SA's Leading Past Year

Exam Paper Portal

STUD.Y

You have Downloaded, yet Another Great Resource to assist you with your Studies :

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

> SAEAMM RADPERES

Via Afrika Mathematics

Grade 12 Study Guide

M. Malan, L.J. Schalekamp, E.C. Brown, L. Bruce,
G. du Toit, C.R. Smith, L.M. Botsane, J. Bouman, M. Pillay

M. Malan

Study Guide

Via Afrika Mathematics

Grade 12

Our Teachers. Our Future.

ISBN: 978-1-41546-335-2
Contents
Introduction 3
Chapter 1 Number patterns, sequences and series 4
OVERVIEW 4
Unit 1 Arithmetic sequences and series
Unit 2 Geometric sequences and series
Unit 3 The sum to n terms $\left(S_{n}\right)$: Sigma notation
Unit 4 Convergence and sum to infinity
Mixed exercises 8
Chapter 2 Functions 10
OVERVIEW 10
Unit 1 The definitions of a function
Unit 2 The inverse of a function
Unit 3 The inverse of $y=a x+q$
Unit 4 The inverse of the quadratic function $y=a x^{2}$
Mixed exercises 21
Chapter 3 Logarithms 24
OVERVIEW 24
Unit 1 The definition of a logarithm
Unit 2 Solving exponential equations using logarithms
Unit 3 The graph of $y=\log _{b} x$ where $b>1$ and $0<b<1$
Mixed exercises 28
Chapter 4 Finance, growth and decay 29
OVERVIEW 29
Unit 1 Future value annuities
Unit 2 Present value annuities
Unit 3 Calculating the period
Unit 4 Analysing investments and loans
Mixed exercises 35
Chapter 5 Compound angles 37
OVERVIEW 37
Unit 1 Deriving a formula for $\cos (\alpha-\beta)$
Unit 2 Formula for $\cos (\alpha+\beta)$ and $\sin (\alpha \pm \beta)$
Unit 3 Double angles
Unit 4 Identities
Unit 5 Equations
Unit 6 Trigonometric graphs and compound angles
Mixed exercises46
Chapter 6 Solving problems in three dimensions 48
OVERVIEW 48
Unit 1 Problems in three dimensions
Unit 2 Compound angle formulae in three dimensions
Mixed exercises 51
Chapter 7 Polynomials 53
OVERVIEW 53
Unit 1 The Remainder Theorem
Unit 2 The Factor Theorem
Mixed exercises 57
Chapter 8 Differential calculus 58
OVERVIEw 58
Unit 1 Limits
Unit 2 The gradient of a graph at a point
Unit 3 The derivative of a function
Unit 4 The equation of a tangent to a graph
Unit 5 The graph of a cubic function
Unit 6 The second derivative (concavity)
Unit 7 Applications of differential calculus
Mixed exercises 70
Chapter 9 Analytical geometry 72
OVERVIEW 72
Unit 1 Equation of a circle with centre at the origin
Unit 2 Equation of a circle centred off the origin
Unit 3 The equation of the tangent to the circleMixed exercises77
Chapter 10 Euclidean geometry 81
Overview 81
Unit 1 Proportionality in triangles
Unit 2 Similarity in triangles
Unit 2 Theorem of Pythagoras
Mixed exercises 94
Chapter 11 Statistics: regression and correlation 97
OVERVIEW 97
Unit 1 Symmetrical and skewed data
Unit 2 Scatter plots and correlation
Mixed exercises 106
Chapter 12 Probability 108
OVERVIEW 108
Unit 1 Solving probability problems
Unit 2 The counting principle
Unit 3 The counting principle and probability Mixed exercises 112
ANSWERS TO MIXED EXERCISES 113
EXEMPLAR PAPER 1 151
EXEMPLAR PAPER 2 168

Introduction to Via Afrika Mathematics Grade 12 Study Guide

Woohoo! You made it! If you're reading this it means that you made it through Grade 11, and are now in Grade 12. But I guess you are already well aware of that...

It also means that your teacher was brilliant enough to get the Via Afrika Mathematics Grade 12 Learner's Book. This study guide contains summaries of each chapter, and should be used side-by-side with the Learner's Book. It also contains lots of extra questions to help you master the subject matter.

Mathematics - not for spectators
You won't learn anything if you don't involve yourself in the subject-matter actively. Do the maths, feel the maths, and then understand and use the maths.

Understanding the principles

- Listen during class. This study guide is brilliant but it is not enough. Listen to your teacher in class as you may learn a unique or easy way of doing something.
- Study the notation, properly. Incorrect use of notation will be penalised in tests and exams. Pay attention to notation in our worked examples.
- Practise, Practise, Practise, and then Practise some more. You have to practise as much as possible. The more you practise, the more prepared and confident you will feel for exams. This guide contains lots of extra practice opportunities.
- Persevere. We can't all be Einsteins, and even old Albert had difficulties learning some of the very advanced Mathematics necessary to formulate his theories. If you don't understand immediately, work at it and practise with as many problems from this study guide as possible. You will find that topics that seem baffling at first, suddenly make sense.
- Have the proper attitude. You can do it!

The AMA of Mathematics

ABILITY is what you're capable of doing.
MOTIVATION determines what you do.
ATTITUDE determines how well you do it.

[^0]
Overview

Chapter 1 Page 8
Number patterns, sequences and series

Unit 1 Page 10	
Arithmetic sequences and series	- Formula for an arithmetic sequence
Unit 2 Page 14	
Geometric sequences and series	- Formula for the $\mathrm{n}^{\text {th }}$ term of a sequence
Unit 3 Page 18	
The sum to n terms $\left(S_{n}\right)$: Sigma notation	- The sum to n terms in an arithmetic sequence - The sum to n terms in a geometric sequence
Unit 4 Page 28	
Convergence and sum to infinity	- Convergence

REMEMBER YOUR STUDY APPROACH SHOULD BE:

1 Work through all examples in this chapter of your Learner's Bok.
2 Work through the notes in this chapter of this study guide.
3 Do the exercises at the end of the chapter in the Learner's Book.
4 Do the mixed exercises at the end of this chapter in this study guide.

Number patterns, sequences and series

TABLE 1: SUMMARY OF SEQUENCES AND SERIES

TYPE	GENERAL TERM: T_{n}	SUM OF TERMS: S_{n}	EXAMPLES
Arithmetic Sequence (AS) (also named the linear sequence) Constant $1^{\text {st }}$ difference	$\begin{gathered} T_{n}=a+(n-1) d \\ a=\text { first term } T_{1} \\ d=\text { constant diff } . \\ d=T_{2}-T_{1} \end{gathered}$ or $T_{3}-T_{2}$ etc.	$\begin{aligned} & S_{n} \\ & =\frac{n}{2}[2 a+(n-1) d] \end{aligned}$ or $S_{n}=\frac{n}{2}[a+l]$ where $l=$ the last term of the sequence	$\begin{aligned} & \text { A) } \underbrace{2 ;} \underbrace{5 ; ~} \underbrace{8 ; 11 ; \ldots} \\ & d=+3+3+3 \\ & T_{n}=2+(n-1)(3) \\ & =2+3 n-3 \\ & =3 n-1 \end{aligned}$ $\text { B) } 1 \text {; } 1 \text {; ... }$ $d=-5 \quad-5$ $T_{n}=1+(n-1)(-5)$ $=1-5 n+5$ $=-5 n+6$
Geometric Sequence (GS) (also named exponential sequence)	$\begin{gathered} T_{n}=a r^{n-1} \\ a=\text { first term } T_{1} \\ r=\begin{array}{c} \text { constant } \\ \text { ratio } \end{array} \\ r=\frac{T_{2}}{T_{1}} \text { or } \frac{T_{3}}{T_{2}} \end{gathered}$	$S_{n}=\frac{a\left(r^{n}-1\right)}{r-1}$ Or $S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}$ Or $S_{\infty}=\frac{a}{1-r}$ Where $-1<r<1$ (Converging series)	NOT CONVERGING as $r<-1$ B) 3 $\begin{aligned} & 3 ; \underbrace{3}_{r=\underbrace{\frac{3}{2}}} ; \underbrace{\frac{3}{4}} ; \underbrace{\frac{3}{2}} ; \cdots \frac{1}{2} \\ & T_{n}=3\left(\frac{1}{2}\right)^{n-1} \end{aligned}$ CONVERGING as $-1<r<1$
Quadratic Sequence (QS) Constant $2^{\text {nd }}$ I:cc_n-.	$T_{n}=a n^{2}+b n+c$ $f=1^{\text {st }}$ difference $s=2^{\text {nd }}$ difference Determine a, b and c using simultaneous equations (see example) Alternatively: $\begin{align*} & a=s \div 2 \tag{2}\\ & b=f_{1}-3 a \\ & c=T_{1}-a-b \tag{3} \end{align*}$ where $f_{1}=$ first term of first differences		f: Setup three equations using the first three terms: $T_{1}=3:$ $\begin{align*} 3 & =a+b+c \tag{1}\\ T_{2} & =8: \\ 8 & =4 a+2 b+c \\ T_{3} & =16: \\ 16 & =9 a+3 b+c \end{align*}$ Solving simultaneously leads to: $T_{n}=\frac{3}{2} n^{2}+\frac{1}{2} n+1$

TYPES OF QUESTIONS YOU CAN EXPECT	STRATEGY TO ANSWER THIS TYPE OF QUESTION	EXAMPLE(S) OF THIS TYPE OF QUESTION
Identify any of the following three types of sequences: Arithmetic (AS), Geometric (GS) and Quadratic (QS)	Determine whether sequence has a - constant $1^{\text {st }}$ difference (AS) - constant ratio (GS) - constant $2^{\text {nd }}$ difference (QS)	See Table 1 above
Determine the formula for the general term, T_{n}, of AS, GS and QS (from Grade 11)	You need to find: - $\quad a$ and d for an AS - $\quad a$ and r for a GS - $\quad a, b$ and c for a QS	See Table 1 above
Determine any specific term for a sequence e.g. T_{30}	Substitute the value of n into T_{n}	See Text Book : Example 1, nr. 1 d and 2 d, p. 8 (AS) Example 1, nr. 1 b, 3 b, p. 11 (AS) Example 1, nr. 1, p. 15 (GS)
Determine the number of terms in a sequence, n, for an AS, GS and QS or the position, n, of a specific given term or when the sum of the series is given	Substitute all known variables into the general term to get an equation with \boldsymbol{n} as the only unknown. Solve for n. OR Substitute all known variables into the S_{n}-formula to get an equation with \boldsymbol{n} as the only unknown. Solve for n. Remember: n must be a natural number (not negative, not a fraction)	See Text Book: Example 1, nr. 1 c, p. 8 Example 1, nr. $1 \mathrm{c}, \mathrm{p} .11$ Example 1, nr. 3, p. 15 Example 2, nr.3, p. 20 Example 3, nr. 2, p. 24
When given two sets of information, make use of simultaneous equations to solve: \boldsymbol{a} and \boldsymbol{d} (for an AS) a and r (for a GS)	For each set of information given, substitute the values of n and T_{n} or n and S_{n}. You then have $\mathbf{2}$ equations which you can solve simultaneously (by substitution)	See Text Book: Example 1, nr. 3, p. 11 (AS) Example 1, nr.2, p. 15 (AS) Example 3, nr.3, p. 24 (GS)
Determine the value of a variable (x) when given a sequence in terms of x.	For AS use constant difference: $T_{3}-T_{2}=T_{2}-T_{1}$ For GS use constant ratio: $\frac{T_{2}}{T_{1}}=\frac{T_{3}}{T_{2}}$	The first three terms of an AS are given by $2 x-4 ; x-3 ; 8-2 x$ Determine x : $\begin{aligned} & 8-2 x-(x-3)=x-3- \\ & (2 x-4) \quad \therefore x=5 \end{aligned}$

For a series given in sigma notation: - Determine the number of terms	Remember: The "counter" indicates the number of terms in the series	$\sum_{k=1}^{n} T_{k}$ has n terms (counter k runs from 1 to n) $\sum_{k=0}^{n} T_{k}$ has $(n+1)$ terms (counter runs from o to n; so one term extra) $\sum_{k=5}^{n} T_{k}$ has $(n-4)$ terms (four terms not counted)
- Determine the value of the series, in other words, S_{n}.	Remember the expression next to the \sum-sign is the general term, T_{n}. This will help you to determine a and d or r.	See Text Book: Example 1, p. 19
Write a given series in sigma notation.	Determine the general term, T_{k} and number of terms, n and substitute into $\sum_{k=1}^{n} T_{k}$	Example 1, p. 19
Determine the sum, \boldsymbol{S}_{n}, of an AS and a GS (when the number of terms are given or not given)	In some cases you have to first determine the number of terms, n using T_{n}. Substitute the values of a, n and d / r into the formula for S_{n}	See Text Book: Example 2, nr. 1 \& 2, p. 20 Example 3, nr. 1, p. 24
Determine whether a GS is converging or not	Converging if $-1<r<1$	
Determine S_{∞} for a converging GS	Substitute vales of a and r Into formula for S_{∞}	See Text Book: Example 1, nr. 1, p. 29
Determine the value of a variable (x) for which a series will converge, $\text { e.g. }(2 x+1)+(2 x+1)^{2}+\ldots$	Determine r in terms of x and use $-1<r<1$	See Text Book: Example 1, nr. 3, p. 29
Apply your knowledge of sequences and series on an applied example (often involving diagram/s)	Generate a sequence of terms from the information given. Identify the type of sequence.	See Text Book: Exercise 5, nr. 6, p. 30

Mixed Exercise on sequences and series

1 Consider the following sequence: $\quad 5 ; 9 ; 13 ; 17 ; 21 ; \ldots$
a Determine the general term.
b Which term is equal to 217?
2 a $\quad T_{5}$ of a geometric sequence is 9 and T_{9} is 729 . Determine the constant ratio.
b Determine T_{10}.
3 The following is an arithmetic sequence: $2 x-4 ; 5 x ; 7 x-4$
a Determine the value of x.
b Determine the first 3 terms.
4 Consider the following sequence: $2 ; 7 ; 15 ; 26 ; 40 ; \ldots$
a Determine the general term.
b Which term is equal to 260 ?
How many terms are there in the following sequence?
17;14;11;8;...;-2785
6 Tom links balls with rods in arrangements as shown below:
Arrangement 1 Arrangement 2 Arrangement 3 Arrangement 4
$\perp \perp \perp \perp$

1 ball, 4 rods 4 balls, 12 rods

9 balls, 24 rods

। । ।
16 balls 40 rods
a Determine the number of balls in the nth arrangement.
b Determine the number of rods in the nth arrangement.
7 Determine the following:
a $\quad \sum_{k=1}^{30}(8-5 k)$
b $\quad \sum_{k=2}^{10} \frac{1}{4}(2)^{k-1}$

Write the following in sigma notation:
1+5+9+...+21
9 The $5^{\text {th }}$ term of an arithmetic sequence is zero and the $13^{\text {th }}$ term is equal to 12.
Determine:
a the constant difference and the first term.
b the sum of the first 21 terms.

10 The first two terms of a geometric sequence are: $(x+3)$ and $\left(x^{2}-9\right)$
a For which value of x is this a converging sequence?
b Calculate the value of x if the sum of the series to infinity is 13 .
$11 \quad$ Calculate the value of: $\quad \frac{99+97+95+\cdots+1}{299+297+295+\cdots+201}$
$S_{n}=3 n^{2}-2 n$. Determine T_{9}.
The first four terms of a geometric sequence are $7 ; x ; y ; 189$.
a Determine the values of x and y.
b If the constant ratio is 3 , make use of a suitable formula to determine the number of terms in the sequence that will give a sum of 206668.

Overview

	Unit 1 Page 40	
Chapter 2 Page 36 Functions	The definition of a function	- Relations and functions - Type of relations - Which relations are functions? - Definition of a function? - Function notation
	Unit 2 Page 44	
	The inverse of a function	- The concept of inverses by studying sets of ordered number pairs
	Unit 3 Page 46	
	The inverse of $y=a x+q$	- Graphs of f and f^{-1} on the same set of axes
	Unit 4 Page 48	
	The inverse of the quadratic function $y=a x^{2}$	Restricting the domain of the parabola

REMEMBER YOUR STUDY APPROACH SHOULD BE:

1 Work through all examples in this chapter of your Learner's Book.
2 Work through the notes in this chapter of the study guide.
3 Do the exercises at the end of the chapter in the Learner's Book.
4 Do the mixed exercises at the end of this chapter in the study guide.

TYPES OF RELATIONS BETWEEN TWO VARIABLES			
TYPE	DESCRIPTION	PROPERTIES	TYPICAL EXAMPLES
NON-FUNCTIONS	One-to-many	- One x-value in domain has MORE THAN ONE y-value - Does NOT pass vertical line test	- Inverse of a parabola (See Unit 4)
FUNCTIONS	One-to-one	- Each x-value has a unique y value - No x - or y-value appear more than once in domain or range - Passes VERTICAL line test	- Straight line graph and its inverse - Hyperbola and its inverse - Exponential graph and its inverse, the logarithmic function
	Many-to- one	- No x-value appears more than once in domain - More than one x-value maps onto the same y-value - Passes VERTICAL line test	- Parabola - Graph of the cubic function - Trigonometric graphs
REVISION OF THE STRAIGHT LINE GRAPH			

PARALLEL AND PERPENDICULAR LINES

Let $y=m_{1} x+c_{1}$ and
$y=m_{2} x+c_{2}$ be two lines.
If the lines are PARALLEL, then:

$$
m_{1}=m_{2}
$$

If the lines are PERPENDICULAR,
then: $\quad m_{1} \times m_{2}=-1$

TO DETERMINE THE EQUATION OF A STRAIGHT LINE

GIVEN:	EXAMPLES
1. Gradient and a point	A line has a gradient of $\frac{1}{2}$ and goes through the point ($4 ; 1$): $m=\frac{1}{2}$ Substitute point (4;1) into $y=\frac{1}{2} x+c$ $\begin{gathered} 1=\frac{1}{2}(4)+c \\ c=-1 \\ y=\frac{1}{2} x-1 \end{gathered}$
2. y-intercept and a point	A line has a y-intercept 3 and goes through the point ($-2 ; 1$): $\begin{gathered} c=3 \\ \text { Substitute point }(-2 ; 1) \text { into } y=m x+3 \\ 1=m(-2)+3 \\ m=1 \\ y=x+3 \end{gathered}$
3. Two points on the line	A line goes through the points ($4 ;-3$) and ($2 ; 1$). $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{1-(-3)}{4-(2)}=2$ Substitute any one of the two points into $y=2 x+c$ $\begin{gathered} 1=2(2)+c \\ c=-3 \\ y=2 x-3 \end{gathered}$
4. A point or y-intercept plus information regarding relationship to another line	a) A line is parallel to the line $y=-x+3$ and goes through the point $(5 ;-2)$. Parallel lines have same gradients; so $m=-1$ $\begin{gathered} \text { Sub }(5 ;-2) \text { into } y=-x+c \\ -2=-(5)+c \\ c=3 \end{gathered}$ b) A line is perpendicular to the line $y=2 x-1$ and has a y-intercept of 4 .

