for the reaction between compound **P** and acid **Q** (3)

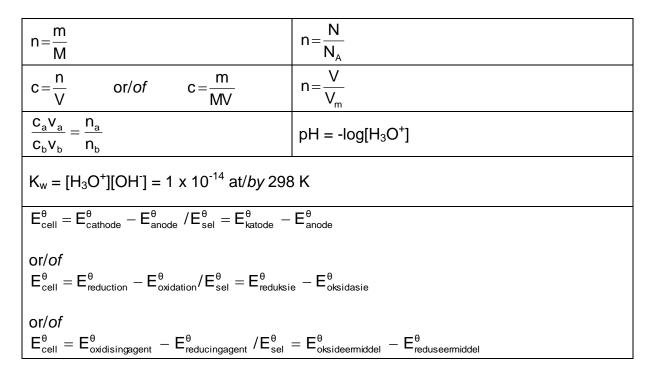
10.3 Two separate bags of fertilisers are labelled as follows:

BAG A	BAG B
1 : 3 : 4 (21)	1 : 3 : 4 (27)
50 kg	40 kg

- 10.3.1 What do the numbers (21) and (27) on the labels represent? (1)
- 10.3.2 Determine, by means of calculations, which bag (**A** or **B**) contains a greater mass of phosphorous.

(4) **[12]**

TOTAL: 150


DATA FOR PHYSICAL SCIENCES GRADE 12 PAPER 2 (CHEMISTRY)

GEGEWENS VIR FISIESE WETENSKAPPE GRAAD 12 VRAESTEL 2 (CHEMIE)

TABLE 1: PHYSICAL CONSTANTS/TABEL 1: FISIESE KONSTANTES

NAME/NAAM	SYMBOL/SIMBOOL	VALUE/WAARDE
Standard pressure Standaarddruk	p ^θ	1,013 x 10 ⁵ Pa
Molar gas volume at STP Molêre gasvolume by STD	Vm	22,4 dm ^{3.} mol ⁻¹
Standard temperature Standaardtemperatuur	Τ ^θ	273 K
Charge on electron Lading op elektron	е	-1,6 x 10 ⁻¹⁹ C
Avogadro's constant Avogadro-konstante	N _A	6,02 x 10 ²³ mol ⁻¹

TABLE 2: FORMULAE/TABEL 2: FORMULES

2 NSC TABLE 3: THE PERIODIC TABLE OF ELEMENTS TABEL 3: DIE PERIODIEKE TABEL VAN ELEMENTE

	1 (I)		2 (II)		3		4	5	6	7	8	9	10	11	12	13 (III)	14 (IV)	15 (V)	16 (VI)	17 (VII)	18 (VIII)
2,1	1 H 1							KEY/SL	EUTEL	A	tomic n <i>Atoom</i> ↓ 29										2 He 4
	3		4						onegati		^{ত্র} Cu		mbol			5	6	7	8	9	10
1,0	Li	1,5	Be					Elektro	onegativ	viteit 📍	- Cu 63,5	<u> </u>	mbool			^{2,0}	2,5 C	°€ N	3,5 O	4,0 F	Ne
	7		9								05,5	•				11	12	14	16	19	20
	11		12							•	Ţ					13	14	15	16	17	18
0,9	Na	1,2	Mg								e relative					3A	°, Si	P 37	S ,5	9 0 %	Ar
	23		24					1		-	elatiewe					27	28	31	32	35,5	40
~	19		20	~	21		22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
0,8	Κ	1,0	Ca	1,3	Sc	1,5	Ti	γ <u>,</u>		₽°º Mn		[∞] Co			n [≏] Zn						Kr
	39		40		45		48	51	52	55	56	59	59	63,5	65	70	73	75	79	80	84
~	37		38	~	39	_	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
0,8	Rb	1,0	Sr	1,2	Υ	1,4	Zr	Nb		<u>್</u> Tc	[∼] Ru			<u>್</u> Ag			[∞] Sn				Хе
	86		88		89		91	92	96		101	103	106	108	112	115	119	122	128	127	131
	55		56		57	6	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
0,7	Cs	0,9	Ba		La	1,6	Hf	Та	W	Re	Os	lr	Pt	Au	Hg		-		of by	^י נ At	Rn
	133		137		139		179	181	184	186	190	192	195	197	201	204	207	209			
	87		88		89																
0,7	Fr	0,9	Ra		Ac			58	59	60	61	62	63	64	65	66	67	68	69	70	71
			226					Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
								140	141	144		150	152	157	159	163	165	167	169	173	175
								90	91	92	93	94	95	96	97	98	99	100	101	102	103
								Th	Ра	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
								232		238											
										l				L							

