

You have Downloaded, yet Another Great Resource to assist you with your Studies ③

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

basic education

Department: Basic Education **REPUBLIC OF SOUTH AFRICA**

NATIONAL SENIOR CERTIFICATE

GRADE 12

ELECTRICAL TECHNOLOGY

FEBRUARY/MARCH 2016

MARKS: 200

I.

TIME: 3 hours

This question paper consists of 11 pages and a 2-page formula sheet.

Please turn over

INSTRUCTIONS AND INFORMATION

- 1. This question paper consists of SEVEN questions.
- 2. Answer ALL the questions.
- Sketches and diagrams must be large, neat and fully labelled. 3.
- 4. Show ALL calculations and round off answers correctly to TWO decimal places.
- 5. Number the answers correctly according to the numbering system used in this question paper.
- 6. You may use a non-programmable calculator.
- 7. Show the units for all answers of calculations.
- 8. A formula sheet is attached at the end of this question paper.
- 9. Write neatly and legibly.

QUESTION 1: OCCUPATIONAL HEALTH AND SAFETY

1.1	Name ONE unsafe condition that may result in an injury in an electrical technology workshop.	(1)
1.2	Define the term <i>unsafe action</i> with reference to an electrical technology workshop.	(2)
1.3	State FOUR steps, in order of priority, that must be adhered to when helping a person who is a victim of an electrical shock in an electrical technology workshop.	(4)
1.4	Briefly explain why productivity is considered an important work ethic in the South African industrial context.	(3) [10]
QUESTI	ON 2: THREE-PHASE AC GENERATION	
2.1	Name the instrument that is used to measure electrical energy.	(1)
2.2	State TWO advantages of three-phase systems over single-phase systems.	(2)
2.3	Draw a neatly labelled sketch representing the voltage waveforms of a three-phase AC generation system.	(5)

2.4 A three-phase star-connected balanced load is supplied by a three-phase generator. The generator supplies 20 kVA at a current of 25 A.

Given:

= 25 A I_I = 20 kVA S

Calculate the:

Line voltage	(3)
	Line voltage	Line voltage (3

2.4.2 Phase voltage (3)

[20]

2.5 In a three-phase supply system the two-wattmeter method was used to measure the input power to an inductive load which has a power factor of 0,8. The values indicated on the instruments are 8 kW and 4 kW respectively. The line voltage is 380 V.

Given:

=	8 kW
=	4 kW
=	0,8
=	380 V
	= = =

Calculate the:

2.5.1	Total input power	(5	3)
2.5.2	Line current	(5	3)

2.0.2	

QUESTION 3: THREE-PHASE TRANSFORMERS

3.1	State how eddy currents may be limited in the iron core of a transformer.	(1)
3.2	Name TWO similarities between a single-phase transformer and a three-phase transformer.	(2)
3.3	State TWO factors that may cause excessive heating in a transformer.	(2)
3.4	Name TWO applications of a delta-star-connected distribution network transformer.	(2)
3.5	Explain the function of a transformer in a distribution network.	(3)

- 3.5 Explain the function of a transformer in a distribution network.
- 3.6 Refer to FIGURE 3.1 and answer the questions that follow.

FIGURE 3.1: THREE-PHASE TRANSFORMER

Given:

$$\begin{array}{rcl} V_{lp} & = & 6,6 \; kV \\ V_{ps} & = & 230 \; V \\ I_{ls} & = & 30 \; A \\ P_{out} & = & 15 \; kW \\ Cos \; \Theta & = & 0,8 \end{array}$$

NSC

Calculate the:

3.6.1	Primary phase voltage	(2)
3.6.2	Secondary phase current	(2)
3.6.3	Primary phase current	(3)
3.6.4	Turns ratio	(3) [20]