Functions

Perpendicular lines have gradients with a product of $\mathbf{- 1}$.

$$
\begin{gathered}
m \times 2=-1 \quad \therefore m=-\frac{1}{2} \\
y=\frac{-1}{2} x+4
\end{gathered}
$$

REVISION OF THE PARABOLA

EQUATION IN STANDARD FORM

Functions

EQUATION IN

TURNING POINT FORM

DETERMINE THE EQUATION OF A PARABOLA

GIVEN: 2 ROOTS (x-INTERCEPTS) PLUS 1 POINT
GIVEN: TURNING POINT PLUS 1 POINT

FORM OF EQUATION:

$y=a\left(x-x_{1}\right)\left(x-x_{2}\right)$
x_{1} and x_{2} are the roots
EXAMPLE:

$$
x_{1}=-1 \quad x_{2}=3
$$

$y=a\left(x-x_{1}\right)\left(x-x_{2}\right)$
$y=a(x-(-1))(x-3)$
$y=a(x+1)(x-3)$
Now substitute the other point (2;6):
$6=a(2+1)(2-3)$
$6=a(3)(-1)$
$6=-3 a$
$-2=a$
$y=-2(x+1)(x-3)$
$y=-2\left(x^{2}-2 x-3\right)$
$y=-2 x^{2}+4 x+6$ (standard form)

FORM OF EQUATION:

$$
y=a(x-p)^{2}+q
$$

$(p ; q)$ is die turning point of the parabola
EXAMPLE:

$$
(p ; q)=(-1 ; 2)
$$

$y=a(x-p)^{2}+q$
$y=a(x-(-1))^{2}+2$
$y=a(x+1)^{2}+2$

Now substitute the point ($0 ; 5$):

$$
\begin{aligned}
& 5=a(0+1)^{2}+2 \\
& 5=a+2 \\
& 3=a \\
& y=3(x+1)^{2}+2 \\
& y=3\left(x^{2}+2 x+1\right)+2 \\
& y=3 x^{2}+6 x+3+2 \\
& y=3 x^{2}+6 x+5 \text { (standard form) }
\end{aligned}
$$

Functions

REVISION OF THE HYPERBOLA

EXAMPLE: $y=\frac{2}{x-1}-2$	
y-intercept: $\begin{aligned} & y=\frac{2}{-1}-2=-4 \\ & x \text {-intercept: } \\ & 0=\frac{2}{x-1}-2 ; x=2 \end{aligned}$ Asymptotes: $x=1 \text { and } y=-2$	Axes of symmetry: Substitute $(1 ;-2)$ into $\begin{aligned} & y=x+k_{1} \text { and } y=-x+k_{2} \\ & -2=1+k_{1} \text { and }-2=-1+k_{2} \\ & k_{1}=-3 \text { and } k_{2}=-1 \\ & \quad y=x-3 \text { and } y=-x-1 \end{aligned}$

Functions

REVISION OF THE EXPONENTIAL GRAPH

$$
\text { EXAMPLE: } \quad y=2^{x+1}-1
$$

Indicates that the graph $y=a^{x}$ was translated（shifted）horizontally left／right $\begin{array}{ll}\boldsymbol{p}>0 & \text { shifted left } \\ \boldsymbol{p}<0 \text { ：} & \text { shifted right }\end{array}$

Intercepts

－x－intercept（make $y=0$ ）
－y－intercept（make $x=0$ ）

Domain：$x \in R$
Range：$y \in(q ; \infty)$

EXAMPLE：$\quad y=2^{x+1}-1$	
Asymptote：$y=-1$	
x－intercept $(y=0): 2^{x+1}-1=0 \quad \therefore x=-1$	
y－intercept：$(x=0): y=2^{0+1}-1=1$	
－－ーーーー－	

EXAMPLES OF SYMMETRICAL

 EXPONENTIAL GRAPHS
SYMMETRICAL IN THE y-axis

SYMMETRICAL IN THE x-axis

INTERSECTS OF TWO GRAPHS

To determine the coordinates of the point where two graphs INTERSECT:

Use SIMULTANEOUS EQUATIONS

EXAMPLE

Determine the coordinates of the points of
intersection of $f(x)=3 x+6$ and
$g(x)=-2 x^{2}+3 x+14$

Equate the two equations and solve for \boldsymbol{x} :

$$
\begin{gathered}
3 x+6=-2 x^{2}+3 x+14 \\
2 x^{2}-8=0 \\
x^{2}-4=0 \\
(x-2)(x+2)=0 \\
x=2 \text { or } x=-2
\end{gathered}
$$

Substitute x-values back into one of equations
(choose the easier one):

If $x=2$ then $y=3(2)+6=12$
So one point of intersection is $(2 ; 12)$.

If $x=-2$ then $y=3(-2)+6=0$
The other point of intersection is $(-2 ; 0)$ which is also the x-intercept of both graphs.

Functions

THE INVERSE OF A FUNCTION

- The inverse of a function, f, is denoted by f^{-1}.
- f^{-1} is a reflection of f in the line $y=x$
- To determine the equation of f^{-1}, swop x and y in the equation of f
- The x-intercept of f is the y-intercept of f^{-1}

FUNCTION f	INVERSE OF FUNCTION, \boldsymbol{f}^{-1}	EXAMPLES	DIAGRAM
Straight line $f: y=m x+c$	Straight line	$f: y=2 x+3$ Inverse: $2 y+3=x$ $f^{-1}: y=\frac{1}{2} x-\frac{3}{2}$	
Exponential graph $f: y=a^{x}$	Logarithmic function $f^{-1}: y=\log _{a} x$	$f: y=3^{x}$ Inverse: $f^{-1}: y=\log _{3} x$	
Parabola $f: y=a x^{2}$	The inverse of a parabola is NOT A FUNCTION NB: The DOMAIN of the parabola has to be RESTRICTED to $x \geq 0$ or $x \leq 0$ so that f^{-1} is also a function	$f: y=2 x^{2}$ Inverse: $\begin{gathered} x=2 y^{2} \\ y^{2}=\frac{1}{2} x \\ f^{-1}: \pm \sqrt{\frac{1}{2} x} \end{gathered}$	

Mixed Exercise on Functions

1
Determine the coordinates of the intercept of the following two lines:

$$
\begin{aligned}
& 2 x-3 y=17 \\
& 3 x-y=15
\end{aligned}
$$

2 a Determine the equation of line f.
b Determine the equation of line g.
c Determine the co-ordinates of point, P , where the two lines intersect.
d Are these two lines perpendicular? Give a reason for your answer.
e Write down the equation of the line which is parallel to line g with a y-intercept
 of -2.

The diagram shows the graphs of $y=x^{2}-2 x-3$ and $y=m x+c$.
a Determine the lengths of OA, OB and OC.
b Determine the co-ordinates of the turning point D .
c Determine m and c of the straight line.
d Use the graph to determine for which values
of k for which the equation $x^{2}-2 x+k=0$ would have only one real root.

4 The diagram shows the graph of $f(x)=-2(x+1)^{2}+8$. C is the turning point.

E is the mirror image of the y -intercept of f.
Determine:
a the length of AB.
b the co-ordinates of C.
C the length of DE.

Functions

Consider the function $g(x)=\left(\frac{1}{2}\right)^{x}-2$.
Make a neat drawing of g. Clearly show the asymptote and intercepts with the axes.
b Determine the domain of g.
C \quad For which values of x would $g(x) \geq 0$.

6 The graph of $f(x)=\frac{a}{x} ; x \neq 0$ is shown. $A(-2 ; 2)$ is a point on the graph where it cuts the line $y=-x$.
a Determine the value of a.
b Write down the coordinates of B.
C Graph f is translated 2 units up and 1 unit right.
d Write down the equation of the new graph.

The graphs of the following are shown :

$f(x)=-x^{2}-2 x+8$ and $g(x)=\frac{1}{2} x-1$
Determine:
a the coordinates for A
b the coordinates for B and C
c the length of CD
d the length of DE which is parallel to the y-axis
$\mathrm{e} \quad$ the length of $A F$ which is parallel to the x-axis
$\mathrm{f} \quad$ the length of GH which is parallel to the y-axis
g the x-value for which RS would have a maximum length.
$h \quad$ the maximum length of RS.
i \quad the x-values for which $f(x)-g(x)>0$.

The diagram alongside shows the graphs of the functions of

$$
f(x)=b^{x}+c \text { and } g(x)=\frac{a}{x+p}+q
$$

a Write down the equation of the asymptote of f.
b Determine the equation of f.
c Write down the equations of the asymptotes of g.
d Determine the equation of g.
e Determine the equations of the axes of symmetry of g.
$\mathrm{f} \quad$ For which values of x is $f(x)>g(x)$?

9 The graph of $f(x)=2 x^{2}$ is given.
a Determine the equation of f^{-1} in the form $f^{-1}: y=\ldots$
b How can one restrict the domain of f so that f^{-1} will be a function?

The graph of $f(x)=a^{x}$ is given.
The point $\mathrm{A}(-1 ; 3)$ lies on the graph.
a Determine the equation of f.
b Determine the equation of f^{-1} in the form $f^{-1}: y=\ldots$
c Make a neat drawing of the graph of f^{-1}.
d Determine the domain of f^{-1}.

A straight line graph has an x-intercept of -2 and a y-intercept of 3 . Write down the coordinates of the x - and y-intercepts of f^{-1}.

	Unit 1 Page 60	
Chapter 3 Page 58 Logarithms	The definition of a logarithm	- Changing exponents to the logarithmic form - Proofs of the logarithmic laws
	Unit 2 Page 64	
	Solve exponential equations using logarithms	- Using logarithms
	Unit 3 Page 66	
	The graph of $y=\log _{b} x$ where $b>1$ and $0<b<1$	- Inverse of $y=f(x)=2^{x}$ - Inverse of the function $y=f(x)=\left(\frac{1}{2}\right)^{x}$

REMEMBER YOUR STUDY APPROACH SHOULD BE:

1 Work through all examples in this chapter of your Learner's Bok.
2 Work through the notes in this chapter of this study guide.
3 Do the exercises at the end of the chapter in the Learner's Book.
4 Do the mixed exercises at the end of this chapter in this study guide.

Definition of logarithm

If $\log _{b} x=y$, then $\boldsymbol{b}^{y}=x$.

EXAMPLES: Converting from one form to another	
Logarithmic form	Exponential form
$\log _{3} 243=5$	$\mathbf{3}^{5}=243$
$\log _{\mathbf{0 , 5}} \mathbf{0 , 1 2 5}=3$	$\mathbf{0 , 5}=\mathbf{5}, \mathbf{1 2 5}$
$\log _{10} \mathbf{1 0 0 0}=3$	$\mathbf{1 0}^{3}=\mathbf{1 0 0 0}$
$\log _{3} \sqrt{3}=\frac{1}{2}$	$\mathbf{3}^{\frac{1}{2}}=\sqrt{3}$

LOGARITHMIC LAW	EXAMPLES
Law 1: $\log _{m} A . B=\log _{m} A+\log _{m} B$	- $\log _{k} a b c=\log _{k} a+\log _{k} b+\log _{k} c$ - $\log _{5} 25.5=\log _{5} 25+\log _{5} 5=2+1=3$
Law 2: $\log _{m} \frac{A}{B}=\log _{m} A-\log _{m} B$	- $\log _{m} \frac{y}{z}=\log _{m} y-\log _{m} z$ $\text { - } \begin{aligned} \log _{5} \frac{0,2}{25} & =\log _{5} 0,2-\log _{5} 25 \\ & =\log _{5} 5^{-1}-\log _{5} 25 \\ & =-1-2=-3 \end{aligned}$
Law 3: $\log _{x} P^{y}=y \log _{x} P$	- $\log _{y} a^{3}=3 \log _{y} a$ - $\log _{5} 0,04=\log _{5} 5^{-2}=-2 \log _{5} 5=-2$
Law 4: $\log _{b} a=\frac{\log a}{\log b}$	- $\log _{b} a=\frac{\log a}{\log b}$ - $\log _{2} 5=\frac{\log 5}{\log 2}=2,32$

Note that:

- $\log _{a} a=1(a \neq 0)$
- $\log _{a} 1=0$
- $\log a=\log _{10} a$

USING LOGARITHMS TO SOLVE EQUATIONS

We know that equations involving exponents can be solved using exponential laws:

$$
\begin{aligned}
2^{x} & =128 \\
2^{x} & =2^{7} \text { (prime factorise) } \\
\therefore x & =7
\end{aligned}
$$

But, what if we cannot use prime factors?

$$
2^{x}=13
$$

$$
\begin{aligned}
& \log 2^{x}=\log 13 \\
& x \log 2=\log 13 \\
& x=\frac{\log 13}{\log 2}=3,7
\end{aligned}
$$

THE INVERSE OF THE EXPONENTIAL GRAPH

$$
f^{-1}: y=\log _{a} x ; x>0
$$

EXAMPLES		
$f($ RED GRAPH $)$	f^{-1} (BLUE GRAPH)	
$y=4^{x}$	$y=\log _{4} x$	
$y=\frac{1}{4}$	$y=\log _{\frac{1}{4}} x$	
$y=-4^{x}$	$y=\log _{4}(-x)$	
$y=-\frac{1}{4}$	$y=\log _{\frac{1}{4}}(-x)$	

Mixed Exercise on Logarithms

Make use of the definition of the logarithm to solve for x :
a $\quad \log _{3} x=2$
b $\quad \log _{\frac{1}{3}} x=2$
C $\quad-\log _{4} x=2$
d $\quad \log _{5} x=-2$
e $\quad \log x^{3}=6$
f $\quad \log _{3} 81=x$
g $\quad \log _{3} \frac{1}{9}=x$

The graph of $f(x)=a^{x}$ goes through the point $\left(2 ; \frac{9}{4}\right)$.
a Determine the value of a.
b Determine the equation of f^{-1}.
c Determine the equation of g if f and g are symmetrical in the y-axis.
d Determine the equation of h, the reflection of f^{-1} in x-axis.

The function f is given by the graph $f(x)=\log _{2} x$.
a Determine the equations of the following graphs:
i $\quad g$, the reflection of f in the x-axis
ii $\quad p$, the reflection of f in the y-axis
iii $\quad q$, the reflection of g in the y-axis
iv $\quad f^{-1}$, the inverse of f
v $\quad g^{-1}$, the inverse of g
vi $\quad h$, the translation of f two units left
b Sketch the graphs of f, f^{-1}, g and g^{-1} on the same system of axes.
c Determine the domain and range of f^{-1} and g^{-1}.

The graph of $y=\log _{b} x$ is shown in the diagram alongside.
a Determine the coordinates of point A.
b How do we know that $b>1$.
c Determine b if B is the point $\left(8 ; \frac{3}{2}\right)$.
d Determine the equation of g, the inverse of this graph.
e \quad Determine the value of a if C is the point $(a ;-2)$.

Overview

Chapter 4 Page 76
Finance, growth and decay

Unit 1 Page 78	
Future value annuities	- Deriving the future value formula
Unit 2 Page 82	
Present value annuities	- Deriving the present value formula
Unit 3 Page 86	
Calculating the period	- Finding the value of n
Unit 4 Page 88	
Analysing investments and loans	- Outstanding balances on a loan - Sinking fund - Pyramid schemes

REMEMBER YOUR STUDY APPROACH SHOULD BE:

1 Work through all examples in this chapter of your Learner's Book.
2 Work through the notes in this chapter of this study guide.
3 Do the exercises at the end of the chapter in the Learner's Book.
4 Do the mixed exercises at the end of this chapter.

HIRE PURCHASE AGREEMENTS

$$
A=P(1+i n)
$$

Example:

Kelvin buys computer equipment on hire purchase for R20 000.
He has to put down 10% deposit and repays the amount monthly over 3 years.
The interest rate is 15% p.a.

Deposit $=10 \%$ of R20 000 $=$ R2 000 .
He has to repay $A=18000(1+0,15 \times 3)=R 26100$ in total.
36 monthly payments of R26 100 $\div 36=R 725$ each.

INFLATION / INCREASE IN PRICE OR VALUE

$$
A=P(1+i)^{n}
$$

$$
n=\text { number of years }
$$

DEPRECIATION

Reducing-balance method

$$
A=P(1-i)^{n}
$$

$$
n=\text { number of years }
$$

NOMINAL AND EFFECTIVE INTEREST RATES

$$
\left(1+i_{e f f}\right)=\left(1+\frac{i_{n o m}}{m}\right)^{m}
$$

```
NB: m= the number of times per year
interest is added
```

Daily:
Monthly:
m

Quarterly: $\quad m=4$
Half-yearly (semi-annually): $\quad m=2$

EXAMPLE:
What is the effective rate if the nominal rate is 18% p.a. compounded quarterly?
In other words:
Which rate compounded annually will give me the same return as 18% compounded quarterly?

$$
\begin{aligned}
& \begin{aligned}
i_{e f f} & =\left(1+\frac{0,18}{4}\right)^{4}-1 \\
& =0,1925186 \ldots
\end{aligned} \\
& \text { Effective rate }=19,25 \%
\end{aligned}
$$

FUTURE VALUE ANNUITIES

$F=\frac{x\left[(1+i)^{n}-1\right]}{i}$

Example 1

First payment in one month's time. Last payment in one year's time.

KEY WORDS:

- Regular investments
(monthly/quarterly etc.)
- Sinking funds
- Annuity/pension
- Savings plan

Last payment

Example 2

First payment immediately. Last payment in one year's time.

Example 3

Assume investment pays out in one year's time, but the first payment was made 2 months from now and the last payment in one year's time.

Example 4 (Watch out!)

First payment immediately, but last payment in 9 months' time.

First payment
Last payment
$F=\frac{x\left[(1+i)^{10}-1\right]}{i}(1+i)^{3}$
BUT, the investment still earns interest for another 3 months before paying out

FUTURE VALUE ANNUITIES

$P=\frac{x\left[1-(1+i)^{-n}\right]}{i}$

Example 1

KEY WORDS:

- Regular payments (monthly/quarterly etc.)
- Loan (NOT HIREPURCHASE)
- Bond/home loan
- Repayment of debt
- How long will money be enough to provide regular income?

Payment starts one month after the granting of the loan. Last payment in one year's time.

Example 2

Payment starts in 3 months' time. Last payment in one year's time.

OUTSTANDING BALANCE OF LOAN

Option 1
 Use P-formula
 $n=$ number of payments left

Option 2

Use A- and F-formula $\boldsymbol{n}=$ number of payments
already made

Example

A loan of is being repaid over 20 years in monthly payments of R 6000 . The interest rate is 15% p.a. compounded monthly. What is the outstanding balance after $12^{1 / 2}$ years?

Option 1

Outstanding period $=71 / 2$ years $=90$ months

Balance $=\frac{6000\left[1-\left(1+\frac{0,15}{12}\right)^{-90}\right]}{\frac{0,15}{12}}$

Option 2

Payments already made $=121 / 2 \mathrm{X}_{12}=150$ payments already paid

Outstanding balance $=A-F$

Balance $=P\left(1+\frac{0,15}{12}\right)^{150}-\frac{6000\left[\left(1+\frac{0,15}{12}\right)^{150}-1\right]}{\frac{0,15}{12}}$ where P is the initial loan amount.

Mixed Exercise on Finance, growth and decay

Determine through calculation which of the following investments is the best, if R15 000 is invested for 5 years at:
a $\quad 10,6 \%$ p.a. simple interest
b 9,6\% p.a., interest compounded quarterly.

An amount of money is now invested at 8,5\% p.a compounded monthly to grow to R95 000 in 5 years.
a Is 8,5\% called the effective or nominal interest rate?
b Calculate the amount that must be invested now.
c Calculate the interest earned on this investment.

Shirley wants to buy a flat screen TV. The TV that she wants currently costs R8 000.
a The TV will increase in cost according to the rate of inflation, which is 6% per annum. How much will the TV cost in two years' time?
b For two years Shirley puts R2 000 into her savings account at the beginning of every six month period (starting immediately). Interest on her savings is paid at 7% per annum, compounded six-monthly. Will she have enough to pay for the TV in two years' time? Show all your calculations.

Calculate:
a the effective interest rate to 2 dec. places if the nominal interest rate is $7,85 \%$ p.a., compounded monthly.
b the nominal interest rate if interest on an investment is compounded quarterly, using an effective interest rate of $9,25 \%$ p.a.

Equipment with a value(new) of R350 000 depreciated to R179 200 after 3 years, based on the reducing balance method. Determine the annual rate of depreciation.

R20 000 is deposited into a new savings account at 9,75\% p.a., compounded quarterly. After18 months, R10 000 more is deposited. After a further 3 months, the interest rate changes to $9,95 \%$ p.a., compounded monthly. Determine the balance in the account 3 years after the account was opened.

A company recently bought new equipment to the value of R900 000 which has to be replaced in 5 years' time. The value of the equipment depreciates at 15% per year according to the reduced-balance method. After 5 years the equipment can be sold second hand at the reduced value. The inflation rate on the equipment is 18% per year.

The company wants to establish a sinking fund to replace the equipment in 5 years' time. Calculate what the value of the sinking fund should be to replace the equipment.
b Calculate the quarterly amount that the company has to pay into the sinking fund to be able to replace the equipment in 5 years' time. The company makes the first payment immediately and the last payment at the end of the 5 year period. The interest rate for the sinking fund is 8% per year compounded quarterly.

Goods to the value of R1 500 is bought on hire purchase and repaid in 24 monthly payments of R85. Calculate the annual interest rate that applied for the hire purchase agreement.

Peter makes a loan to buy a house. He pays back the loan over a period of 20 years in monthly payments of R6 500. Peter qualifies for an interest rate of 12% per years compounded monthly. He makes his first payment one month after the loan was granted.
a Calculate the amount Peter borrowed.
b Calculate the amount that Peter still owes on his house after he has been paying back the loan for 8 years.