Half-reactions	(Hal	lfreaksies	Ε ^θ (V)
F ₂ (g) + 2e ⁻	⇒	2F ⁻	+ 2,87
Co ³⁺ + e ⁻	≠	Co ²⁺	+ 1,81
$H_2O_2 + 2H^+ + 2e^-$	#	2H₂O	+1,77
MnO_{4}^{-} + $8H^{+}$ + $5e^{-}$	⇒	Mn ²⁺ + 4H ₂ O	+ 1,51
Cℓ₂(g) + 2e⁻	⇒	2C{-	+ 1,36
$Cr_2O_7^{2-} + 14H^+ + 6e^-$	≠	2Cr ³⁺ + 7H ₂ O	+ 1,33
, O₂(g) + 4H ⁺ + 4e [−]	≠	2H ₂ O	+ 1,23
$MnO_2 + 4H^+ + 2e^-$	≠	Mn ²⁺ + 2H ₂ O	+ 1,23
Pt ²⁺ + 2e [−]	≠	Pt	+ 1,20
$Br_2(\ell) + 2e^-$	#	2Br [−]	+ 1,07
$NO_{3}^{-} + 4H^{+} + 3e^{-}$	≠	NO(g) + 2H ₂ O	+ 0,96
- Hg ²⁺ + 2e [−]	≠	Hg(ℓ)	+ 0,85
	≠	Ag	+ 0,80
$NO_{3}^{-} + 2H^{+} + e^{-}$	≠	$NO_2(g) + H_2O$	+ 0,80
5 Fe ³⁺ + e⁻		Fe ²⁺	+ 0,77
$O_2(g) + 2H^+ + 2e^-$			+ 0,68
$I_2 + 2e^-$	≓		+ 0,54
 Cu ⁺ + e [_]			+ 0,52
$SO_2 + 4H^+ + 4e^-$			+ 0,45
$2H_2O + O_2 + 4e^-$	≠	40H ⁻	+ 0,40
Cu ²⁺ + 2e ⁻	⇒	Cu	+ 0,34
$SO_{4}^{2-} + 4H^{+} + 2e^{-}$	≠	$SO_2(g) + 2H_2O$	+ 0,17
Cu ²⁺ + e ⁻		Cu⁺	+ 0,16
Sn ⁴⁺ + 2e⁻	⇒	Sn ²⁺	+ 0,15
S + 2H⁺ + 2e⁻	#	H ₂ S(g)	+ 0,14
	#	H ₂ (g)	0,00
Fe ³⁺ + 3e [−]	⇒	Fe	- 0,06
Pb ²⁺ + 2e [−]	≠	Pb	- 0,13
Sn ²⁺ + 2e [−]	⇒	Sn	- 0,14
Ni ²⁺ + 2e ⁻	⇒	Ni	- 0,27
$Co^{2+} + 2e^{-}$	≠	Co	- 0,28
Cd ²⁺ + 2e ⁻ Cr ³⁺ + e ⁻	⇒	Cd Cr ²⁺	- 0,40
Gr ⁻ + e Fe ²⁺ + 2e ⁻	1	Fe	- 0,41
re +2e Cr ³⁺ + 3e⁻	≠ ≓	Cr	- 0,44 - 0,74
Zn ²⁺ + 2e [−]	≠	Zn	- 0,74 - 0,76
2H2O + 2e [−]		H₂(g) + 2OH⁻	- 0,83
Cr ²⁺ + 2e [−]	- ≓	Cr	- 0,91
Mn ²⁺ + 2e ⁻		Mn	- 1,18
$Al^{3+} + 3e^{-}$. ⇒	Ał	- 1,66
Mg ²⁺ + 2e ⁻	⇒	Mg	- 2,36
Na ⁺ + e [−]	⇒	Na	- 2,71
Ca ²⁺ + 2e⁻	≠	Са	- 2,87
Sr ²⁺ + 2e ⁻	#	Sr	- 2,89
Ba ²⁺ + 2e [−]	#	Ва	- 2,90
Cs ⁺ + e ⁻	⇒	Cs	- 2,92
K ⁺ + e [−]	≠	К	- 2,93
Li ⁺ + e ⁻	⇒	Li	- 3,05