QUESTION 4: THREE-PHASE MOTORS AND STARTERS

4.1	Name ONE application of a three-phase motor.	
4.2	State THREE advantages of a three-phase motor compared to a single-phase motor.	
4.3	A star-delta starter is used to reduce the starting current used by a motor when starting.	
	4.3.1 Describe why it is necessary to do this.	(3)
	4.3.2 Describe how the starter reduces the starting current.	(3)
4.4	Describe the principle of operation of a three-phase squirrel-cage induction motor.	(7)

4.5 FIGURE 4.1 represents the terminals of a three-phase induction motor. Answer the questions that follow.

FIGURE 4.1: TERMINALS OF A THREE-PHASE INDUCTION MOTOR

- 4.5.1 Redraw the terminal box in FIGURE 4.1. Then draw in the motor coils and show them connected in star.
- 4.5.2 A megger set on the insulation resistance setting is connected across W_1 and U_2 . Describe what type of reading should be expected if the motor is in good working order.
- 4.5.3 A megger set on the insulation resistance setting is connected across U₁ and E. If the reading on the meter shows a low resistance, describe why the motor should not be energised.

(3)

(3)

(5)

4.6 Calculate the number of pole pairs of a three-phase motor if the motor is connected to a 50 Hz supply and has a synchronous speed of 600 r/min.

Given:

$$\begin{array}{rcl} f &=& 50 \text{ Hz} \\ n_s &=& 600 \end{array}$$

- (3)
- 4.7 A three-phase delta-connected motor is connected to a 380 V/50 Hz supply. The motor draws a current of 16 A at full load. It has a power factor of 0,85 and an efficiency of 90%.

Given:

I _I	= 16 A
VI	= 380 V
Pf	= 0,85
η	= 90%

Calculate the:

4.7.3	The actual output power of the motor	(3) [40]
4.7.2	Power developed by the motor at 100% efficiency	(3)
4.7.1	Input kVA	(3)

QUESTION 5: RLC

5.1	Name the TWO factors that influence the reactance of a capacitor.	(2)
5.2	Distinguish between the two concepts reactance and impedance.	(2)

- 5.3 Draw the typical frequency/impedance characteristic curve of a series RLC circuit. The graph must show the relationship between impedance and frequency, as the frequency changes. The graph must also show the resonant point of the circuit.
- 5.4 Calculate the Q-factor of a series RLC circuit that resonates at 6 kHz. The coil and the capacitor each have a reactance of 4 k Ω at resonance. The coil and the capacitor are connected in series with a 50 Ω resistor.

Given:

f _r	=	6 kHz
XI	=	4 kΩ
Xc	=	4 kΩ
R	=	50 Ω

(3)

(4)

5.5 Refer to the circuit diagram in FIGURE 5.1.

FIGURE 5.1: SERIES RLC CIRCUIT

Given:

R	=	30 Ω
L	=	400 mH
С	=	47 µF
f	=	50 Hz

Calculate the:

5.5.3	Frequency at which the circuit will resonate	(3) [20]
5.5.2	Capacitive reactance of the capacitor	(3)
5.5.1	Inductive reactance of the coil	(3)

QUESTION 6: LOGIC

6.1	State TWO advantages of a programmable logic controller (PLC) compared to a hard-wired system.	(2)
6.2	Draw a block diagram of a PLC scan cycle showing the THREE steps that are used to execute a programme. Label each step and indicate its function.	(6)
6.3	Name TWO output devices that may be connected to a PLC.	(2)
6.4	Simplify the equation below using Boolean algebra:	
	$F = \overline{A} \overline{B} C + \overline{A} B C + A B C + A \overline{B} C$	(5)
6.5	Name THREE programming methods used to instruct a PLC.	(3)

6.6 Consider the following Boolean equation and answer the questions that follow:

 $F = \overline{A} \,\overline{B} \,\overline{C} \,D + \overline{A} \,\overline{B} \,C \,D + \overline{A} \,B \,\overline{C} \,D + A \,B \,\overline{C} \,D + A \,\overline{B} \,C \,D$

- 6.6.1 Convert the equation into a Karnaugh map. (Remember to group.) (6)
- 6.6.2 Derive and write the simplified Boolean equation from the Karnaugh map in your ANSWER BOOK.
- 6.7 Refer to the circuit diagram in FIGURE 6.1 and answer the questions that follow.