Megan's father wants to make provision for her studies. He starts paying R1000 on a monthly base into an investment on her $12^{\text {th }}$ birthday. He makes the last payment on her $18^{\text {th }}$ birthday. She needs the money 5 months after her $18^{\text {th }}$ birthday. The interest rate on the investment is 10\% per annum compounded monthly. Calculate the amount Megan has available for her studies.

Stephan starts investing R300 into an investment monthly, starting one month from now. He earns interest of 9% per annum compounded monthly. For how long must he make these monthly investments so that the total value of his investment is R48 000? Give your answer as follows: years and Months

Carl purchases sound equipment to the value of R15 000 on hire purchase. The dealer expects him to put down a 10% deposit. The interest rate is 12% per annum and he has to repay the money monthly over 4 years. It is compulsory for him to insure the equipment through the dealer at a premium of R3o per month. Calculate the total amount Carl has to pay the dealer monthly.

Tony borrows money to the value of R400 000. He has to pay back the money in 16 quarterly payments, but only has to make his first payment one year from now. The interest rate is 8% per annum compounded quarterly. Calculate the quarterly payment Tony has to pay.

Overview

Chapter 5 Page 102
Compound angles

Unit 1 Page 108	
Deriving a formula for $\cos (\alpha-\beta)$	- How to deriving a formula for $\cos (\alpha-\beta)$
Unit 2 Page 112	
Formulae for $\cos (\alpha+\beta)$ and $\sin (\alpha \pm \beta)$	- Formula for $\cos (\alpha+\beta)$ - Formula for $\sin (\alpha+\beta)$ - Formula for $\sin (\alpha-\beta)$
Unit 3 Page 116	
Double angles	- Formula for $\sin 2 \alpha$ - Formula for $\cos 2 \alpha$
Unit 4 Page 120	
Identities	- Proving identities - Finding the value(s) for which the identity is not defined
Unit 5 Page 124	
Equations	- Equations with compound and double angles
Unit 6 Page 128	
Trigonometric graphs and compound angles	- Drawing and working with graphs of compound angles

REMEMBER YOUR STUDY APPROACH SHOULD BE:

1 Work through all examples in this chapter of your Learner's Book.
2 Work through the notes in this chapter of this study guide.
3 Do the exercises at the end of the chapter in the Learner's Book.
4 Do the mixed exercises at the end of this chapter in this study guide.

REVISION OF TRIGONOMETRY

BASIC TRIGONOMETRIC RATIOS

Ratio	Inverse
$\sin \theta=\frac{o}{h}$	$\operatorname{cosec} \theta=\frac{h}{o}$
$\cos \theta=\frac{a}{h}$	$\sec \theta=\frac{h}{a}$
$\tan \theta=\frac{o}{a}$	$\cot \theta=\frac{a}{o}$

Ratio	Inverse
$\sin \theta=\frac{o}{h}$	$\operatorname{cosec} \theta=\frac{h}{o}$
$\cos \theta=\frac{a}{h}$	$\sec \theta=\frac{h}{a}$
$\tan \theta=\frac{o}{a}$	$\cot \theta=\frac{a}{o}$

YOU HAVE TO KNOW IN WHICH QUADRANT AN ANGLES LIES AND WHICH RATIO (AND ITS INVERSE) IS POSITIVE THERE:

REDUCTION FORMULAE

CO-RATIOS/CO-FUNCTIONS

Ratio	Co-ratio
$\sin \left(90^{\circ}-\theta\right)$	$\cos \theta$
$\cos \left(90^{\circ}-\theta\right)$	$\sin \theta$
$\tan \left(90^{\circ}-\theta\right)$	$\cot \theta$

$\left(90^{\circ}-\theta\right)$
Is in $1^{\text {st }}$ quadrant

Ratio	Co-ratio
$\sin \left(90^{\circ}+\theta\right)$	$\cos \theta$
$\cos \left(90^{\circ}+\theta\right)$	$-\sin \theta$
$\tan \left(90^{\circ}+\theta\right)$	$-\cot \theta$

$\left(90^{\circ}+\theta\right)$
Is in $2^{\text {nd }}$

KNOW YOUR SPECIAL TRIANGLES!

IDENTITIES

$$
\tan \theta=\frac{\sin \theta}{\cos \theta} \text { and } \cot \theta=\frac{1}{\tan \theta}=\frac{\cos \theta}{\sin \theta}
$$

SQUARE IDENTITIES:

$$
\sin ^{2} \theta+\cos ^{2} \theta=1
$$

From this follows that:
$\therefore \cos ^{2} \theta=1-\sin ^{2} \theta$
$\therefore \sin ^{2} \theta=1-\cos ^{2} \theta$

Note that the two identities above can both be
FACTORISED as differences of two squares:

$$
\begin{aligned}
& \cos ^{2} \theta=1-\sin ^{2} \theta=(1-\sin \theta)(1+\sin \theta) \\
& \sin ^{2} \theta=1-\cos ^{2} \theta=(1-\cos \theta)(1+\cos \theta)
\end{aligned}
$$

COMPOUND ANGLE-IDENTITIES

$$
\begin{aligned}
& \cos (\alpha-\beta)=\cos \alpha \cos \beta+\sin \alpha \sin \beta \\
& \cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta \\
& \sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta \\
& \sin (\alpha-\beta)=\sin \alpha \cos \beta-\cos \alpha \sin \beta
\end{aligned}
$$

$$
\begin{aligned}
& \text { DOUBLE ANGLE-IDENTITIES } \\
& \qquad \begin{aligned}
\sin 2 \alpha & =2 \sin \alpha \cos \alpha
\end{aligned} \\
& \begin{aligned}
\cos 2 \alpha & =\cos ^{2} \alpha-\sin ^{2} \alpha \\
& =1-2 \sin ^{2} \alpha \\
& =2 \cos ^{2} \alpha-1
\end{aligned} \\
& \text { tan } 2 \alpha=\frac{2 \tan \alpha}{1-\tan ^{2} \alpha}
\end{aligned}
$$

TIPS FOR PROVING IDENTITIES

- Work with LHS and RHS separately
- Write DOUBLE angles as SINGLE angles
- Watch out for SQUARE IDENTITIES
- Write everything in terms of \sin and \cos
- When working with fractions, put EVERYTHING over the LCD
- Be on the look out for opportunities to FACTORISE, e.g.
$>2 \sin \alpha \cos \alpha-\sin \alpha=\sin \alpha(2 \cos \alpha-1)$
$>\cos ^{2} \alpha-\sin ^{2} \alpha=(\cos \alpha+\sin \alpha)(\cos \alpha-\sin \alpha)$
$>2 \sin ^{2} \alpha+\sin \alpha-1=(2 \sin \alpha-1)(\sin \alpha+1)$
- It is sometimes necessary to replace 1 with $\sin ^{2} \alpha+\cos ^{2} \alpha$ E.g. $\sin 2 \alpha+1=2 \sin \alpha \cos \alpha+\sin ^{2} \alpha+\cos ^{2} \alpha$

$$
=(\sin \alpha+\cos \alpha)^{2}
$$

FINDING THE GENERAL SOLUTION OF A TRIGONOMETRIC EQUATION

STEP		EXAMPLES OF HOW TO APPLY STEP
Get trig ratio (sin/cos/tan) alone on LHS One value alone on RHS	A	$\begin{aligned} & 2 \sin 3 x=0,4 \\ & \sin 3 x=0,2 \\ & \frac{1}{3} \cos x=-0,2 \\ & \cos x=-0,6 \\ & 2 \tan \left(x-10^{\circ}\right)+3=0 \\ & \tan \left(x-10^{\circ}\right)=-\frac{3}{2} \end{aligned}$
Now use RHS consisting of a: SIGN (+ or -) and a VALUE	A	$\sin 3 x=+0,2$ The + indicates the $1^{\text {st }}$ and $2^{\text {nd }}$ quadrant, where \sin is positive. Reference $\angle=\sin ^{-1}(0,2)=11,54^{\circ}$ $\cos x=-0,6$ The - indicates the $2^{\text {nd }}$ and $3^{\text {rd }}$ quadrant, where cos is negative. $\text { Reference } \angle=\cos ^{-1}(0,6)=53,13^{\circ}$ $\tan \left(x-10^{\circ}\right)=-\frac{3}{2}$ The - indicates the $2^{\text {nd }}$ and $4^{\text {th }}$ quadrant, where \tan is negative. $\text { Reference } \angle=\tan ^{-1}\left(\frac{3}{2}\right)=56,31^{\circ}$
The angle in the trig equations will be equated to the following in the respective quadrants: $\left.\begin{array}{l} \mathbf{1}^{\text {st }}=\operatorname{Ref} \angle \\ \mathbf{2}^{\text {nd }}=\mathbf{1 8 0}^{\circ}-\operatorname{Ref} \angle \\ \mathbf{3}^{\text {rd }}=\mathbf{1 8 0}^{\circ}+\operatorname{Ref} \angle \\ \mathbf{4}^{\text {th }}=\mathbf{3 6 0}^{\circ}-\operatorname{Ref} \angle \end{array}\right\} \quad \begin{gathered} +k 360^{\circ} ; k \in Z \text { for } \sin / \cos \\ \text { or } \end{gathered} \quad \begin{gathered} \\ +k 180^{\circ} ; k \in Z \text { for } \tan \end{gathered}$ Then solve for x	A	$\begin{aligned} & 2 \sin 3 x=0,4 \\ & \sin 3 x=0,2 \\ & 1^{\text {st }}: 3 x=11,54^{\circ}+k 360^{\circ} ; k \in Z \\ & x=3,85^{\circ}+k 120^{\circ} O R \\ & 2^{\text {nd }}: 3 x=180^{\circ}-11,54^{\circ}+k 360^{\circ} \\ & x=56,15^{\circ}+k 120^{\circ} \\ & \\ & \frac{1}{3} \cos x=-0,2 \\ & \cos x=-0,6 \\ & 2^{\text {nd }}: x=180^{\circ}-53,13^{\circ}+k 360^{\circ} ; k \in Z \\ & x=126,87^{\circ}+k 360^{\circ} \text { OR } \\ & 3^{\text {rd }}: x=180^{\circ}+53,13^{\circ}+k 360^{\circ} \\ & x=233,13^{\circ}+k 360^{\circ} \\ & \\ & 2 \tan \left(x-10^{\circ}\right)+3=0 \\ & \tan \left(x-10^{\circ}\right)=-\frac{3}{2} \\ & 2^{\text {nd }}: x-10^{\circ}=180^{\circ}-56,31^{\circ}+k 180^{\circ} ; \\ & k \in Z \\ & x=133,69^{\circ}+k 180^{\circ} \\ & \hline \end{aligned}$

EQUATIONS INVOLVING TWO TRIGONOMETRIC FUNCTIONS	
EXAMPLES	COMMENTS
1 $\begin{gathered} \sin x=\cos x \\ \frac{\sin x}{\cos x}=\frac{\cos x}{\cos x} \\ \tan x=1 \\ x=45^{\circ}+k \cdot 180^{\circ} ; k \in Z \end{gathered}$	\div by $\cos x$ on both sides
$\begin{array}{\|lc\|} \hline 2 & \sin x=\cos 3 x \\ & \cos \left(90^{\circ}-x\right)=\cos 3 x \\ & 9^{\circ}-x=3 x+k .360^{\circ} ; k \epsilon Z \\ & -4 x=-90^{\circ}+k .360^{\circ} \\ & x=22,5^{\circ}-k .90^{\circ} \\ & \\ & 90^{\circ}-x=-3 x+k .360^{\circ} ; k \in Z \\ & 2 x=-90^{\circ}+k .360^{\circ} \\ & x=-45^{\circ}+k .180^{\circ} \end{array}$	May NOT divide by $\cos x$ both sides Trig function on both sides should be the same Angles on LHS and RHS should either be the same or be in two different quadrants where \cos have the same sign ($1^{\text {st }}$ and $4^{\text {th }}$ quadrant)
3 $\begin{gathered} \sin \left(x+20^{\circ}\right)=\cos \left(2 x-30^{\circ}\right) \\ \cos \left[90^{\circ}-\left(x+20^{\circ}\right)\right]=\cos \left(2 x-30^{\circ}\right) \\ \cos \left(70^{\circ}-x\right)=\cos \left(2 x-30^{\circ}\right) \\ 70^{\circ}-x=2 x-30^{\circ}+k .360^{\circ} \\ -3 x=-100^{\circ}+k .360^{\circ} \\ x=33,33^{\circ}-k .120^{\circ} ; k \in Z \end{gathered}$ or $\begin{aligned} 70^{\circ}-x & =-\left(2 x-30^{\circ}\right)+k \cdot 360^{\circ} \\ x & =-40^{\circ}+k \cdot 360^{\circ} \end{aligned}$	Alternative: \sin on both sides $\begin{array}{r} \sin \left(x+20^{\circ}\right)=\cos \left(2 x-30^{\circ}\right) \\ \sin \left(x+20^{\circ}\right)=\sin \left[90^{\circ}-\left(2 x-30^{\circ}\right)\right] \\ \sin \left(x+20^{\circ}\right)=\sin \left(120^{\circ}-2 x\right) \\ x+20^{\circ}=120^{\circ}-2 x+k .360^{\circ} \\ 3 x=100^{\circ}+k .360^{\circ} \\ x=33,33^{\circ}-k .120^{\circ} ; k \in Z \end{array}$ or $\begin{aligned} x+20^{\circ}= & 180^{\circ}-\left(120^{\circ}-2 x\right)+k .360^{\circ} \\ & -x=40^{\circ}+k .360^{\circ} \\ & x=-40^{\circ}-k .360^{\circ} \end{aligned}$

EXAMPLES OF EQUATIONS INVOLVING DOUBLE ANGLES

$$
\begin{gathered}
\cos \theta \cdot \cos 14^{\circ}+\sin \theta \cdot \sin 14^{\circ}=0,715 \\
\cos (\theta-149=0,715 \\
\operatorname{Ref} \angle=44,36^{\circ}
\end{gathered}
$$

$\mathbf{1}^{\text {st }}$ quadrant:

$$
\begin{aligned}
& \theta-14^{\circ}=44,36^{\circ}+k \cdot 360^{\circ} \\
& \theta=58,36^{\circ}+k \cdot 360^{\circ} ; k \in Z
\end{aligned}
$$

$4^{\text {th }}$ quadrant:

$$
\begin{aligned}
& \theta-14^{\circ}=-44,36^{\circ}+k \cdot 360^{\circ} \\
& \theta=-30,36^{\circ}+k \cdot 360^{\circ} ; k \in Z
\end{aligned}
$$

$$
\begin{gathered}
\sin 2 \theta+2 \sin \theta=0 \\
2 \sin \theta \cos \theta+2 \sin \theta=0 \\
2 \sin \theta(\cos \theta+1)=0 \\
\sin \theta=0 \quad \text { or } \quad \cos \theta=-1 \\
\theta=k \cdot 180^{\circ} ; k \in Z \quad \text { or } \quad \theta=180^{\circ}+k .360^{\circ}
\end{gathered}
$$

$$
\begin{aligned}
& 2 \sin ^{2} \theta+\sin \theta=3 \\
& 2 \sin ^{2} \theta+\sin \theta-3=0 \\
& \therefore(2 \sin \theta+3)(\sin \theta-1)=0 \\
& 2 \sin \theta+3=0 \quad \text { or } \quad \sin \theta+1=0 \\
& \sin \theta=-\frac{3}{2} \quad \text { or } \quad \sin \theta=-1 \\
& \text { No solution } \\
& \theta=\mathbf{2 7 0}{ }^{\circ}+k .360^{\circ} ; k \in Z
\end{aligned}
$$

PROBLEMS WITH COMPOUND-ANGLES TO BE DONE WITHOUT A CALCULATOR

- Write given information in form where trig function is ALONE on LHS
- Select QUADRANT and draw TRIANGLE in correct quadrant (2 sides of triangle will be known)
- Use the Theorem of PYTHAGORAS to determine $3^{\text {rd }}$ side
- Now work with the expression of which you need to find the value: write all compound or double angles in terms of SINGLE ANGLES
- Now SUBSTITUTE VALUES from diagram(s) and SIMPLIFY

Example:
If $13 \sin x \alpha+12=0$ and $\alpha \in\left[90^{\circ} ; 270^{\circ}\right]$ and $\beta=\frac{\mathbf{5}}{\mathbf{1 3}} ; \beta>90^{\circ}$, determine without the use of a calculator the value of:
a $\quad \sin (\alpha-\beta)$
b $\quad \cos (\alpha+\beta)$
C $\quad \sin 2 \alpha$
d $\cos 2 \beta$

Solution:
$\sin \alpha=-\frac{12}{13}$
\sin negative in $3^{\text {rd }}$ and $4^{\text {th }}$ quad

$$
y=-12
$$

$$
x=-5
$$

a $\sin (\alpha-\beta)=\sin \alpha \sin \beta-\cos \alpha \cos \beta=\left(\frac{-12}{13}\right)\left(\frac{5}{13}\right)-\left(\frac{-5}{13}\right)\left(\frac{-12}{13}\right)=\frac{-120}{169}$
b $\cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta=\left(\frac{-5}{13}\right)\left(\frac{5}{13}\right)-\left(\frac{-12}{13}\right)\left(\frac{-12}{13}\right)=-1$
c $\sin 2 \alpha=2 \sin \alpha \cos \alpha=2\left(\frac{-12}{13}\right)\left(\frac{-5}{13}\right)=\frac{120}{169}$

Mixed Exercise on Compound angles

1 Solve the following equations for . Give the general solution unless otherwise stated.
Answers should be given correct to $\mathbf{2}$ decimal places where exact answers are not possible.
a $\quad 2 \cos 2 x+1=0$
b $\quad \sin x=3 \cos x$ for $x \in\left[90^{\circ} ; 360^{\circ}\right]$
c $\quad \sin x=\cos 3 x$
d $\quad 6-10 \cos x=3 \sin ^{2} x ; x \in\left[-360^{\circ} ; 360^{\circ}\right]$
e $\quad 2-\sin x \cos x-3 \cos ^{2} x=0$
f $\quad 3 \sin ^{2} x-8 \sin x+16 \sin x \cos x-6 \cos x+3 \cos ^{2} x=0$

2 Prove the following identities, stating any values of x or θ for which the identity is not valid:
a $\quad \cos x+\tan x \sin x=\frac{1}{\cos x}$
b $\frac{\sin \theta}{1-\cos \theta}-\frac{\cos \theta}{\sin \theta}=\frac{1}{\sin \theta}$
c $\quad \frac{1-\cos ^{2} x}{\cos x}=\tan x \sin x$
d $\quad \frac{\sin ^{3} x+\sin x \cos ^{2} x}{\cos x}=\tan x$
e $\quad \frac{1+\tan x}{1-\tan x}=\frac{1+2 \sin x \cos x}{\cos ^{2} x-\sin ^{2} x}$
f $\quad \sin \left(45^{\circ}+x\right) \cdot \sin \left(45^{\circ}-x\right)=\frac{1}{2} \cos 2 x$
$g \quad \frac{\sin 2 \theta-\cos \theta}{\sin \theta-\cos 2 \theta}=\frac{\cos \theta}{1+\sin \theta}$
h $\frac{\cos x-\cos 2 x+2}{3 \sin x-\sin 2 x}=\frac{1+\cos x}{\sin x}$

3 Simplify:
a $\frac{\sin \left(180^{\circ}-x\right) \tan (-x)}{\tan \left(180^{\circ}+x\right) \cos \left(x-90^{\circ}\right)}$
b $\frac{\sin \left(180^{\circ}+x\right) \tan \left(x-360^{\circ}\right)}{\tan \left(360^{\circ}-x\right) \cos 240^{\circ} \tan 225^{\circ}}$ (without using a calculator)
$4 \quad$ Given that $\sin 17^{\circ}=k$, express in terms of k :
a $\quad \cos 73^{\circ}$
b $\quad \cos (-1639$
c $\quad \tan 197^{\circ}$
$\mathrm{d} \quad \cos 326^{\circ}$

5 Given that $5 \cos x+4=0$, calculate, without the use of a calculator, the value(s) of :
a $\quad 5 \sin x+3 \tan x$
b $\quad \tan 2 x$
6 If $3 \sin x=-1 ; x \in\left[90^{\circ} ; 270^{\circ}\right]$ and $\operatorname{tany}=\frac{3}{4} ; y \in\left[90^{\circ} ; 360^{\circ}\right]$. Determine without the use of a calculator the value of:
a $\quad \cos (x-y)$
b $\cos 2 x-\cos 2 y$
7 Simplify without the use of calculator:
a $\quad \cos ^{2} 22,5^{\circ}-\sin ^{2} 22,5^{\circ}$
b $\quad \sin 22,5^{\circ} \cos 22,5^{\circ}$
c $\quad 2 \sin 15^{\circ} \cos 15^{\circ}$

Overview

Chapter 6 Page 142
Solving problems in
three dimensions

Unit 1 Page 146	
Problems in three dimensions	• Trigonometry in real life
Unit 2 Page 150	
Compound angle formulae in three dimensions	- Using compound angle formulae in three dimensions

REMEMBER YOUR STUDY APPROACH SHOULD BE:

1 Work through all examples in this chapter of your Learner's Book.
2 Work through the notes in this chapter of this study guide.
3 Do the exercises at the end of the chapter in the Learner's Book.
4 Do the mixed exercises at the end of this chapter in the study guide.