T S E

3

Increasing reducing ability/Toenemende reduserende vermoë

Increasing oxidising ability/Toenemende oksiderende vermoë

Increasing oxidising ability/Toenemende oksiderende vermoë

4
NSC
TABLE 4B: STANDARD REDUCTION POTENTIALS
TABEL 4B: STANDAARD-REDUKSIEPOTENSIALE

Half-reactions/Halfreaksies F^{θ} (V)							
			Ε ^θ (V)				
Li ⁺ + e ⁻	-	Li	- 3,05				
K ⁺ + e ⁻			- 2,93				
Cs ⁺ + e ⁻ Ba ²⁺ + 2e ⁻			- 2,92				
Ba + 2e Sr ²⁺ + 2e [−]			- 2,90				
Si + 2e Ca ²⁺ + 2e ⁻	#		- 2,89				
Ca + 2e Na⁺ + e⁻			- 2,87 - 2,71				
$Mg^{2+} + 2e^{-}$		Mg	- 2,71 - 2,36				
$Al^{3+} + 3e^{-}$			- 2,30 - 1,66				
At + 3e Mn ²⁺ + 2e [−]		Mn	- 1,00 - 1,18				
Cr ²⁺ + 2e [−]	=	-	- 0,91				
		H ₂ (g) + 2OH [−]	- 0,83				
$Zn^{2+} + 2e^{-}$			- 0,76				
Cr ³⁺ + 3e ⁻	4		- 0,74				
Fe ²⁺ + 2e ⁻			- 0,44				
Cr ³⁺ + e ⁻			- 0,41				
Cd ²⁺ + 2e ⁻			- 0,40				
Co ²⁺ + 2e ⁻	≠		- 0,28				
Ni ²⁺ + 2e ⁻	≠	Ni	- 0,27				
Sn ²⁺ + 2e ⁻			- 0,14				
Pb ²⁺ + 2e ⁻	≠	Pb	- 0,13				
Fe ³⁺ + 3e⁻	≠	Fe	- 0,06				
2H ⁺ + 2e ⁻	≠	H ₂ (g)	0,00				
S + 2H ⁺ + 2e [−]	#	H ₂ S(g)	+ 0,14				
Sn ⁴⁺ + 2e⁻	≠	Sn ²⁺	+ 0,15				
Cu ²⁺ + e ⁻	⇒	Cu⁺	+ 0,16				
SO ²⁻ ₄ + 4H ⁺ + 2e ⁻	≠	$SO_2(g) + 2H_2O$	+ 0,17				
Cu ²⁺ + 2e ⁻	≠	Cu	+ 0,34				
2H ₂ O + O ₂ + 4e ⁻	#	40H ⁻	+ 0,40				
$SO_2 + 4H^+ + 4e^-$	≠	S + 2H ₂ O	+ 0,45				
Cu⁺ + e⁻	⇒	Cu	+ 0,52				
l ₂ + 2e ⁻	⇒	2I ⁻	+ 0,54				
$O_2(g) + 2H^+ + 2e^-$		H_2O_2	+ 0,68				
Fe ³⁺ + e [−]	#	Fe ²⁺	+ 0,77				
$NO_{3}^{-} + 2H^{+} + e^{-}$	⇒	$NO_2(g) + H_2O$	+ 0,80				
$Ag^+ + e^-$	#	Ag	+ 0,80				
Hg ²⁺ + 2e [−]	≠	Hg(l)	+ 0,85				
$NO_{3}^{-} + 4H^{+} + 3e^{-}$	#	NO(g) + 2H ₂ O	+ 0,96				
Br₂(ℓ) + 2e [−]	≠	2Br [−]	+ 1,07				
Pt ²⁺ + 2 e ⁻		Pt	+ 1,20				
$MnO_2 + 4H^+ + 2e^-$	#	Mn ²⁺ + 2H ₂ O	+ 1,23				
$O_2(g) + 4H^+ + 4e^-$	#	2H ₂ O	+ 1,23				
$Cr_2O_7^{2-} + 14H^+ + 6e^-$	≠	2Cr ³⁺ + 7H ₂ O	+ 1,33				
Cl ₂ (g) + 2e ⁻			+ 1,36				
$MnO_{4}^{-} + 8H^{+} + 5e^{-}$			+ 1,51				
$H_2O_2 + 2H^+ + 2e^-$		2H ₂ O	+1,77				
$Co^{3+} + e^{-}$		Co ²⁺	+ 1,81				
F ₂ (g) + 2e ⁻		2F ⁻	+ 2,87				
12(9) 126	-		,0,				

Increasing reducing ability/Toenemende reduserende vermoë