FIGURE 6.1: RELAY CONTROL CIRCUIT

- 6.7.1 Identify the circuit in FIGURE 6.1.
- 6.7.2 Draw the PLC ladder logic diagram that would execute the relay control circuit in FIGURE 6.1. Your diagram must include a marker or a flag function.
- 6.7.3 Explain why the marker or flag is used in the drawing of the ladder diagram in QUESTION 6.7.2.

(3) **[40]**

(2)

(8)

(3)

(3)

(3)

(2)

(1)

(3)

(3)

NSC

QUESTION 7: AMPLIFIERS

7.1	Name TWO characteristics of an ideal op amp.	(2)
7.1	Name TWO characteristics of an ideal op amp.	(2)

- 7.2 Describe the term bandwidth.
- 7.3 Describe the term *positive feedback*.
- 7.4 Draw and label the circuit symbol of an op amp. Include the power terminals. (6)
- 7.5 With reference to the ideal op-amp circuits below, draw the given input and output wave-form diagrams on the same y-axis. Label the wave forms.

- 7.6 State TWO advantages of using negative feedback in an op-amp circuit.
- 7.7 Refer to FIGURE 7.3 and answer the questions that follow.

FIGURE 7.3: OP-AMP CIRCUIT

- 7.7.1 Identify the op-amp configuration.
 - 7.7.2 Draw the input and output signal on the same y-axis. Label the wave forms. (3)
 - 7.7.3 Calculate the voltage gain.
 - Calculate the output voltage if an input signal of 2,5 V is applied to 7.7.4 the op amp.

(2)

10 NSC

- 7.8 Name TWO applications of an astable multivibrator circuit.
- 7.9 With reference to FIGURE 7.4, draw the input wave form shown in FIGURE 7.5 and the output wave form directly below it.

FIGURE 7.4: BI-STABLE MULTIVIBRATOR

FIGURE 7.5: INPUT WAVE FORM FOR THE CIRCUIT IN FIGURE 7.4

(4)

7.10 With reference to FIGURE 7.6, answer the questions that follow.

FIGURE 7.6: RC PHASE-SHIFT OSCILLATOR

- 7.10.1 Identify the type of feedback used in the RC phase-shift oscillator. (1)
- 7.10.2 State ONE application of the oscillator.
- 7.10.3 Calculate the oscillation frequency for an RC phase-shift oscillator that uses three RC networks. The resistors are all 15 Ω . The capacitors are all 150 nF. (3)
- 7.11 With reference to FIGURE 7.7, answer the questions that follow.

FIGURE 7.7: OP-AMP INTEGRATOR CIRCUIT

- 7.11.1 State ONE application of the integrator circuit.
- 7.11.2 Draw the input and output wave forms of the op-amp integrator circuit.

(6) **[50]**

(1)

(1)