REVISION ON THE USE OF THE sinus -, cosinus - and the area-FORMULAE			
INFORMATION GIVEN	UNKNOWN	FORMULA TO USE	FORM OF FORMULA
2 angles and 1 side $(\angle \angle s)$	S	sin-rule	$\frac{a}{\sin A}=\frac{b}{\sin B}$ a is unknown
2 sides and a not- included \angle (ss \angle)	\angle	sin-rule Watch out for ambiguous case! \angle can be acute or obtuse	$\frac{\sin A}{a}=\frac{\sin B}{b}$ A is unknown
2 sides and an included \angle ($\mathrm{s} \angle \mathrm{s}$)	S	cos-rule	$a^{2}=b^{2}+c^{2}-2 b c \cos A$ a is unknown
3 sides (sss)	\angle	cos-rule	$\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$ A is unknown
2 sides and an included \angle	Area	Area-rule	Area of $\Delta=\frac{1}{2} a b \sin C$ Area is unknown
Area, side and \angle	S	Area-rule	$\begin{aligned} & b=\frac{2 \times \text { Area }}{a \sin C} \\ & b \text { is unknown } \end{aligned}$

TIPS FOR SOLVING PROBLEMS IN THREE DIMENSIONS

- Where there are 3 triangles, start with the Δ with the most information and work via the $2^{\text {nd }} \Delta$ to the $3^{\text {rd }} \Delta$ which contains the unknown to be calculated.
- Indicate all RIGHT angles - remember they don't always look like $\mathbf{9 0}^{\circ}$ angles
- Shade the horizontal plane in the diagram (e.g. floor, ground)
- Be on the lookout for reductions like $\cos \left(90^{\circ}-\alpha\right)=\sin \alpha$ and $\boldsymbol{\operatorname { s i n }}\left(180^{\circ}-\alpha\right)=\sin \alpha$ to simplify expressions
- Use compound and double angle formulae to convert to single angles
- When writing out the solution - always indicate in which Δ you are working

EXAMPLE

P, Q and R are in the same horizontal plane. TP is a vertical tower $5,9 \mathrm{~m}$ high. The angle of elevation of T from Q is $65^{\circ} . P \hat{Q} R=P \hat{R} Q$.
a Calculate the length of $P Q$ to the nearest meter.
b Hence show that $R Q=5,5 \cos x$.
c If it is further given that $x=42^{\circ}$, calculate the area of $\triangle P Q R$.

Solution:

a $\quad \frac{5,9}{P Q}=\tan 65^{\circ}$
$\therefore P Q=\frac{5,9}{\tan 65^{\circ}}=2,75 \mathrm{~m}$
$Q \widehat{P} R=180^{\circ}-2 x$
$\frac{R Q}{\sin P}=\frac{P Q}{\sin R}$
$\frac{R Q}{\sin \left(180^{\circ}-2 x\right)}=\frac{2,75}{\sin x}$
$\frac{R Q}{\sin 2 x}=\frac{2,75}{\sin x}$
$\frac{R Q}{2 \sin x \cos x}=\frac{2,75}{\sin x}$
$\therefore R Q=2 \times 2,75 \cos x$
$R Q=5,5 \cos x$
c Area of $\triangle P Q R=\frac{1}{2} \times P Q \times Q R \times \sin Q$

$$
\begin{aligned}
& =\frac{1}{2} \times 2,75 \times\left(5,5 \cos 42^{\circ}\right) \times \sin 42^{\circ} \\
& =3,76 \text { square units }
\end{aligned}
$$

Mixed Exercise on Problems in Three Dimensions

1
In the diagram alongside B, D and E are in the same horizontal plane. $B \hat{E} D=120^{\circ}$
$A B$ and $C D$ are two vertical towers.
$A B=2 C D=2 h$ meter
The angle of elevation from E to A is α.
The angle of elevation from E to C is $\left(90^{\circ}-\alpha\right)$.
a
b Show that the distance between the two towers can be given as:
Determine the length BE in terms of h and α.
$B D=\frac{h \sqrt{\tan ^{4} \alpha+2 \tan ^{2} \alpha+4}}{\tan \alpha}$
c Hence determine the height of the tower CD, rounded to the nearest meter, if $\alpha=42^{\circ}$ and $B D=400 \mathrm{~m}$.

Express $C \widehat{D} B$ in terms of θ.

Hence show that $p=\frac{8 \sin \left(30^{\circ}+\theta\right)}{\cos \theta}$.

In the diagram alongside, $A B$ is a vertical flagpole 5 metres high. $A C$ an $A D$ are two stays. B, C and D are in the same horizontal plane. $B D=12 m, A \hat{C} D=\alpha$ and $A \widehat{D} C=\beta$.

Show that $C D=\frac{13 \sin (\alpha+\beta)}{\sin \alpha}$

$4 \quad$ In $\triangle A B C$ AD $=; \mathrm{DB}=n ; \mathrm{CD}=p$ and $B \widehat{D} C=\theta$.
a Complete in terms of m, p and θ : Area $\triangle A D C=\cdots$
b Show that the area of $\triangle A B C=\frac{1}{2} p(m+n) \sin \theta$.
c If the area of $\triangle A B C=12,6 \mathrm{~cm}^{2} ; A B=5,9 \mathrm{~cm}$ and $D C=8,1 \mathrm{~cm}$, calculate the value(s) of θ.

5 In the diagram, $\widehat{D}=90^{\circ}, B \hat{C} D=\theta$
$A \hat{C} B=\alpha ; \mathrm{AB}=\mathrm{BC}$ and $B D=p$ units.
a Express BC in terms of p and θ.
b Determine, without stating reasons, the size of \widehat{B}_{1} in terms of α.
c Hence, prove that $\mathrm{AC}=\frac{p \cdot \sin 2 \alpha}{\sin \theta \cdot \sin \alpha}$

6 In the diagram $P Q$ is a vertical building.
Q, R and S are points in the same horizontal plane.
The angle of elevation of P , the top of the building, measured from R, is α.
$R \widehat{Q} S=30^{\circ}$
$Q S R=150^{\circ}-\alpha$
$Q S=12 m$
a Show that $Q R=\frac{6(\cos \alpha+\sqrt{3} \sin \alpha)}{\sin \alpha}$
b Hence show that the height $P Q$ of the building is given by

$$
P Q=6+6 \sqrt{3} \tan \alpha
$$

c Hence calculate the value of α if $\mathrm{PQ}=23 \mathrm{~m}$.

Overview

Chapter 7 Page 156 Polynomials	Unit 1 Page 158	
	The Remainder Theorem	• The Remainder theorem
	Unit 2 Page 160	
	The Factor Theorem	• The Factor Theorem

REMEMBER YOUR STUDY APPROACH SHOULD BE:

1 Work through all examples in this chapter of your Learner's Book.
2 Work through the notes in this chapter of the study guide.
3 Do the exercises at the end of the chapter in the Learner's Book.
4 Do the mixed exercises at the end of this chapter in the study guide.

THE REMAINDER THEOREM

The remainder theorem can be used to calculate the remainder when a polynomial $f(x)$ is divided by $(a x+b)$

$$
\therefore f\left(-\frac{b}{a}\right)=r(x)
$$

Choosing the correct value to substitute is very important:

If you divide \boldsymbol{f} by $\boldsymbol{g}(\boldsymbol{x})=$	Value to substitute into $\boldsymbol{f}(\boldsymbol{x})$
$(\boldsymbol{x}-\mathbf{2})$	$f(2)=?$
$(\mathbf{2 x}-\mathbf{1})$	$f\left(\frac{1}{2}\right)=?$
$(\boldsymbol{x}+3)$	$f(-3)=?$
$(3 \boldsymbol{x}+\mathbf{2})$	$f\left(-\frac{2}{3}\right)=?$

THE FACTOR THEOREM

$$
\text { If } f\left(-\frac{b}{a}\right)=0 \text { then: }
$$

- ($a x+b$) is a FACTOR of $f(x)$ and
- $f(x)$ is DIVISIBLE by $(a x+b)$

When trying out x-values that give 0 , try them in the following order: 1: $-1: 2:-2: 3:-3$ etc.

DIFFERENT METHODS TO FACTORISE A CUBIC POLYNOMIAL (3 ${ }^{\text {RD }}$ DEGREE)	
METHOD AND DESCRIPTION OF STEPS	EXAMPLES
SUM AND DIFFERENCE OF CUBES	A) $\begin{aligned} f(x) & =x^{3}+27 \\ & =(x+3)\left(x^{2}-3 x+9\right) \end{aligned}$ Cannot factorise further B) $f(x)=8 x^{3}-1$ $=(2 x-1)\left(4 x^{2}+2 x+1\right)$ Cannot factorise further
FACTORISE BY GROUPING - Group terms in two pairs - Take out common factor from each pair - Two sets of brackets now become common factor - Factorise bracket further if possible	$\begin{aligned} f(x) & =x^{3}+3 x^{2}-4 x-12 \\ & =x^{2}(x+3)-4(x+3) \\ & =(x+3)\left(x^{2}-4\right) \\ & =(x+3)(x+2)(x-2) \end{aligned}$
FACTORISE BY INSPECTION - Find one linear factor using factor theorem - Find other factor (quadratic expression) by inspection	$\begin{aligned} & f(x)=2 x^{3}-2 x^{2}-10 x-6 \\ & f(-1)=2(-1)^{3}-2(-1)^{2}-10(-1) \\ & -6=0 \end{aligned}$ $\therefore(x+1)$ is a factor $f(x)=(x+1)\left(a x^{2}+b x+c\right)$ Now find these coefficients Start with a and c : $1 \times a=2 \quad \therefore a=2$ $1 \times c=-6 \therefore c=6$ You now need to find b : Multiply the two brackets; the two x^{2}-terms need to give you $-2 x^{2}$: $\begin{aligned} & f(x)=(x+1)\left(2 x^{2}+b x+6\right) \\ & b x^{2}+2 x^{2}=-2 x^{2} \therefore b=-4 \\ & \therefore f(x)=(x+1)\left(2 x^{2}-4 x+6\right) \\ & \quad=(x+1)(2 x+2)(x-3) \end{aligned}$
SYNTHETIC OR LONG DIVISION - Find one linear factor using factor theorem - Find other factor (quadratic expression) by long division or synthetic division (SEE NEXT PAGE)	$\begin{aligned} & f(x)=2 x^{3}-2 x^{2}-10 x-6 \\ & f(-1)=2(-1)^{3}-2(-1)^{2}-10(-1) \\ & -6=0 \end{aligned}$ $\therefore(x+1)$ is a factor $f(x)=(x+1)\left(a x^{2}+b x+c\right)$ Find a, b, c using synthetic division

SYNTHETIC DIVISION

$f(-1)=0$, so $(x+1)$ is a factor

This method is called SYNTHETIC division, becaûse we don't really divide.
We actually multiply and add.

Note the following:

- The x-value of -1 that gave us the facto $(x+1)$ is written on the LHS
- The coefficients of the cubic polynomial are written in the top row
- The first coefficient, 2, is carrieddown to the last row
- Now starting from the left.

MULTIPLY along the dotted arrow and write the ANSWER in the block one row up and one column right

- You MUST get 0 in the last block
- The 3 values in the bottom row are the coefficients of the quadratic factor.

So, $f(x)=(x+1)\left(2 x^{2}-4 x-6\right)$
You can now complete the factorising:
$f(x)=(x+1)(2 x+2)(x-3)$

Mixed Exercise on Polynomials

1 Factorise the following expressions completely:
a $\quad 27 x^{3}-8$
b $\quad 5 x^{3}+40$
c $\quad x^{3}+3 x^{2}+2 x+6$
d $\quad 4 x^{3}-x^{2}-16 x+4$
e $\quad 4 x^{3}-2 x^{2}+10 x-5$
f $\quad x^{3}+2 x^{2}+2 x+1$
g $\quad x^{3}-x^{2}-22 x+40$
h $\quad x^{3}+2 x^{2}-5 x-6$
i $\quad 3 x^{3}-7 x^{2}+4$
j $\quad x^{3}-19 x+30$
k $\quad x^{3}-x^{2}-x-2$

2 Solve for x :
a $\quad x^{3}+2 x^{2}-4 x=0$
b $\quad x^{3}-3 x^{2}-x+6=0$
c $\quad 2 x^{3}-12 x^{2}-x+6=0$
d $\quad 2 x^{3}-x^{2}-8 x+4=0$
e $\quad x^{3}+x^{2}-2=0$
f $\quad x^{3}=16+12 x$
g $\quad x^{3}+3 x^{2}=20 x+60$
3 Show that $x-3$ is a factor of $f(x)=x^{3}-x^{2}-5 x-3$ and hence solve $f(x)=0$.
4 Show that $2 x-1$ is a factor of $g(x)=4 x^{3}-8 x^{2}-x+2$ and hence solve $g(x)=0$.

Overview

Chapter 8 Page 166 Differential calculus	Unit 1 Page 170	
	Limits	- Investigating limits
	Unit 2 Page 172	
	The gradient of a graph at a point	- Function notation and the average gradient - The gradient of a graph at a point
	Unit 3 Page 176	
	The derivative of a function	- First principles - Rules for differentiation - The derivative at a point
	Unit 4 Page 182	
	The equation of a tangent to a graph	- Calculating the equation of a tangent to a graph
	Unit 5 Page 184	
	The graph of the cubic function	- Plotting a cubic function
	Unit 6 Page 188	
	The second derivative (concavity)	- Change in concavity
	Unit 7 Page 192	
	Application of differential calculus	- Modelling real-life problems

REMEMBER YOUR STUDY APPROACH SHOULD BE:

1Work through all examples in this chapter of your Learner's Book.
2 Work through the notes in this chapter of the study guide.
3 Do the exercises at the end of the chapter in the Learner's Book.

THE CONCEPT OF A LIMIT

Notation: $\lim _{x \rightarrow 4} f(x)$
We say: "The limit of f as x approaches 4"
What does it mean?
The limit is the y-value (remember $y=f(x)$) which the function approaches as the x-value approaches (gets closer to) a certain value from the left or the right .

Examples: a Let $f(x)=2 x^{2}+4$

$$
\begin{aligned}
\lim _{x \rightarrow 1} f(x) & =\lim _{x \rightarrow 4} 2 x^{2}+4 \\
& =2(1)^{2}+4=6
\end{aligned}
$$

Before calculating the limit, it is sometimes necessary to FACTORISE and SIMPLIFY first:

An examples of this is:

$$
\begin{aligned}
& \lim _{x \rightarrow 3} \frac{x^{2}-9}{x-3} \\
& =\lim _{x \rightarrow 3} \frac{(x \not-3)(x+3)}{x \not-3} \\
& =\lim _{x \rightarrow 3}(x+3) \\
& =(3+3) \\
& =6
\end{aligned}
$$

Substituting $x=3$ now will cause division by 0
First factorise the numerator and cancel out

Note that "lim" falls away in the step where you substitute

AVERAGE GRADIENT BETWEEN 2 POINTS

From previous grades you know you can calculate the gradient between two points $\left(x_{1} ; y_{1}\right)$ and $\left(x_{2} ; y_{2}\right)$ using the formula: $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

In the diagram below the points $\mathrm{A}(x ; f(x))$ and $\mathrm{B}(x+h ; f(x+h))$ are indicated.

The AVERAGE GRADIENT between A and B is given by: $m_{A B}=\frac{f(x+h)-f(x)}{h}$

THE GRADIENT OF A GRAPH AT A POINT

By letting h approach 0 , the distance between point A and B will become smaller and smaller. A and B will almost "become one point".

The average gradient then becomes the
GRADIENT OF THE GRAPH AT A POINT $=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$

NOTATION: This is denoted by $f^{\prime}(x)$

The formula $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ can be used to find any of the following from FIRST PRINCIPLES: Look out for the words:

FIRST PRINCIPLES

- The derivative of f at any point

- The gradient of the tangent to graph f at any point
- The gradient of the function f at any point
- The rate of change of f at any point

$\boldsymbol{f}^{\prime}(\boldsymbol{x})$ can also be determined using DIFFERENTIATION RULES

Function \boldsymbol{f} (Derivative $f^{\prime}(x)$	Examples
$\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{k}$ where \boldsymbol{k} is a constant $\quad f^{\prime}(x)=0$	$\begin{aligned} & f(x)=-5 \\ & f^{\prime}(x)=0 \\ & y=4 \\ & \frac{d y}{d x}=0 \end{aligned}$
$\boldsymbol{f}(\boldsymbol{x})=x^{\boldsymbol{n}} ; \boldsymbol{x} \boldsymbol{\epsilon} \boldsymbol{R} \quad f^{\prime}(x)=n x^{n-1}$	- $D_{x}\left[x^{6}\right]=6 x^{5}$ - $f(x)=\frac{1}{x^{3}}=x^{-3}$ $f^{\prime}(x)=-3 x^{-4}=\frac{-3}{x^{4}}$
$\begin{aligned} & \boldsymbol{f}(\boldsymbol{x})=\boldsymbol{k} \boldsymbol{x}^{\boldsymbol{m}} ; \boldsymbol{m} \in \boldsymbol{R} \\ & \text { where } \boldsymbol{k} \text { is a constant }\end{aligned} \quad f^{\prime}(x)=k \times m x^{m-1}$	$\begin{aligned} -f(x) & =2 x^{4} \\ f^{\prime}(x) & =2 \times 4 x^{4-1} \\ = & 8 x^{3} \\ -D_{x}\left[\frac{1}{2} x^{\frac{5}{2}}\right] & =\frac{1}{2} \times \frac{5}{2} x^{\frac{5}{2}-1} \\ & =\frac{5}{4} x^{\frac{3}{2}} \end{aligned}$
When functions are added/subtracted, apply the rule to each function separately: $D_{x}[f(x) \pm g(x)]=D_{x}[f(x)] \pm D_{x}[g(x)]$	$\begin{aligned} \text { - } & D_{x}\left[5 x^{2}-4 x+6\right] \\ & =5 \times 2 x-4+0 \\ & =10 x-4 \end{aligned}$

BEFORE YOU APPLY THE DIFFERENTIATION RULES,

 MAKE SURE THERE ARE:- No brackets :
a $\quad f(x)=(x+1)(2 x-1)=2 x^{2}+x-1$

$$
f^{\prime}(x)=4 x+1
$$

- No x under a fraction line:
b $\quad f(x)=\frac{3 x^{2}-2}{x}=\frac{3 x^{2}}{x}-\frac{2}{x}=3 x-2 x^{-1}$

$$
f^{\prime}(x)=3-2(-1) x^{-2}=3+\frac{2}{x^{2}}
$$

c $\quad f(x)=\frac{x^{2}-x-6}{x+2}=\frac{(x-3)(x+2)}{x+2}=x-3$ $f^{\prime}(x)=1$

- No x under a root sign:

$$
\begin{array}{ll}
\text { d } & f(x)=3 \sqrt{x}-4 x=3 x^{\frac{1}{2}}-4 x \\
& f^{\prime}(x)=3 x^{\frac{1}{1}} x^{\frac{1}{2}-1}-4=-x^{-\frac{1}{2}}-4
\end{array}
$$

NB: NOTE THE DIFFERENCE BETWEEN THE FOLLOWING:

$f(4)$ is the y-VALUE of the function at $x=4$
$f^{\prime}(4)$ is the GRADIENT of the function at $x=4$
As well as the gradient of the TANGENT at $x=4$

THE CUBIC GRAPH $y \equiv a x^{3}+b x^{2}+c x+d$

a indicates THE SHAPE

$$
\begin{gathered}
a>0(+) \\
\quad \text { or } \\
a<0(-) \\
\quad \text { or }
\end{gathered}
$$

STATIONARY POINTS

POINTS OF
INFLECTION

Local minimum

How do I determine whether it is:
A LOCALMMAXIMUM or A LOCAL MANIMUM?

What does \boldsymbol{f}^{\prime} and $\boldsymbol{f}^{\prime \prime}$ tell me?

	Negative (<0)	$=0$	Positive (>0)
\boldsymbol{f}^{\prime}	f decreases	f turns	f increases
$\boldsymbol{f}^{\prime \prime}$	Local maximum Concave down	Point of inflection	Local minimum Concave up

x-INTERCEPTS/ROOTS AND SHAPE

- For x-intercepts: solve $f(x)=0$
- A cubic graph can have either one(only) or two or three x-intercepts

EXAMPLES:

a $\quad f(x)=x^{3}+4 x^{2}-11 x-30$
$f(3)=(3)^{3}+4(3)-11(3)-30=0$

$\therefore(x-3)$ is a factor

$$
\begin{aligned}
f(x) & =(x-3)\left(x^{2}+7 x+10\right) \\
& =(x-3)(x+2)(x+5)
\end{aligned}
$$

The roots are $-5 ;-2$ and 3 .
b $\quad f(x)=x^{3}-3 x+2$
$f(1)=(1)^{3}-3(1)+2=0$
$\therefore(x-1)$ is a factor
$f(x)=(x-1)\left(x^{2}+x-2\right)$
$f(x)=(x-1)(x-1)(x+2)=(x-1)^{2}(x+2)$

If TWO FACTORS are the SAME, then the x-INTERCEPT is also a TURNING POINT.
The graph BOUNCES at $x=1$

EQUATION OF TANGENT TO GRAPH AT A SPECIFIC POINT

- Substitute x-value into $f(x)$ to find coordinates of POINT of TANGENCY
- Determine $f^{\prime}(x)$ using differentiation rules
- Substitute x-value into $f^{\prime}(x)$ to find GRADIENT of TANGENT, m
- Substitute gradient into $y=m x+c$
- Substitute point of tangency in $y=m x+c$ to find the value of c.

EXAMPLE

Determine equation of tangent to $f(x)=2 x^{3}-5 x^{2}-4 x+3$ at $x=1$

Substitute $x=1: f(1)=2(1)^{3}-5(1)^{2}-4(1)+3=-4$
\therefore Point of tangency is $(1 ;-4)$
$f^{\prime}(x)=6 x^{2}-10 x-4$
$f^{\prime}(1)=6(1)^{2}-10(1)-4=-8$
\therefore Gradient of tangent at $x=1$ is -8 ; so $y=-8 x+c$

Substitute (1;-4) into $y=-8 x+c: \quad-4=-8(1)+c$
$\therefore c=4$

Equation of tangent is $y=-8 x+4$

SKETCHING THE CUBIC GRAPH EXAMPLE: $f(x)=x^{3}-x^{2}-8 x+12$	
DESCRIPTION OF STEP	STEP APPLIED TO THIS EXAMPLE
Determine shape (using a)	$a=1$ (positive)
Determine y-intercept Make $x=0$	$y=(0)^{3}-(0)^{2}-8(0)+12=12$
Determine \boldsymbol{x}-intercepts Solve $\boldsymbol{f}(\boldsymbol{x})=\mathbf{0}$	$\begin{aligned} & \hline f(2)=0 \\ & \therefore(x-2) \text { is a factor } \\ & f(x)=(x-2)\left(x^{2}+x-6\right) \\ & f(x)=(x-2)(x-2)(x+3) \end{aligned}$ Roots are -3 and 2. $x=2$ is also a turning point where graph bounces
Determine turning points and their $\begin{gathered} y \text {-values } \\ \text { Solve } f^{\prime}(x)=0 \\ \text { Substitute } x \text {-values into } f(x) \end{gathered}$	$\begin{aligned} & \quad f^{\prime}(x)=3 x^{2}-2 x-8=0 \\ & (3 x+4)(x-2)=0 \\ & x=-\frac{4}{3} \text { or } x=2 \end{aligned}$ We already know from the previous step that $(2 ; 0)$ is one turning point (local minimum). Let us now find the other TP's y-coordinates $f(x)=\left(\frac{-4}{3}\right)^{3}-\left(\frac{-4}{3}\right)^{2}-8\left(\frac{-4}{3}\right)+12=18,52$ Local maximum at $(-1,33 ; 18,52)$
Make a neat drawing	

FINDING THE EQUATION OF A CUBIC GRAPH IN THE FORM
 $$
y=a x^{3}+b x^{2}+c x+d
$$

INFORMATION GIVEN (CAN BE SHOW ON GRAPH OR NOT)
and x-intercepts: $x=-2 ;-1$ and 4
y-intercept: $y=-8$

STEPS

From the y-intercept we already know that $d=-8$.

But we are going to use the three roots:

$$
y=a(x+2)(x+1)(x-4)
$$

Substitute the point $(0 ;-8)$:

$$
\begin{gathered}
-8=a(0+2)(0+1)(0-4) \\
-8=-8 a \\
a=1
\end{gathered}
$$

$$
\therefore y=1(x+2)(x+1)(x-4)
$$

Removing the brackets gives:

$$
y=x^{3}-x^{2}-10 x-8
$$

We were given two roots (of which one is also a turning point) and the other turning point.

NB: The graph BOUNCES at $x=1$. This factor will therefore have to be squared.

Substitute the other turning point $(3 ;-4)$:

$$
\begin{gathered}
-4=a(3-1)^{2}(3-4) \\
-4=-4 a \\
a=1 \\
\therefore y=a(x-1)^{2}(x-4)
\end{gathered}
$$

Removing the brackets gives:

$$
y=x^{3}-6 x^{2}+9 x-4
$$

SPECIAL APPLICATIONS OF DERIVATIVES

RATES OF CHANGE

- Distance/Displacement
$s(t)$
- Speed/Velocity
- Acceleration
$s^{\prime}(t)$
$s^{\prime \prime}(t)$

EXAMPLE

The displacement of a moving object is described by the equation $s(t)=10 t-t^{2}$ where s, represents displacement in metres and t, time in seconds.
a Determine the displacement after 2 seconds.
b What time will it take for the object to reach a maximum displacement?
c Determine the velocity of the object after 3 seconds.
d Determine the acceleration of the object. Is it going faster or slower?

SOLUTIONS

a $s(2)=10(2)-(2)^{2}=16 m$
b $s^{\prime}(t)=10-2 t=0$
$\therefore 10-2 t=0$
$\therefore t=5 s$
c $s^{\prime}(3)=10-2(3)=4 \mathrm{~m} . \mathrm{s}^{-1}$
d $s^{\prime \prime}(t)=-2 m \cdot s^{-2}$
The object is going slower because the acceleration is negative.

USING FIRST DERIVATIVE TO DETERMINE

MINIMUM OR MAXIMUM

- For area, $A(x)$, to be a \min / \max, solve $A^{\prime}(x)=0$
- For volume, $V(x)$, to be a $\min / m a x$, solve $V^{\prime} 4(x)=0$
- For cost, $C(x)$, to be a minimum, solve $C^{\prime}(x)=0$
- For profit, $P(x)$, to be a maximum, solve $P^{\prime}(x)=0$

EXAMPLE

The volume of water in a water reservoir is given by: $V(t)=60+8 t-3 t^{2}$ where $V(t)$ is the volume in thousands of litres and t is the number of days water is pumped into the reservoir.
a Determine the rate of change of the volume after 3 days.
b When will the volume of water in the reservoir be a maximum?
c What will the maximum level of water in the reservoir be?

SOLUTIONS

a $\quad V^{\prime}(t)=8-6 t$
$\therefore V^{\prime}(3)=8-6(3)=-10$ thousand liters/day
b $\quad V^{\prime}(t)=8-6 t=0$
$\therefore 8-6 t=0$
$t=\frac{4}{3}=1,3$ days
c $\quad V\left(\frac{4}{3}\right)=60+8\left(\frac{4}{3}\right)-3\left(\frac{4}{3}\right)^{2}=58,67$ thousand litres

Mixed Exercise on Differential Calculus

1 Determine f^{\prime} from first principles if
a

$$
\begin{array}{ll}
\mathrm{a} & f(x)=1-x^{2} \\
\mathrm{~b} & f(x)=-3 x^{2}
\end{array}
$$

2 Determine:
a $\quad \frac{d y}{d x}$ if $y=\sqrt{x}-\frac{1}{2 x^{2}}$
b $\quad D_{x}\left[\frac{2 x^{2}-x-15}{x-3}\right]$
3 Determine the equation of the tangent to the curve $f(x)=-2 x^{3}+3 x^{2}+32 x+15$ at the point $x=-2$.

4 Sketch the graph with the following properties showing all the key points on the graph:
$f^{\prime}(x)<0$ when $1<x<5$
$f^{\prime}(x)>0$ when $x<1$ and $x>5$
$f^{\prime}(5)=0$ and $f^{\prime}(1)=0$
$f(0)=-6$ and $f(3)=0$
$f^{\prime \prime}(3)=0$
(2;9) is a turning point of the graph $f(x)=a x^{3}+5 x^{2}+4 x+b$. Determine the values of a and b in the equation of f.

6
The diagram below represents the graph of $y=f^{\prime}(x)$, the derivative of f.
a Write down the x-values of the turning point of f.
b Write down the x-value of the point of inflection of f.
c \quad For which values of x will $f(x)$ decrease

The graph of $f(x)=x^{3}+a x^{2}+b x+c$ is drawn. The curve has turning points at B and $(1 ; 0)$. The points $(-1 ; 0)$ and $(1 ; 0)$ are x-intercepts.
a Show that $a=-1 ; b=-1$ and $c=1$.
b
Determine the coordinates of B.

8 The distance covered in metres by an object is given as $s(t)=t^{3}-2 t^{2}+3 t+5$. Determine:
a an expression for the speed of the object at any time t.
b the time at which the speed of the object is at a minimum.
c the time at which the acceleration of the object will be $8 \mathrm{~m} . \mathrm{s}^{-2}$.

9 The sketch below shows a rectangular box with base ABCD.
$\mathrm{AB}=2 x$ metres and $\mathrm{BC}=x$ metres. The volume of the box is 24 cubic metres. Material to cover the top (PQRS) of the box costs 25 per square metre. Material to cover the base $A B C D$ and the four sides costs R2o per square metre.

a Show that the height (h) of the box is given by $h=12 x^{-2}$.
b Show that the total cost (C) in rand is given by: $C(x)=90 x^{2}+1440 x^{-1}$.
c Determine the value of x for which the cost will be a minimum.

Overview

Chapter 9 Page 202	Unit 1 Page 204	
	Equation of a circle with centre at the origin	- Finding the equation of a circle - Symmetrical points on a circle
	Unit 2 Page 208	
Analytical geometry	Equation of a circle centred off the origin	- Finding the equation of a circle with any given centre - General form
	Unit 3 Page 214	
	The equation of the tangent to the circle	- Lines on circles - Equation of a tangent

REMEMBER YOUR STUDY APPROACH SHOULD BE:

1 Work through all examples in this chapter of your Learner's Book.
2 Work through the notes in this chapter of the study guide.
3 Do the exercises at the end of the chapter in the text book.
4 Do the mixed exercises at the end of this chapter in the study guide.

REVISION OF CONCEPTS FROM PREVIOUS GRADES	
CONCEPT	FORMULA / METHOD
Distance between two points $A\left(x_{1} ; y_{1}\right)$ and $B\left(x_{2} ; y_{2}\right)$	$d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
Coordinates of midpoint	$\left(\frac{x_{1}+x_{2}}{2} ; \frac{y_{1}+y_{2}}{2}\right)$
Average gradient between two points $A\left(x_{1} ; y_{1}\right)$ and $B\left(x_{2} ; y_{2}\right)$ Gradient of straight line through A and B	$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ Or when given the angle of inclination, θ, use $m=\tan \theta$
Equation of a straight line	Or $\begin{gathered} y=m x+c \\ y-y_{1}=m\left(x-x_{1}\right) \end{gathered}$
Angle of inclination, θ NB: Angle between line and POSITIVE x-axis	$m=\tan \theta$ If $m>0(+)$, then θ is an acute angle (smaller than 909 If $m<0(-)$, then θ is an obtuse angle (bigger than 90° but)
To prove that points A, B and C are collinear (i.e. arranged in a straight line)	Prove that $m_{A B}=m_{B C}$ Or $m_{A B}=m_{A C}$ Or $m_{A C}=m_{B C}$
Parallel lines	Two lines $y=m_{1} x+c_{1}$ and $y=m_{2} x+c_{2}$ are parallel if $m_{1}=m_{2}$
Perpendicular lines	Two lines $y=m_{1} x+c_{1}$ and $y=m_{2} x+c_{2}$ are perpendicular if $m_{1} \times m_{2}=-1$

OTHER DEFINITIONS/CONCEPTS YOU HAVE TO KNOW	
DEFINITION	EXAMPLES
Altitude of a triangle = line from one vertex perpendicular to opposite side	To determine the equation of altitude AK: - Determine gradient of BC - Determine gradient of AK - Determine equation of AK (substitute A) $m_{B C}=\frac{-2-4}{3-(-3)}=-1$ But $\mathrm{BC} \perp \mathrm{AK}$, so $m_{A K}=1$ Substitute point A(1;4): $y-4=-1(x-1)$ Equation of AK: $y=-x+5$
Median = line joining vertex of triangle to midpoint of opposite side	To determine the equation of median KA: - Determine coordinates of midpoint A - Determine gradient of KA - Determine equation of KA $\begin{gathered} A\left(\frac{-4+4}{2} ; \frac{-4+2}{2}\right) \\ A(0 ;-1) \\ m_{K A}=\frac{6-(-1)}{1-0}=7 \\ y-6=7(x-1) \\ y=7 x-1 \end{gathered}$

Perpendicular bisector $=$ the line through the midpoint of a line and perpendicular to that line	To determine equation of perpendicular bisector of $B C$: - Determine gradient of $B C$ - Determine gradient of bisector - Determine equation of bisector $m_{B C}=\frac{6-4}{4-(-2)}=\frac{1}{3}$ Product of gradients must be -1 : $\begin{gathered} m_{\text {perp bisector }}=-3 \\ y-6=-3(x-4) \\ y=-3 x+18 \end{gathered}$

Chapter 9 Analytical geometry

THE CIRCLE : $(x-a)^{2}+(y-b)^{2}=r^{2}$

(centre-radius form)

SUMMARY ON CIRCLES	
Equation of circle with radius r and centre at the origin	$x^{2}+y^{2}=r^{2}$
Equation of circle with radius r and centre $(a ; b)$	$(x-a)^{2}+(y-b)^{2}=r^{2}$
To determine radius and centre of circle when given equation	Example A: Determine the radius and centre of the circle with equation $(x+1)^{2}+(y-3)^{2}=16$ $(x+1)^{2}+(y-3)^{2}=16 \text { can be written as }$ $(x-(-1))^{2}+(y-(3))^{2}=16$ Centre: $(-1 ; 3)$ $\text { Radius }=\sqrt{16}=4$ Example B: Determine the radius and centre of the circle with equation $x^{2}+y^{2}+4 x+6 y-10=0$ We are going to use COMPLETION OF THE SQUARE - Constant term to RHS; group x - and y-terms $x^{2}+4 x+\cdots+y^{2}+6 y+\cdots=10$ - Complete square for x and y - add $\left(\frac{1}{2} \times \text { coefficient }\right)^{2}$ $x^{2}+4 x+4+y^{2}+6 y+9=10+4+9$ - Write in centre-radius form $(x+2)^{2}+(y+3)^{2}=23$

Equation of tangent to circle at given point

NB: Radius is PERPENDICULAR to tangent

Determine the equation of the tangent to the circle $(x+1)^{2}+(y-3)^{2}=16$ through the point $(2 ; 5)$. The steps are:

- Determine centre of circle
- Determine gradient of RADIUS
- Determine gradient of TANGENT:

Remember: $\boldsymbol{m}_{\text {rad }} \times \boldsymbol{m}_{\boldsymbol{t a n}}=\mathbf{- 1}$

- Determine equation of tangent by substituting point of tangency

The centre of circle $(x+1)^{2}+(y-3)^{2}=16$ is $(-2 ; 3)$. Radius joins centre $(-1 ; 3)$ with point of tangency (2; 5).

$$
\begin{gathered}
\qquad m_{r a d}=\frac{5-3}{2-(-2)}=\frac{2}{4}=\frac{1}{2} \\
\therefore m_{\text {tangent }}=-2 \\
\text { Equation of tangent: } y-5=-2(x-2) \\
y=-2 x+9
\end{gathered}
$$

Mixed Exercise on Analytical Geometry

1
$\mathrm{A}(-2 ; 1), \mathrm{B}(p ;-4), \mathrm{C}(5 ; 0)$ and $\mathrm{D}(3 ; 2)$ are the vertices of trapezium ABCD in a Cartesian plane with $A B \| C D$.
a Show that $p=3$.
b Calculate $A B: C D$ in simplest form.
c If $\mathrm{N}(x ; y)$ is on AB and NBCD is a parallelogram, determine the coordinates of N .
d Determine the equation of the line passing through B and D.
e What is the angle of inclination of line BD?
$f \quad$ Calculate the area of parallelogram NBCD.
$g \quad R(-1 ; q), A$ and C are collinear. Calculate the value of q.
$x^{2}+4 x+y^{2}+2 y-8=0$ is the equation of a circle with centre M in a Cartesian plane.
a Prove that the circle passes through the point $\mathrm{N}(1 ;-3)$
b Determine the equation of PN, the tangent to the circle at N .
c Calculate θ, the angle of inclination of the tangent, rounded off to one decimal place.
d Determine the coordinates of the point where the tangent in 2 b intersects the x-axis.
e Calculate the coordinates of the point(s) where the circle with centre M cuts the y-axis.
a Calculate the gradient of RO.
b Calculate the gradient of PS.
c Determine the equation of PS.
d Calculate the inclination of PS rounded of to one decimal digit.
e If the coordinates of N are $\left(2 n ; 3 \frac{3}{5}+n\right)$, determine the value of n.

f Calculate the coordinates of S.

4 The equation of a circle is $x^{2}+y^{2}+4 x-2 y-4=0$.
a Determine the coordinates of M, the centre of the circle, as well as the length of the radius.
b Calculate the value of p if $N(p ; 1)$ with $p>0$, is a point on the circle.
c Write down the equation of the tangent to the circle at N .
$\mathrm{A}(-3 ; 3), \mathrm{B}(2 ; 3), \mathrm{C}(6 ;-1)$ and $\mathrm{D}(x ; y)$ are the vertices of quadrilateral ABCD in a Cartesian plane.
a Determine the equation AD.
b Prove that the coordinates of D are $\left(\frac{3}{2} ;-\frac{3}{2}\right)$ if D is equidistant from B and C.
c Determine the equation of $B D$.
d Determine the size of θ, the angle between BD and $B C$, rounded off to one decimal digit.

e Calculate the area of $\triangle B D C$ rounded off to the nearest square unit.

6 In the diagram, points $\mathrm{A}(2 ; 3), \mathrm{B}(p ; 0)$ and $\mathrm{C}(5 ;-3)$ are the vertices of $\triangle A B C$ in a Cartesian plane. AC cuts the x-axis at D .
a Calculate the coordinates of D.
b Calculate the value of p if $\mathrm{BC}=\mathrm{AC}$ and $p<0$.
c Determine the angle of inclination of straight line AC, rounded off to one decimal place.
d If $p=-1$, calculate the size of \hat{A}, rounded
 off to one decimal digit.

7 In the Cartesian plane the equation of a circle with centre M is given by:

$$
x^{2}+y^{2}+6 y-7=0
$$

Determine, by calculation, whether the straight line $y=x+1$ is a tangent to the circle, or not.
$8 \quad$ In the diagram, centre C of the circle lies on the straight line $3 x+4 y+7=0$.
The straight line cuts the circle at D and $\mathrm{E}(-1 ;-1)$. The circle touches the y -axis at $P(0 ; 2)$.
a Determine the equation of the circle in the form: $(x-n)^{2}+(y-q)^{2}=r^{2}$
b Determine the length of diameter DE.
c Determine the equation of the perpendicular bisector of PE.
d Show that the perpendicular bisector of PE and straight line DE intersect at C.