TOTAL: 200

FORMUL	A SHEET

THREE-PHASE AC GENERATION	RLC CIRCUITS
Star	$X_1 = 2\pi fL$
$V_{I} = \sqrt{3} V_{p}$	$X_{c} = \frac{1}{2\pi fC}$
$I_{I} = I_{p}$	$f_r = \frac{1}{2\pi \sqrt{(LC)}}$
Delta	(())
$I_1 = \sqrt{3} I_p$	Series
$V_{I} = V_{p}$	$I_t = I_r = I_c = I_l$
	$Z = \sqrt{R^2 + (X_1 \simeq X_c)^2}$
$P = 3V_p I_p \cos\theta$	$V_1 = I X_1$
$P = \sqrt{3}V_I \times I_I \cos \theta$	$V_c = I X_c$
$S = \sqrt{3} V_1 I_1$	$V_t = IZ$
$Q = \sqrt{3} V_I I_I \sin \theta$	$V_{t} = \sqrt{V_{r}^{2} + (V_{l} \simeq V_{c})^{2}}$
$\cos\theta = \frac{P}{S}$	$I_t = \frac{V_t}{Z}$
$Z_{p} = \frac{V_{p}}{I_{p}}$	$\cos\theta = \frac{R}{Z}$
Two wattmeter method	$\cos\theta = \frac{V_r}{V_t}$
$\mathbf{P}_{t} = \mathbf{P}_{1} + \mathbf{P}_{2}$	$Q = \frac{X_1}{R}$
	Parallel
OPERATIONAL AMPLIFIERS	$V_t = V_r = V_c = V_l$
Gain $A_v = -\frac{V_{out}}{V_{in}} = -\left(\frac{R_f}{R_{in}}\right)$ inverting op amp	$I_r = \frac{V_r}{R}$
Gain $A_v = \frac{V_{out}}{V_{in}} = 1 + \frac{R_f}{R_{in}}$ non-inverting op amp	$I_c = \frac{V_c}{X_c}$
$f_r = \frac{1}{2\pi\sqrt{L_tC}}$ Hartley oscillator	$I_1 = \frac{V_1}{X_1}$
$f_{rc} = \frac{1}{2\pi\sqrt{6}RC}$ RC phase-shift oscillator	$\mathbf{I}_{\mathrm{I}} = \sqrt{\mathbf{I}_{\mathrm{r}}^{2} + (\mathbf{I}_{\mathrm{I}} \simeq \mathbf{I}_{\mathrm{c}})^{2}}$
$V_{out} = (V_1 + V_2 + V_n)$	$\cos\theta = \frac{I_r}{I_t}$
	$Q = \frac{X_1}{R}$

Copyright reserved

THREE-PHASE MOTORS AND STARTERS	THREE-PHASE TRANSFORMERS
Star $V_{I} = \sqrt{3} V_{p}$ $I_{I} = I_{p}$	Star $V_I = \sqrt{3} V_p$ $I_I = I_p$
Delta	Delta
$I_{I} = \sqrt{3} I_{p}$	$I_{I} = \sqrt{3} I_{p}$
$V_{I} = V_{p}$	$V_{I} = V_{p}$
Power	Power
$P = 3V_p I_p \cos \theta$	$P = 3V_p I_p \cos \theta$
$P = \sqrt{3} V_{I} I_{I} \cos \theta$	$P = \sqrt{3} V_{I} I_{I} \cos \theta$
$S = \sqrt{3} V_1 I_1$	$S = \sqrt{3} V_1 I_1$
$Q = \sqrt{3} V_I I_I \sin \theta$	$Q = \sqrt{3} V_I I_I \sin \theta$
	$\cos\theta = \frac{P}{S}$
	$\frac{V_{p(\text{primary})}}{V_{p(\text{secondary})}} = \frac{N_{p}}{N_{s}} = \frac{I_{p(\text{secondary})}}{I_{p(\text{primary})}}$
Efficiency $(\eta) = \frac{P_{out}}{P_{in}}$	Efficiency $(\eta) = \frac{P_{out}}{P_{in}}$
$P_{out} = P_{in} - losses$	$P_{out} = P_{in} - losses$
$= \mathbf{S} \times \cos \mathbf{\theta} \times \mathbf{\eta}$	$= \mathbf{S} \times \cos \mathbf{\theta} \times \mathbf{\eta}$
$n_s = \frac{60 \times f}{p}$	
$Slip_{per unit} = \frac{n_s - n_r}{n_s}$	
$n_r = n_s (1 - S_{per unit})$	
$%$ slip= $\frac{n_s - n_r}{n_s} \times 100\%$	