9 In the diagram, $\mathrm{P}, \mathrm{R}(4 ;-4), \mathrm{S}$ and $\mathrm{T}(0 ; 4)$ are the vertices of a rectangle.
P and S lie on the x-axis. The diagonals intersect at W.
a Show that the coordinates of S are $(2+2 \sqrt{5} ; 0)$.
b Determine the gradient of TS rounded off to two decimals.
c Calculate $R \widehat{T} S$ rounded off to two decimals.

Show that the equation of the tangent to the circle $x^{2}+y^{2}-4 x+6 y+3=0$ at the point $(5 ;-2)$ is $y=-3 x+13$
b If $\mathrm{T}(x ; y)$ is a point on the tangent in 10.a, such that its distance from the centre of the circle is $\sqrt{20}$ units, determine the values of x and y.

Overview

Chapter1o Page 236 Euclidean geometry	Unit 1 Page 244	
	Proportionality in triangles	- Ratio - Theorem 1
	Unit 2 Page 250	
	Similarity in triangles	- Theorem 2 - Theorem 3
	Unit 3 Page 256	
	Theorem of Pythagoras	- Prove of Theorem of Pythagoras

REMEMBER YOUR STUDY APPROACH SHOULD BE:

1 Work through all examples in this chapter of your Learner's Book.
2 Work through the notes in this chapter of the study guide.
3 Do the exercises at the end of the chapter in the Learner's Book.
4 Do the mixed exercises at the end of this chapter in the study guide.

REVISION OF COMMETRY
 FROM PREVIOUS YEARS

CONGRUENCY	
SSS	
AAS	
SAS (included angle)	
RHS	

SIMILARITY	
AAA	
SSS	

PROPERTIES OF SPECIAL QUADRILATERALS

PARALLELOGRAM

- Both pairs of opposite sides are parallel
- Both pairs of opposite side are equal
- Both pairs of opposite angles are equal
- Diagonals bisect each other

RECTANGLE

All properties of parallelogram
Plus:

- Both diagonals are equal in length
- All interior angles are equal to 90°

RHOMBUS

All properties of parallelogram Plus:

- All sides are equal
- Diagonals bisect each other perpendicularly
- Diagonals bisect interior angles

SQUARE

All properties of a rhombus
Plus:

- All interior angles are 90°
- Diagonals are equal in length

KITE

- Two pairs of adjacent sides are equal
- Diagonal between equal sides bisects other diagonal
- One pair of opposite angles are equal (unequal sides)
- Diagonal between equal sides bisects interior angles (is axis of symmetry)
- Diagonals intersect perpendicularly

TRAPEZIUM

- One pair of opposite sides are parallel

HOW TO PROVE THAT A QUADRILATERAL IS A PARALLELOGRAM

Prove any ONE of the following (most often by congruency):

- Prove that both pairs of opposite sides are parallel
- Prove that both pairs of opposite sides are equal
- Prove that both pairs of opposite angles are equal
- Prove that the diagonals bisect each other

HOW TO PROVE THAT A PARALLLELOGRAM IS A RHOMBUS

Prove ONE of the following:

- Prove that the diagonals bisect each other

perpendicularly

- Prove that any two adjacent sides are equal in length

MIDPOINT THEOREM

The line segment joining the midpoints of two sides of a triangle, is parallel to the $3^{\text {rd }}$ side of the triangle and half the length of that side.

If $A D=D B$ and $A E=E C$, then $D E \| B C$ and $D E=\frac{1}{2} B C$

CONVERSE OF MIDPOINT THEOREM

If a line is drawn from the midpoint of one side of a triangle parallel to another side, that line will bisect the $3^{\text {rd }}$ side and will be half the length of the side it is parallel to.

If $A D=D B$ and $D E \| B C$, then $A E=E C$ and $D E=\frac{1}{2} B C$.

REVISION OF CIRCLE GEOMETRY (FROM GRADE 11)

Theorem 1

If $\mathrm{AC}=\mathrm{CB}$ in circle O , then $\mathrm{OC} \perp \mathrm{AB}$.

Converse of Theorem 1

If $O C \perp$ chord $A B$, then $A C=B C$.

Theorem 2

The angle at the centre of a circle subtended by an arc/a chord is double the angle at the circumference subtended by the same arc/chord. $\quad \mathrm{AO} B=2 \times \mathrm{AC} \mathrm{B}$

Theorem 3

The angle on the circumference subtended by the diameter, is a right angle. dThe angle in a semi-circle is 909 .

Theorem 4

The angles on the circumference of a circle, subtended by the same arc or chord, are equal.

Converse of Theorem 4

If a line segment subtends equal angles at two other points, then these four points lie on the circumference of a circle ${ }_{C}$

Euclidean geometry

Corollaries of Theorem 4
Equal chords subtend equal angles at the circumference of the circle.

Equal chords subtend equal angles at the centre of the circle.

Equal chords of equal circles subtend equal angles at the circumference.

Theorem 5

The opposite angles of a cyclic quadrilateral are supplementary.
$\hat{A}+\hat{C}=180^{\circ}$
$\widehat{B}+\widehat{D}=180^{\circ}$

Converse of Theorem 5

If the opposite angles of a quadrilateral are supplementary, then it is a cyclic quadrilateral.

Theorem 6

The exterior angle of a cyclic quadrilateral is equal to the opposite interior angle.

Theorem 7

The tangent to a circle is perpendicular to the radius at the point of tangency.

Converse of Theorem 7

If a line is drawn perpendicularly to the radius through the point where the radius meets the circle, then this line is a tangent to the circle.

Theorem 8
If two tangents are drawn from the same point outside a circle, then they are equal in length.

Theorem 9 (Tan chord theorem)

The angle between the tangent to a circle and a chord drawn from the point of tangency, is equal to the angle in the opposite circle segment.

> Acute angle

Obtuse angle

Converse of Theorem 9
If a line is drawn through the endpoint of a chord to form an angle which is equal to the angle in the opposite segment, then this line is a tangent.

THREE WAYS TO PROVE THAT A QUADRILATERAL
 IS A CYCLIC QUADRILATERAL

Prove that:

- one pair of opposite angles are supplementary
- the exterior angle is equal to the opposite interior angle
- two angles subtended by a line segment at two other vertices of the quadrilateral, are equal.

Example 1

In the diagram alongside 0 is the centre of circle DABMC.
$B C$ and DM are diameters.
$A C$ and $D M$ intersect at T.
OT =3DT
AB $\| \mathrm{DM}$
a Prove that T is the midpoint of AC .
b Determine the length of $M C$ in terms of $D T$.
c Express \widehat{D} in terms of \widehat{O}_{2}.

Solution:
a $\quad \begin{array}{rll}\hat{A}_{1} & =90^{\circ} & \angle \text { in semi } \odot \\ & \hat{T}_{1} & =90^{\circ}\end{array} \quad$ int. \angle s suppl

REVISING THE CONCEPT OF PROPORTIONALITY

$A B: B C=6: 4=3: 2$
$D E: E F=9: 6=3: 2$

Although, $A B: B C=D E: E F$ it does NOT mean that $A B=D E, A C=D F$ or $B C=E F$.

GRADE 12 GEOMETRY

Theorem 1

A line drawn parallel to one side of a triangle that intersects the other two sides, will divide the other two sides proportionally.

If $D E \| B C$ then $\frac{A D}{D B}=\frac{A E}{E C}$
or $A D: D B=A E: E C$

Converse of Theorem 1

If a line divides two sides of a triangle proportionally, then the line is parallel to the third side of the triangle.

If $\frac{A D}{D B}=\frac{A E}{E C}$ then $D E \| B C$.

Euclidean geometry

Theorem 2 (Midpoint Theorem)

(Special case of Theorem 1)
The line segment joining the midpoints of two sides of a triangle, is parallel to the $3^{\text {rd }}$ side of the triangle and half the length of that side.

Converse of Theorem 2

If a line is drawn from the midpoint of one side of a triangle parallel to another side, that line will bisect the $3^{\text {rd }}$ side and will be half the length of the side it is parallel to.
If $A D=D B$ and $A E=E C$, then $D E \| B C$ and $D E=\frac{1}{2} B C$. If $A D=D B$ and $D E \| B C$, then $A E=E C$ and $D E=\frac{1}{2} B C$.

Theorem 3

The corresponding sides of two equiangular proportional, triangles are proportional.

If $\triangle A B C\left|\left|\mid \triangle D E F\right.\right.$ then $\frac{A B}{D E}=\frac{B C}{E F}=\frac{A C}{D F}$

Converse of Theorem 3

If the sides of two triangles are then the triangles are equiangular.

If $\frac{A B}{D E}=\frac{B C}{E F}=\frac{A C}{D F}$ then $\triangle A B C \| \Delta D E F$

Theorem 4

The perpendicular drawn from the vertex of the right angle of a right-angled triangle, divides the triangle in two triangles which are similar to each other and similar to the original triangle.

Corollaries of Theorem 4

$\triangle A B C \| \mid \triangle D B A$
$\therefore \frac{A B}{D B}=\frac{B C}{B A}=\frac{A C}{D A}$
$\therefore A B^{2}=B D . B C$
$\triangle A B C \| \mid \triangle D A C$
$\therefore \frac{A B}{D A}=\frac{B C}{A C}=\frac{A C}{D C}$
$\therefore A C^{2}=C D . C B$
$\triangle D B A||\mid \triangle D A C$
$\therefore \frac{D B}{D A}=\frac{B A}{A C}=\frac{D A}{D C}$
$\therefore A D^{2}=B D . D C$

Theorem 5 (The Theorem of Pythagoras)

Using the corollaries of Theorem 4, it can be proven that:

$$
B C^{2}=A B^{2}+A C^{2}
$$

Example

Given: $A D: D B=2: 3$ and $B E=\frac{4}{3} E C$.
Instruction: Determine the ratio of $C P: P D$.
Solution:
In $\triangle A B E \quad \frac{B E}{K E}=\frac{5}{2} \quad \therefore B E=\frac{5}{2} K E$
But it was given that $B E=\frac{4}{3} E C$
$\therefore \frac{4}{3} E C=\frac{5}{2} K E$
$\frac{E C}{K E}=\frac{5}{2} \div \frac{4}{3}=\frac{15}{8}$
$\operatorname{In} \triangle C D K \quad \frac{C P}{P D}=\frac{C E}{E K}=\frac{15}{8}$
$\therefore C P: P D=15: 8$

TIPS TO SOLVE A GEOMETRY PROBLEM

- READ-READ-READ the information next to the diagram thoroughly
- TRANSFER all given information on the DIAGRAM
- Look for KEYWORDS, e.g.

TANGENT: What do the theorems say about tangents?
CYCLIC QUADRILATERAL: What are the properties of a cyclic quad?

- Set yourself "SECONDARY" GOALS, e.g.
- To prove that two sides of triangle are equal (primary goal), first prove that there are two equal angles (secondary goal)
- To prove that a line is a tangent, the secondary goal can be to prove that the line is perpendicular to a radius
- For questions like: Prove that $\hat{A}_{1}=\hat{C}_{2}$. Start with ONE PART. Move to the OTHER PART step-by-step stating reasons.
E.g. $\widehat{A}_{1}=\hat{A}_{2} ; \hat{A}_{2}=\hat{C}_{1} ; \hat{C}_{1}=\widehat{C}_{2} ; \therefore \widehat{A}_{1}=\widehat{C}_{2}$

Mixed Exercise on Euclidian Geometry

1
In the diagram, TBD is a tangent to circles BAPC and BNKM at B.
AKC is a chord of the larger circle and is also a tangent to the smaller circle at K. Chords MN and BK intersect at F. PA is produced to D.
BMC, BNA and BFKP are straight lines.
Prove that:
a $\quad M N \| C A$
b $\quad \triangle K M N$ is isosceles
c $\quad \frac{B K}{K P}=\frac{B M}{M C}$
d DA is a tangent to the circle passing through points A, B and K.

In the diagram below, chord $B A$ and tangent $T C$ of circle $A B C$ are produced to meet at R. $B C$ is produced to P with $R C=R P$. $A P$ is not a tangent.

Prove that:
a $\quad \mathrm{ACPR}$ is a cyclic quadrilateral.
b $\quad \triangle C B A||\mid \triangle R P A$
c $\quad R C=\frac{C B \cdot R A}{A C}$
d $\quad R B . A C=R C . C B$

e \quad Hence prove that $R C^{2}=R A \cdot R B$

In the diagram alongside, circles ACBN and AMBD Intersect at A and B.
$C B$ is a tangent to the larger circle at B. M is the centre of the smaller circle. CAD and BND are straight lines. Let $\hat{A}_{3}=x$
a Determine the size of \widehat{D} in terms of x.
b Prove that:
i $\quad C B \| A N$
ii $A B$ is a tangent to circle ADN.

4 In the diagram below, 0 is the centre of circle $A B C D$.
$D C$ is extended to meet circle BODE at point E .
OE cuts BC at F . Let $\hat{E}_{1}=x$.
a Determine \hat{A} in terms of x.
b Prove that:
i $\quad B E=E C$
ii BE is NOT a tangent to circle $A B C D$.

In the diagram alongside, medians AM and CN
of $\triangle A B C$ intersect at 0 .
$B O$ is produced to meet $A C$ at P.

MP and CN intersect in D.
OR\|MP with R on AC.

a Calculate, giving reasons, the numerical value of $\frac{N D}{N C}$.
b Use $A O: A M=2: 3$, to calculate the numerical value of $\frac{R P}{P C}$.

6 In the diagram, $A D$ is the diameter of circle $A B C D$.
AD is extended to meet tangent NCP in P.
Straight line NB is extended to Q and intersect $A C$
in M with Q on straight line ADP.
$A C \perp N Q$ at M.
a Prove that $N Q \| C D$.
b Prove that ANCQ is a cyclic quadrilateral.
c i Prove that $\triangle P C D\|\| P A C$.
ii \quad Hence, complete: $P C^{2}=\cdots$
d Prove that $B C^{2}=C D \cdot N B$
e If it is further given that $\mathrm{PC}=\mathrm{MC}$, prove that

$$
1-\frac{B M^{2}}{B C^{2}}=\frac{A P . D P}{C D . N B}
$$

Overview

REMEMBER YOUR STUDY APPROACH SHOULD BE:

1 Work through all examples in this chapter of your text book.
2 Work through the notes in this chapter of the study guide.
3 Do the exercises at the end of the chapter in the text book.
4 Do the mixed exercises at the end of this chapter in the study guide.

	UNGROUPED DATA	GROUPED DATA
	Mode = most frequent number	Modal class = interval with highest frequency
	$\text { Mean }=\frac{\text { Sum of the values }}{\text { Number of values }}$	Estimated mean $=\frac{\sum x_{i} \times f_{i}}{\sum f_{i}}$ where $x_{i}=$ midpoint of class i and $f_{i}=$ frequency of class i
	NB: Data has to be arranged in ascending order Q_{2}, Median $=$ Middle value (for an odd number of values) Or $\frac{\text { Sum of two middle values }}{2}$ (for an even number of values)	Median class interval = class/interval in which middle value lies Position of $Q_{2}=\frac{(n+1)}{2}$
	Percentiles (divide data into 100 equal parts) E.g. the position of $P_{30}=\frac{30}{100}(n+1)$	
	Q_{1}, Lower quartile $=$ Middle value of all the values below the median (excluding median)	Position of $Q_{1}=\frac{(n+1)}{4}$
	Q_{3}, Upper quartile $=$ Middle value of all the values above the median (excluding median)	Position of $Q_{3}=\frac{3(n+1)}{4}$
	Range $=$ Maximum - Minimum	
	Inter quartile range (IQR) $=Q_{3}-Q_{1}$	
	Semi Inter quartile range $=\frac{Q_{3}-Q_{1}}{2}$	
	Five point summary (used to draw box-and-whisker diagram): Min, Q_{1}, Median, Q_{3}, Max	

DISTRIBUTION OF DATA		
SYMMETRICAL DISTRIBUTION	ASYMMETRICAL DISTRIBUTIONS	
NORMAL DISTRIBUTION	NEGATIVELY SKEWED	POSITIVELY SKEWED
mean $=$ median $=$ mode	mean - median < 0	mean - median >0

OGIVE

Ogive = cumulative frequency graph

NB: When drawing the ogive:

- plot the (upper class boundary ; cumulative frequency)
- the graph has to be grounded
- the shape of the graph has to be smooth rather than consist of "connected dots"

THE OGIVE CAN BE USED TO DETERMINE THE MEDIAN AND QUARTILES.

MEASURES OF DISPERSION AROUND THE MEAN

VARIANCE
 σ^{2}

Variance, σ^{2}, is an indication of how far each value in the data set is from the mean, \bar{x}.
$\sigma^{2}=\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{n}$ (for population)

STANDARD DEVIATION

Standard deviation (SD), $\sigma: \mathrm{SD}=\sqrt{\text { variance }}$
The larger the standard deviation, the larger the deviation from the mean would be.
A normal distribution is shown below:

USING A TABLE TO CALCULATE VARIANCE AND STANDARD DEVIATION

UNGROUPED DATA

First calculate the mean, \bar{x} then the following columns.

DATA VALUES, x	$(x-\bar{x})$	$(x-\bar{x})^{2}$

Calculate the total of this column, $\sum(x-\bar{x})^{2}$
Variance $=\frac{\sum(x-\bar{x})^{2}}{n}$
Standard variance $=\sqrt{\text { variance }}$

GROUPED DATA

First calculate the estimated mean, $\bar{x}=\frac{\sum f \times m}{\sum f}$

Class Interval	Frequency f	Midpoint m	$f \times m$	$m-\bar{x}$	$(m-\bar{x})^{2}$	$f \times(m-\bar{x})^{2}$

Calculate the total of this column
Variance $=\frac{\sum f(x-\bar{x})^{2}}{n}$
Standard variance $=\sqrt{\text { variance }}$

USING CASIO $f x$-82ZA PLUS CALCULATOR TO CALCULATE STANDARD DEVIATION

MODE
2 : STAT
1:1-VAR
Enter the data points: Push = after each data point
AC
SHIFT STAT (above the 1 button)

To switch on the frequency column
when calculating the SD for a frequency table, first do the following:

Shift Setup; Down arrow (on big REPLAY
button); 3: STAT; 2: ON

4 : VAR
3: $\sigma x n$

To clear screen: MODE 1: COMP

DETERMINING OUTLIERS

Inter quartile range, $\mathrm{IQR}=Q_{3}-Q_{1}$

An outlier is identified if it is:

- Less than $Q_{1}-I Q R \times 1,5$ or
- Larger than $Q_{3}+I Q R \times 1,5$

SCATTER DIAGRAMS (SCATTER PLOTS) FOR BIVARIATE DATA

Scatter diagrams are used to graphically determine whether there is an association between two variables.

By investigation one can determine which of the following curves (regression functions) would best fit the diagram:

Linear (straight line)

Quadratic (parabola)

Exponential function

USING A CALCULATOR TO DETERMINE THE EQUATION OF THE REGRESSION LINE (LEAST SQUARES REGRESSION LINE)

The standard form of a straight line equation is: $\quad y=m x+c$ where m is the gradient and c is the y-intercept.

NB: On the calculator the regression line is determined in the form: $\boldsymbol{y}=\boldsymbol{A}+\boldsymbol{B x}$
(In this form $B=$ the gradient of the line and $A=$ the y-intercept)

On the calculator press:

MODE 2

2: A+Bx
Enter the data points (column X and Y): Push = after each data point
Press AC.
SHIFT STAT
5: REG
1: $\mathrm{A}=\quad$ (to determine the y-intercept of the line)
SHIFT STAT
5: REG
2: $B=\quad$ (to determine the gradient of the line)
SHIFT STAT
5: REG
3: $r=$ (to determine correlation coefficient)

EXAMPLE

x	5	10	15	20	25	30	35	40
y	20	223	25	35	30	40	50	55

Using the calculator, the equation for the line of best fit (or regression line) can be determined giving:

$$
y=1 x+12,25
$$

NB: The line of best fit ALWAYS goes through the point $(\bar{x} ; \bar{y})$. In this case it goes through the point (23;35)

CORRELATION

The strength of the relationship between the two variables represented in a scatter diagram, depends on how close the points lie to the line of best fit. The closer the points lie to this line, the stronger the relationship or correlation.

Correlation (tendency of the graph) can be described in terms of the general distribution of data points, as follows:

Strong negative
Fairly strong negative Perfect negative

CORRELATION COEFFICIENT

The correlation between two variables can also be described in terms of a number, called the correlation coefficient. The correlation coefficient, r, indicates the strength and the direction of the correlation between two variables. This number can be anything between -1 and 1 .

r	Interpretation
$\mathbf{1}$	Perfect positive relationship
$\mathbf{0 , 9}$	Strong positive relationship
$\mathbf{0 , 5}$	Fairly strong positive relationship
$\mathbf{0 , 2}$	Weak positive relationship
$\mathbf{0}$	No relationship
$\mathbf{- 0 , 2}$	Weak negative relationship
$\mathbf{- 0 , 5}$	Fairly weak negative relationship
$\mathbf{- 0 , 9}$	Strong negative relationship
$\mathbf{- 1}$	Perfect negative relationship

Example

Refer to the previous example again.

For the given data set $r=0,958$ which means that there is a strong positive relationship between the two variables.

Mixed Exercise on Statistics

A national soccer team has participated against teams of other countries in a competition for the past 14 years. Their results were as follows:

YEAR	MATCHES PLAYED	WINS	DRAWS	LOSSES	GOALS FOR	GOALS AGAINST
1999	5	3	2	0	11	3
2000	3	1	1	1	2	22
2001	5	3	1	1	10	4
2002	4	2	0	2	8	6
2003	7	2	3	2	5	4
2004	7	6	1	0	14	5
2005	5	2	0	3	8	7
2006	7	5	1	1	15	4
2007	6	1	2	3	9	11
2008	4	2	1	1	4	2
2009	3	1	1	1	2	3
2010	3	1	0	2	5	10
2011	1	0	0	1	2	3
2012	5	4	0	1	18	9

a Determine the quartiles for:
i the matches played
ii the wins
iii the goals scored against the soccer team.
b Draw a box and whisker plot for the goals against the soccer team and comment on the distribution of the data.
c Calculate the mean of the number of matches played.
d Calculated the standard deviation of the number of matches played.

Fifty people were asked what percentage of their December holiday expenses were related to transport costs. The responses were as follows:

PERCENTAGE	FREQUENCY (f)
$10<x \leq 20$	6
$20<x \leq 30$	14
$30<x \leq 40$	16
$40<x \leq 50$	11
$50<x \leq 60$	3

a Draw an ogive to represent the data above.
b Use your ogive to determine the median percentage of the holiday expenses spent on travel expenses.
c Calculate the estimated mean.
d Calculate the standard deviation of the data.

3 An athlete's ability to take and use oxygen is called his VO_{2} max. The following table shows the VO_{2} max and the distance eleven atheletes can run in an hour.

$\mathrm{VO}_{2} \max$	20	55	30	25	40	30	50	40	35	30	50
Distance (km)	8	18	13	10	11	12	16	14	13	9	15

b Determine the equation of the line of best fit.
c Draw the line of best fit on the scatter graph.
d Use your line of best fit to predict the VO_{2} max of an athlete that runs 19 km .
e Determine the correlation coefficient of the data and comment on the correlation.

Five number $4 ; 8 ; 10 ; x$ and y have a mean of 10 and a standard deviation of 4 . Find x and y.

The standard deviation of five numbers is 7,5. Each number is increased by 2 . What will the standard deviation of the new set of numbers be? Explain your answer.

Overview

Chapter 12 Page 280Probability	Unit 1 Page 282	
	Solving probability problems	- Venn diagrams - Tree diagrams - Two-way contingency tables
	Unit 2 Page 288	
	The counting principle	- The fundamental counting principle
	Unit 3 Page 292	
	The counting principle and probability	- Using the counting principle to calculate probability

REMEMBER YOUR STUDY APPROACH SHOULD BE:

1 Work through all examples in this chapter of your Learner's Book.
2 Work through the notes in this chapter of the study guide.
3 Do the exercises at the end of the chapter in the Learner's Book.
4 Do the mixed exercises at the end of this chapter in the study guide.

Probability

SUMMARY OF THEORY ON PROBABILITY		
CONCEPT/DEFINITION	MATHEMATICAL NOTATION/RULE	EXAMPLE
Probability = the chance that an event will occur	P	Values of probability can range from 0 to1 For an event, K , that is certain NOT to happen $P(K)=0$ For an event, K that is CERTAIN to happen $P(K)=1$
Sample Space = the set of all possible outcomes	S	
The number of elements in the sample space	$n(S)$	If $S=\{2 ; 4 ; 6\}$ then $n(S)=3$
General rule for A and B inside the sample space S	$P($ AorB $)=P(A)+P(B)-P($ Aand $B)$	
Intersection	A and B or $A \cap B$	
Union	A or B or $A \cup B$	
Inclusive events have elements in common	$P(A \cap B) \neq 0$	
Mutually exclusive/disjoint events DON'T INTERSECT, i.e. have NO elements in common	$\begin{gathered} P(A \cap B)=0 \\ \therefore P(A o r B)=P(A)+P(B) \end{gathered}$	
Exhaustive events = together they contain ALL elements of S	$\therefore P(A \cap B)=1$	
Complement of $A=$ all elements which are NOT in A	Complement of $A=A$,	
Complementary events = mutually exclusive and exhaustive (everything NOT in A, is in B)	$\begin{gathered} P(\operatorname{not} A)=1-P(A) \\ P\left(A^{\prime}\right)=1-P(A) \\ \text { Or } \\ P\left(A^{\prime}\right)+P(A)=1 \end{gathered}$	S
Independent events = outcome of $1^{\text {st }}$ event DOES NOT influence the outcome of $2^{\text {nd }}$ event	$P(A \cap B)=P(A) \times P(B)$	Tossing a coin and throwing a die
Dependent events $=$ outcome of $1^{\text {st }}$ event DOES influence the outcome of $\mathbf{2}^{\text {nd }}$ event	$P(A \cap B) \neq P(A) \times P(B)$	Choosing a ball from a bag, not replacing it, then choosing a $2^{\text {nd }}$ ball

FACTORIAL NOTATION

The product $5 \times 4 \times 3 \times 2 \times 1$ can be written as 5!
$\therefore n!=n \times(n-1) \times(n-2) \times \ldots \times 3 \times 2 \times 1$

The Fundamental Counting Principle

RULE	EXAMPLE
RULE $\mathbf{1}$ Where there are \boldsymbol{m} ways to do one thing and \boldsymbol{n} ways to do another, then there are $\boldsymbol{m} \times \boldsymbol{n}$ ways to do both	a) You have 3 pants and 4 shirts. That means you have $3 \times 4=12$ different outfits.
RULE $\mathbf{2}$ Where \boldsymbol{n} different things have to be placed in \boldsymbol{n} positions, the number of arrangements is $\boldsymbol{n}!$	b) 5 children have to be seated on 5 chairs in the front row of a class. The number of ways they can be seated is $5!=120$
RULE $\mathbf{3}$ Where \boldsymbol{n} different things have to be placed in \boldsymbol{r} positions, the number of arrangements is $\frac{\boldsymbol{n}!}{(\boldsymbol{n}-\boldsymbol{r})!}$	c) 8 students participated in a 100 \mathbf{m} race. The first three positions can be occupied in $8!$
$(8-3)!$	
$5!$	
$5!$	

LETTER ARRANGEMENTS

When making new words from the letters in a given word, one has to distinguish between:

Treating repeated letters as DIFFERENT letters.

The normal counting principle (Rule 2) applies here.

Treating repeated letters as IDENTICAL.

The following rule applies:
For n letters of which m_{1} are identical, m_{2} are identical, ... and m_{n} are identical, the number of arrangements is given by:

$$
\frac{n!}{m_{1}!\times m_{2}!\times \ldots \times m_{n}!}
$$

Examples:

1 How many different arrangements can be made with the letters of the word MATHEMATICS, if repeated letters are treated as different letters.
The letters are regarded as 11 different letters.
Number of arrangements 11!

2 How many different arrangements can be made with the letters of the word MATHEMATICS, if repeated letters are treated as identical.

The letters are regarded as 11 different letters.
Number of arrangements $=\frac{11!}{2!\times 2!\times 2!}=6652800$ (The M, A and T repeat)

Mixed Exercise on Probability

2 How many different 082-cell phone numbers are possible if the digits may only be integers?
What is the probability that you will draw a queen of diamonds from a pack cards?
How many different arrangements can be made with the letters of the word TSITSIKAMMA, if:
a repeating letters are regarded as different letters
b repeating letters are regarded as identical.
Four different English books, three different German books and two different Afrikaans books are randomly arranged on a shelf.

Calculate the number of arrangements if:
a the English books have to be kept together
b all books of the same language have to be kept together
c the order of the books does not matter.
In how many different ways can a chairman and a vice-chairman be chosen from a committee of 12 people?
The letters of the word MATHEMATICS have to be rearranged. Calculate the probability that the "word" formed will not start and end with the same letter.

8 In how many different ways can the letters of the word MATHEMATICS rearranged so that
a the H and the E stay together.
b the E keep its position.

Answers to Mixed Exercises

Chapter 1: Number patterns, sequences and series

1 a
a $\quad T_{n}=a+(n-1) d$
$a=5 ; d=4$
$T_{n}=5+(n-1) 4=4 n+1$
b $\quad 217=4 n+1$
$4 n=216$
$\therefore n=54$

2 a
a $\quad \begin{aligned} & 9=a r^{4} \\ & 729=a r^{8}\end{aligned}$
$\frac{729}{9}=\frac{a r^{8}}{a r^{4}}$
$r^{4}=81$
$r= \pm 3$
b $\quad T_{10}=r \times T_{9}$
$T_{10}= \pm 2187$

3 a
a $\quad T_{2}-T_{1}=T_{3}-T_{2}$
$(5 x-(2 x-4))=((7 x-4)-5 x)$
$5 x-2 x-7 x+5 x=-4-4$
$x=-8$
b $-20 ;-40 ;-60$
$4 \quad$ a $\quad T_{n}=a n^{2}+b n+c$
$a=\frac{3}{2}$
$b=5-3\left(\frac{3}{2}\right)=\frac{1}{2}$
$c=2-\frac{3}{2}-\frac{1}{2}=0$
$T_{n}=\left(\frac{3}{2}\right) n^{2}+\left(\frac{1}{2}\right) n \quad$ Note: alternative methods can be used
b $\quad 260=\left(\frac{3}{2}\right) n^{2}+\left(\frac{1}{2}\right) n$
$3 n^{2}+n-520=0$
$(3 n+40)(n-13)=0$
$n=13$
13 th term is equal to 260 .

Answers to Mixed Exercises

$5 \quad T_{n}=a+(n-1) d$
$a=17 ; d=-3$
$-2785=17+(n-1)(-3)$
$-2802=(n-1)(-3)$
$934=(n-1)$
$n=935$
The sequence has 935 terms.
$6 \quad$ a $\quad T_{n}=n^{2}$
b $\quad T_{n}=a n^{2}+b n+c$
$a=4 \div 2=2$
$b=8-3(2)=2$
$c=4-2-2=0$
$\therefore T_{n}=2 n^{2}+2 n$
$7 \quad$ a $\quad T_{1}=3 ; T_{2}=-2 ; T_{3}=-7$
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$a=3 ; d=-5$
$S_{30}=\frac{30}{2}[2(3)+(30-1)(-5)]$
$S_{30}=-2085$
b $\quad T_{1}=\frac{1}{2} ; T_{2}=1 ; T_{3}=2$
$S_{9}=\frac{\frac{1}{2}\left(2^{9}-1\right)}{2-1}$
$S_{9}=255,5$
$8 \quad n=6$
$T_{n}=1+(n-1) 4=4 n-3$
$1+5+9+\cdots+21=\sum_{k=1}^{6} 4 k-3$

9
a $\quad T_{5}=0 ; T_{13}=12$
$0=a+4 d$
$12=a+12 d$
(2)-(1): $\quad 12=8 d$
$d=\frac{3}{2}$
$a=-4\left(\frac{3}{2}\right)=-6$
b $\quad S_{21}=\frac{21}{2}\left[2(-6)+(21-1)\left(\frac{3}{2}\right)\right]$
$S_{21}=189$

Answers to Mixed Exercises

10 a For it to be a converging sequence $-1<r<1$.

$$
\begin{aligned}
& r=\frac{T_{2}}{T_{1}}=\frac{\left(x^{2}-9\right)}{x+3} \\
& r=\frac{(x+3)(x-3)}{x+3} \\
& r=x-3 \\
& \therefore-1<x-3<1 \\
& 2<x<4
\end{aligned}
$$

b $\quad S_{\infty}=\frac{a}{1-r}$

$$
13=\frac{(x+3)}{1-(x-3)}
$$

$$
13=\frac{(x+3)}{(-x+4)}
$$

$$
13(-x+4)=(x+3)
$$

$$
-13 x+52=x+3
$$

$$
-13 x-x=3-52
$$

$$
-14 x=-49
$$

$$
x=\frac{7}{2}
$$

11 For series in numerator:
$99=1+(n-1) 2$
$n=50$ terms
$S_{50}=\frac{50}{2}[2(1)+(50-1) 2]=2500$
For series in denominator:
$299=201+(n-1) 2$
$n=50$ terms
$S_{50}=\frac{50}{2}[2(201)+(50-1) 2]=12500$
Value $=\frac{2500}{12500}=\frac{1}{5}$
$12 \quad T_{9}=S_{9}-S_{8}$
$S_{9}=3(9)^{2}-2(9)=225$
$S_{8}=3(8)^{2}-2(8)=176$
$\therefore T_{9}=225-176=49$

13 a Let $r=$ constant ratio

$$
\begin{aligned}
& 7 r^{3}=189 \\
& r^{3}=27 \\
& r=3 \\
& x=7 \times 3=21 \\
& y=21 \times 3=63
\end{aligned}
$$

Answers to Mixed Exercises

$$
\text { b } \quad 206668=\frac{7\left(3^{n}-1\right)}{3-1}, ~ \begin{array}{ll}
\\
& 206668=\frac{7\left(3^{n}-1\right)}{2} \\
& 413336=7\left(3^{n}-1\right) \\
59048=3^{n}-1 \\
& 3^{n}=59049 \\
3^{n}=3^{10} \\
& \therefore n=10
\end{array}
$$

Chapter 2: Functions

1

$$
\begin{align*}
& 2 x-3 y=17 \tag{1}\\
& 3 x-y=15 \tag{2}
\end{align*}
$$

(2) $\times 3: 9 x-3 y=45$
(1) $-(3):-7 x=-28$

$$
x=4
$$

Substitute into (1):

$$
\begin{aligned}
& \qquad \begin{array}{l}
2(4)-3 y=17 \\
y=-3
\end{array} \\
& \text { Intercept is }(4 ;-3)
\end{aligned}
$$

2 a $\quad y=m x+3$

$$
\text { Substitute }(-3 ; 0)
$$

$$
0=m(-3)+3
$$

$$
m=1
$$

$$
\therefore y=x+3
$$

b $\quad y=m x+1$

$$
\text { Substitute }(2 ;-1) \text { : }
$$

$$
-1=m(2)+1
$$

$$
m=-1
$$

$$
g: y=-x+1
$$

c $\quad x+3=-x+1$
$2 x=-2$
$x=-1$
Substitute $x=-1$:
$y=-1+3=2$
$\therefore P(-1 ; 2)$
d Yes, because the products of their gradients is -1 .
$(-1 \times 1=-1)$

Answers to Mixed Exercises

e $y=-x-2$

3
a \quad Let $y=0$:
$0=x^{2}-2 x-3$
$0=(x-3)(x+1)$
$\therefore x=3$ or $x=-1$
$A(-1 ; 0)$ and $B(3 ; 0)$
Let $x=0$:
$y=(0)^{2}-2(0)-3$
$y=-3$
$\therefore C(0 ;-3)$
$O A=1$ unit
$O B=3$ units
$O C=3$ units
b $\quad x=\frac{-b}{2 a}=\frac{2}{2(1)}=1$
Substitute $x=1$:
$y=(1)^{2}-2(1)-3=-4$
$D(1 ;-4)$
c $\quad c=-3$
$m=\frac{-3-0}{0-3}$
$m=1$
d For the graph to have only one real root it has to move 4 units up.
$y=x^{2}-2 x-3+4=x^{2}-2 x+1$
$\therefore k=1$

4 a Let $y=0$:
$0=-2(x+1)^{2}+8$
$0=-2 x^{2}-4 x+6$
$0=(-2 x+2)(x+3)$
$x=1$ or $x=-3$
$A(-3 ; 0)$ and $B(1 ; 0)$
$A B=4$ units
b $\quad C(-1 ; 8)$
c $\quad x=0, y=6$
$D(0 ; 6) E(-2 ; 6)$
$\therefore D E=2$ units

Answers to Mixed Exercises

5
a

b $\quad x \in R$
c $\quad x \leq-1$

6 a Substitute the point A into the equation $y=\frac{a}{x}$

$$
\begin{array}{ll}
& 2=\frac{a}{-2} \\
& a=-4 \\
\text { b } & B(2 ;-2) \\
\text { c } & y=\frac{-4}{x-1}+2
\end{array}
$$

7
$\begin{aligned} \text { a } \quad & y=-(0)^{2}-2(0)+8=8 \\ & A(0 ; 8)\end{aligned}$
b $\quad 0=-x^{2}-2 x+8$
$0=(-x+2)(x+4)$
$x=2$ or $x=-4$
$B(-4 ; 0)$ and $C(2 ; 0)$
c $\quad D(-1 ; 0)$
$C D=3$ units
d $\quad x=-1$
$y=-(-1)^{2}-2(-1)+8$
$y=-1+2+8=9$
$E(-1 ; 9)$
$D E=9$ units
e $\quad A(0 ; 8)$
$F(-2 ; 8)$
$A F=2$ units
f $\quad-x^{2}-2 x+8=\frac{1}{2} x-1$
$-2 x^{2}-4 x+16=x-2$
$-2 x^{2}-5 x+18=0$
$(2 x+9)(-x+2)=0$
$x=\frac{-9}{2}$ or $x=2$
$x=\frac{-9}{2}$ at H

Answers to Mixed Exercises

Substitute $x=\frac{-9}{2}$ into the equation $y=\frac{1}{2} x-1$
$y=\frac{1}{2}\left(\frac{-9}{2}\right)-1$
$y=-\frac{13}{4}$
$\therefore G\left(\frac{-9}{2} ; \frac{-13}{4}\right)$
$G H=3,25$ units
g

$$
\begin{aligned}
f(x)-g(x) & =-x^{2}-2 x+8-\left[\frac{1}{2} x-1\right] \\
& =-x^{2}-\frac{5}{2} x+9
\end{aligned}
$$

Minimum at turning point:
$x=\frac{\frac{5}{2}}{-2}=-\frac{5}{4}$
h $\quad R S_{\max }=-\left(-\frac{5}{4}\right)^{2}-\frac{5}{2}\left(\frac{-5}{4}\right)+9=\frac{169}{16}$
i $\quad f(x)-g(x)>0 \quad \therefore f(x)>g(x)$
$-\frac{9}{2}<x<2$

8
$\begin{array}{rl}\mathrm{a} & y=-4 \\ \mathrm{~b} \quad & y=b^{x}+c \\ c & =-4 \\ & y=b^{x}-4\end{array}$
Substitute the point $(2 ; 5)$ into the equation:
$5=b^{2}-4$
$b^{2}=9$
$b=3$
$y=3^{x}-4$
c $\quad y=-1 ; x=-2$
d $\quad y=\frac{a}{x+2}-1$
Substitute the point $A(0 ;-3)$:
$-3=\frac{a}{0+2}-1$
$-3=\frac{a}{2}-1$
$\frac{a}{2}=-2$
$a=-4$
$y=\frac{-4}{x+2}-1$
e \quad Substitute ($-2 ;-1$) into $y=x+k_{1}$ and $y=-x+k_{2}$

$$
\begin{array}{ll}
-1=-2+k_{1} & -1=2+k_{2} \\
k_{1}=1 & k_{2}=-3 \\
y=x+1 & y=-x-3
\end{array}
$$

f $\quad x>-2 ; x \neq 0$

Answers to Mixed Exercises

$9 \quad$ a $\quad y=2 x^{2}$

$$
x=2 y^{2}
$$

$$
y^{2}=\frac{x}{2}
$$

$$
y= \pm \sqrt{\frac{x}{2}}
$$

b $\quad x \leq 0$ or $x \geq 0$

10
a $\quad y=a^{x}$
Substitute point A :

$$
\begin{aligned}
& 3=a^{-1} \\
& a=\frac{1}{3} \\
& y=\left(\frac{1}{3}\right)^{x}
\end{aligned}
$$

c

b $\quad f^{-1}: y=\log _{\left(\frac{1}{3}\right)} x$
d $\quad x>0$
$11 x$-intercept: $(3 ; 0)$
y-intercept: $(0 ;-2)$

Chapter 3: Logarithms

1 a $\quad x=3^{2}=9$
b $\quad x=\left(\frac{1}{3}\right)^{2}=\frac{1}{9}$
c $\quad \log _{4} x=-2$
$x=(4)^{-2}=\frac{1}{(4)^{2}}=\frac{1}{16}$
$\mathrm{d} \quad x=(5)^{-2}=\frac{1}{(5)^{2}}=\frac{1}{25}$
e $\quad x^{3}=10^{6}$
$x=10^{2}$
$x=100$
f $\quad 81=3^{x}$
$3^{x}=3^{4}$
$x=4$
g $\quad \frac{1}{9}=3^{x}$
$3^{x}=3^{-2}$
$x=-2$

2 a
Substitute $\left(2 ; \frac{9}{4}\right): \quad \frac{9}{4}=a^{2}$
$a=\frac{3}{2}$
b $\quad f^{-1}: y=\log _{\left(\frac{3}{2}\right)} x$
c $\quad g(x)=\left(\frac{3}{2}\right)^{-x}$
d $\quad h(x)=-\log _{\left(\frac{3}{2}\right)} x$

3
a i) $g(x)=-\log _{2} x$
ii) $p(x)=\log _{2}(-x)$
iii) $q(x)=-\log _{2}(-x)$
iv) $f^{-1}: y=2^{x}$
v) $g^{-1}: y=2^{-x}$
vi) $h(x)=\log _{2}(x+2)$
c For f^{-1} and g^{-1} :
Domain $x \in R$;

Range $y>0$
$4 \quad$ a $\quad y$-coordinate $=0$
$0=\log _{b} x$
$x=b^{0}=1$
$A(1 ; 0)$
b Because graph is increasing as x increases.
c Substitute $B: \frac{3}{2}=\log _{b} 8$
$8=b^{\frac{3}{2}}$
$(8)^{\frac{2}{3}}=\left(b^{\frac{3}{2}}\right)^{\frac{2}{3}}$
$b=(8)^{\frac{2}{3}}=\left(2^{3}\right)^{\frac{2}{3}}=2^{2}=4$
d
$g(x)=4^{x}$
e Substitute $y=-2:-2=\log _{4} x$
$x=4^{-2}=\frac{1}{16}$

Answers to Mixed Exercises

Chapter 4: Finance, growth and decay

$1 \quad$ a $\quad A=P(1+i . n)$
$A=15000(1+(0,106)(5))$
$A=R 22950$
b
$A=P(1+i)^{n}$
$A=15000(1+(0,024))^{20}$
$A=R 24104,07$
It is better to invest it at 9.6% p.a , interest compounded quarterly.

2 a Nominal interest rate
b $\quad A=P(1+i)^{n}$
$95000=P\left(1+\frac{0,085}{12}\right)^{60}$
$P=\frac{95000}{\left(1+\frac{0.085}{12}\right)^{60}}$
$P=R 62$ 202,48
c $\quad R 95000-R 62202,48=R 32797,52$

3 a $A=P(1+i)^{n}$
$A=8000(1+0.06)^{2}$
$A=R 8988,80$
b $\quad F=\frac{x\left[(1+i)^{n}-1\right]}{i}[1+i]$
$F=\frac{2000\left[\left(\frac{0.07}{2}\right)^{4}-1\right]}{0.035}\left[1+\frac{0,07}{2}\right]$
$F=R 8724,93$
She will NOT have enough money to buy the TV in two years.
$4 \quad$ a $\quad 1+i_{e f f}=\left(1+\frac{i_{\text {nom }}}{m}\right)^{m}$
$1+i_{\text {eff }}=\left(1+\frac{0.0785}{12}\right)^{12}$
$i_{\text {eff }}=0.08138 \ldots$
Eff.rate $=8.14 \%$

Answers to Mixed Exercises

$$
\begin{array}{ll}
\mathrm{b} \quad & 1+i_{e f}=\left(1+\frac{i_{n o m}}{m}\right)^{m} \\
& 1+0,0925=\left(1+\frac{i_{n o m}}{4}\right)^{4} \\
& \sqrt[4]{1,0925}=\left(1+\frac{i_{n o m}}{4}\right) \\
& 1.022-1=\frac{i_{n o m}}{4} \\
& i_{\text {nom }}=0.0894 \ldots
\end{array}
$$

$$
\text { Nom. rate }=8,95 \% \text { p.a. compounded quarterly }
$$

5

$$
\begin{aligned}
& A=P(1+i)^{n} \\
& 179200=350000(1-i)^{3} \\
& 0,512=(1-i)^{3} \\
& 1-i=\sqrt[3]{0,512} \\
& i=0.2 \\
& \text { Dep. rate }=20 \%
\end{aligned}
$$

$$
\begin{aligned}
& A=\left[20000\left(1+\frac{0.0975}{4}\right)^{7}+10000\left(1+\frac{0.0975}{4}\right)\right]\left(1+\frac{0.0995}{12}\right)^{15} \\
& A=[23672.43+10243.75](1.13185 \ldots) \\
& A=R 38388,36
\end{aligned}
$$

OR
$A=\left[20000\left(1+\frac{0.0975}{4}\right)^{6}+10000\right]\left(1+\frac{0.0975}{4}\right)\left(1+\frac{0.0995}{12}\right)^{15}$
$A=[23109.142+10000](1.024375)(1.13 \ldots)$
$A=R 38388,36$

7 a

$$
\begin{array}{ll}
\mathrm{a} \quad A & =900000(1-0.15)^{5} \\
& A=R 399334,78 \\
A & =900000(1+0.18)^{5} \\
A & =R 2058981,98 \\
R 2058981,98-R 399334,78=R 1659647,20 \\
\mathrm{~b} \quad & 1659647,20=\frac{x\left[(1+0.02)^{61}-1\right]}{0,02} \\
x & =\frac{0,02 \times 1659647,20}{\left[(1+0,02)^{61}-1\right]} \\
x & =R 14144,81
\end{array}
$$

8

$$
\begin{aligned}
& A=P(1+i . n) \quad 2 \text { yrs }=24 \text { months } \\
& (24 \times 85)=1500(1+i .2) \\
& i=0.18 \\
& \text { rate }=18 \%
\end{aligned}
$$

$9 \quad$ a $\quad P=\frac{x\left[1-(1+i)^{-n}\right]}{i}$

$$
P=\frac{(6500)\left[1-(1+0,01)^{-240}\right]}{0,01}
$$

$$
P=R 590326,21
$$

b $\quad P=\frac{(6500)\left[1-(1+0,01)^{-96}\right]}{0,01}$

$$
P=R 399930,07
$$

$10 \quad F=\frac{1000\left[\left(1+\frac{0.01}{21}\right)^{73}-1\right]}{\frac{0.01}{12}}$
$F=R 99$ 915,81
$A=P(1+i)^{n}$
$A=99915,81\left(1+\frac{0,01}{12}\right)^{5}$
$A=R 104$ 147,21
$11 \quad F=\frac{x\left[(1+i)^{n}-1\right]}{i}$
$48000=\frac{300\left[\left(1+\frac{0,09}{12}\right)^{n}-1\right]}{\frac{0,09}{12}}$
$2,2=(1,0075)^{n}$
$n=\log _{1,0075} 2,2$
$n=106$
8 years and 10 months
$12 \quad A=P(1+i . n)$
$A=13500(1+(0.12)(4))$
$A=R 19980$
Repayment $=R 19980 \div 48=R 416,25$
Including insurance $=R 416,25+R 30=R 446,25$
$13 \quad A=400000(1+0,02)^{4}$
$A=R 432$ 972,86 (amount owing after 1 year)
$P=\frac{x\left[1-(1+i)^{-n}\right]}{i}$
$432972,86=\frac{x\left[1-(1+0,02)^{-16}\right]}{0,02}$
$x=R 31888,51$

Answers to Mixed Exercises

Chapter 5: Compound angles

1
a
$2 \cos 2 x=-1$
$\therefore \cos 2 x=-\frac{1}{2}$
$2 x= \pm 120^{\circ}+k .360^{\circ} ; k \in Z$
$\therefore x= \pm 60^{\circ}+k .180^{\circ} ; k \in Z$
b $\quad \sin x=3 \cos x$
$\frac{\sin x}{\cos x}=3$
$\tan x=3$
$\therefore x=71,47^{\circ}+k .180^{\circ} ; k \in Z$
c $\quad \sin x=\cos 3 x$
$\therefore \cos \left(90^{\circ}-x\right)=\cos 3 x$
$90^{\circ}-x= \pm 3 x+k .360^{\circ}$
$4 x=90^{\circ}+k .360^{\circ} \quad$ or $\quad 2 x=-90^{\circ}+k .360^{\circ}$
$x=22,5^{\circ}+k .90^{\circ} \quad x=-45^{\circ}+k .180^{\circ} ; k \in Z$
d $\quad 6-10 \cos x-3\left(1-\cos ^{3} x\right)=0$
$\therefore 3 \cos ^{3} x-10 \cos x+3=0$
$\therefore(3 \cos x-1)(\cos x-3)=0$
$\therefore \cos x=\frac{1}{3}$ or $\cos x=3$ (no solution)
$\therefore x= \pm 70,53^{\circ}+k .360^{\circ} ; k \in Z$
For $x \in\left[-360^{\circ} ; 360^{\circ}\right] x \in\left\{-289,47^{\circ} ;-70,53^{\circ} ; 289,47^{\circ}\right\}$
e $\quad 2\left(\sin ^{2} x+\cos ^{2} x\right)-\sin x \cos x-3 \cos ^{2} x=0$
$2 \sin ^{2} x-\sin x \cos x-\cos ^{2} x=0$
$(2 \sin x+\cos x)(\sin x-\cos x)=0$
$\tan x=-\frac{1}{2}$ or $\tan x=1$
$x=-26,57^{\circ}+k .180^{\circ}$ or $x=45^{\circ}+k .180^{\circ} ; k \in Z$
f $\quad 3\left(\sin ^{2} x+\cos ^{2} x\right)-8 \sin x+16 \sin x \cos x-6 \cos x=0$
$\therefore 3-6 \cos x-8 \sin x+16 \sin x \cos x=0$
$3(1-2 \cos x)-8 \sin x(1-2 \cos x)=0$
$(1-2 \cos x)(3-8 \sin x)=0$
$\cos x=\frac{1}{2} \quad$ or $\sin x=\frac{3}{8}$
$\therefore x= \pm 60^{\circ}+k \cdot 360^{\circ}$ or $x=22,02^{\circ}+k \cdot 360^{\circ}$ or $x=157,98^{\circ}+k \cdot 360^{\circ} ; k \in Z$

Answers to Mixed Exercises

$$
\begin{aligned}
2 \quad \text { a } \quad & =\cos x+\frac{\sin x}{\cos x} \times \sin x \\
& =\frac{\cos ^{2} x+\sin ^{2} x}{\cos x} \\
& =\frac{1}{\cos x} \\
& =\text { RHS }
\end{aligned}
$$

Not valid for $x=90^{\circ}+k \cdot 180^{\circ} ; k \in Z$
b LHS $=\frac{\sin ^{2} \theta-\cos \theta(1-\cos \theta)}{(1-\cos \theta) \sin \theta}=\frac{\sin ^{2} \theta+\cos ^{2} \theta-\cos \theta}{(1-\cos \theta) \sin \theta}=\frac{1-\cos \theta}{(1-\cos \theta) \sin \theta}=\frac{1}{\sin \theta}$
=RHS

Not valid for $\theta=k \cdot 180^{\circ} ; k \in Z$
c LHS $=\frac{1-\cos ^{2} x}{\cos x}=\frac{\sin ^{2} x}{\cos x}=\frac{\sin x}{\cos x} \cdot \sin x=\tan x \cdot \sin x=$ RHS
Not valid for $x=90^{\circ}+k \cdot 180^{\circ} ; k \in Z$
d LHS $=\frac{\sin x\left(\sin ^{2} x+\cos ^{2} x\right)}{\cos x}=\frac{\sin x}{\cos x}=\tan x=$ RHS
Not valid for $x=90^{\circ}+k \cdot 180^{\circ} ; k \in Z$

$$
\begin{aligned}
\text { LHS } & =\frac{1+\frac{\sin x}{\cos x}}{1-\frac{\sin x}{\cos x}}=\frac{\cos x+\sin x}{\cos x} \times \frac{\cos x}{\cos x-\sin x} \times \frac{\cos x+\sin x}{\cos x+\sin x} \\
& =\frac{\cos ^{2} x+2 \sin x \cos x+\sin ^{2} x}{\cos ^{2} x-\sin ^{2} x}=\frac{1+2 \sin x \cos x}{\cos ^{2} x-\sin ^{2} x}=\text { RHS }
\end{aligned}
$$

Not valid for $x= \pm 45^{\circ}+k \cdot 180^{\circ} ; k \in Z$

Answers to Mixed Exercises

$\mathrm{f} \quad L H S=\sin \left(45^{\circ}+x\right) \cdot \sin \left(45^{\circ}-x\right)$

$$
\begin{aligned}
& =\left(\sin 45^{\circ} \cdot \cos x+\sin x \cdot \cos 45^{\circ}\right) \times\left(\sin 45^{\circ} \cdot \cos x-\sin x \cdot \cos 45^{\circ}\right) \\
& =\left(\frac{\sqrt{2}}{2} \cos x+\frac{\sqrt{2}}{2} \sin x\right)\left(\frac{\sqrt{2}}{2} \cos x-\frac{\sqrt{2}}{2} \sin x\right) \\
& =\left(\frac{\sqrt{2}}{2} \cos x\right)^{2}-\left(\frac{\sqrt{2}}{2} \sin x\right)^{2} \\
& =\frac{1}{2} \cos ^{2} x-\frac{1}{2} \sin ^{2} x \\
& =\frac{1}{2}\left(\cos ^{2} x-\sin ^{2} x\right) \\
& =\frac{1}{2} \cos 2 x \\
& =\text { RHS }
\end{aligned}
$$

g $L H S=\frac{\sin 2 \theta-\cos \theta}{\sin \theta-\cos 2 \theta}$

$$
\begin{aligned}
& =\frac{2 \sin \theta \cdot \cos \theta-\cos \theta}{\sin \theta-\left(1-2 \sin ^{2} \theta\right)} \\
& =\frac{\cos \theta(2 \sin \theta-1)}{2 \sin ^{2} \theta+\sin \theta-1} \\
& =\frac{\cos \theta(2 \sin \theta-1)}{(2 \sin \theta-1)(\sin \theta+1)} \\
& =\frac{\cos \theta}{\sin \theta+1} \\
& =R H S
\end{aligned}
$$

h $\quad L H S=\frac{\cos x-\cos 2 x+2}{3 \sin x-\sin 2 x}$
$=\frac{\cos x-\left(2 \cos ^{2} x-1\right)+2}{3 \sin x-2 \sin x \cdot \cos x}$
$=\frac{-2 \cos ^{2} x+\cos x+3}{3 \sin x-2 \sin x \cdot \cos x}$
$=\frac{(-2 \cos x+3)(\cos x+1)}{\sin x(3-2 \cos x)}$
$=\frac{\cos x+1}{\sin x}$
$=R H S$

Answers to Mixed Exercises

a

$$
\frac{\sin \left(180^{\circ}-x\right) \tan (-x)}{\tan \left(180^{\circ}+x\right) \cos \left(x-90^{\circ}\right)}=\frac{\sin x(-\tan x)}{\tan x(\sin x)}=-1
$$

b

$$
\frac{\sin \left(180^{\circ}+x\right) \tan \left(x-360^{\circ}\right)}{\tan \left(360^{\circ}-x\right)\left(-\cos 60^{\circ}\right)\left(\tan 45^{\circ}\right)}=\frac{\sin x \cdot \tan x}{-\tan x(-0,5)(1)}=2 \sin x
$$

$4 \quad$ a

$$
\cos 73^{\circ}=\cos \left(90^{\circ}-17^{\circ}\right)=\sin 17^{\circ}=k
$$

b

$$
\cos \left(-163^{\circ}\right)=\cos 163^{\circ}=-\cos 17^{\circ}=-\sqrt{1-k^{2}}
$$

c $\quad \tan 197^{\circ}=\tan 17^{\circ}=\frac{k}{\sqrt{1-k^{2}}}$
d

$$
\cos 326^{\circ}=\cos 34^{\circ}=\cos 2\left(17^{\circ}\right)=1-2 \sin ^{2} 17^{\circ}=1-2 k^{2}
$$

5 a $\quad \cos x=-\frac{4}{5}$

$$
\begin{aligned}
5 \sin x+3 \tan x & =5\left(\frac{3}{5}\right)+3\left(\frac{3}{-4}\right) & & \text { or }
\end{aligned} \begin{aligned}
&=5\left(\frac{-3}{5}\right)+3\left(\frac{-3}{-4}\right) \\
&=3-\frac{9}{4}=\frac{3}{4}
\end{aligned}
$$

b $\quad \tan 2 x=\frac{2 \tan x}{1-\tan ^{2} x}$
$\therefore \tan 2 x=\frac{2\left(\frac{3}{-4}\right)}{1-\left(\frac{3}{-4}\right)^{2}}=-\frac{3}{2} \times \frac{16}{6}=-\frac{24}{7}$ or $\tan 2 x=\frac{3}{2} \times \frac{16}{7}=\frac{24}{7}$
a

Answers to Mixed Exercises

$$
\begin{aligned}
& \cos (x-y)=\cos x \cdot \cos y+\sin x \cdot \sin y \\
& \quad=\frac{-2 \sqrt{2}}{3} \times \frac{-4}{5}+\frac{-1}{3} \times \frac{-3}{5} \\
& \quad=\frac{8 \sqrt{2}}{15}+\frac{1}{5} \\
& \quad=\frac{8 \sqrt{2}+3}{15}
\end{aligned}
$$

b

$$
\begin{aligned}
& \cos 2 x-\cos 2 y \\
& =1-2 \sin ^{2} x-\left(1-2 \sin ^{2} y\right) \\
& =2 \sin ^{2} y-2 \sin ^{2} x \\
& =2\left(\frac{-3}{5}\right)^{2}-2\left(\frac{-1}{3}\right)^{2} \\
& =\frac{18}{25}-\frac{2}{9}=\frac{112}{225}
\end{aligned}
$$

7
a $\quad \cos 2\left(22,5^{\circ}\right)=\cos 45^{\circ}=\frac{1}{\sqrt{2}}$
b $\quad \frac{1}{2} \times 2 \sin 22,5^{\circ} \cdot \cos 22,5^{\circ}=\frac{1}{2} \times \sin 2\left(22,5^{\circ}\right)$
$=\frac{1}{2} \sin 45^{\circ}=\frac{\sqrt{2}}{4}$
c $\quad \sin 2\left(15^{\circ}\right)=\sin 30^{\circ}=\frac{1}{2}$

Chapter 6: Solving problems in three dimensions
1 a In $\triangle A B E: \tan \alpha=\frac{2 h}{B E} \quad \therefore B E=\frac{2 h}{\tan \alpha}$
b In $\triangle C E D: \tan \left(90^{\circ}-\alpha\right)=\frac{h}{D E} \quad \therefore D E=h \tan \alpha$
In $\triangle B D E$:

$$
\begin{aligned}
& B D^{2}=B E^{2}+E D^{2}-2(B E)(E D) \cdot \cos E \\
& =(2 h \cdot \cot \alpha)^{2}+(h \cdot \tan \alpha)^{2}-2(2 h \cdot \cot \alpha)(h \cdot \tan \alpha) \cos 120^{\circ} \\
& =4 h^{2} \cdot \cot ^{2} \alpha+h^{2} \tan ^{2} \alpha-4 h^{2}(\cot \alpha \cdot \tan \alpha)\left(-\frac{1}{2}\right)
\end{aligned}
$$

Answers to Mixed Exercises

$$
\begin{gathered}
=h^{2}\left(4 \cot ^{2} \alpha+\tan ^{2} \alpha+2\right) \\
=h^{2}\left(\frac{4}{\tan ^{2} \alpha}+\tan ^{2} \alpha+2\right) \\
=\frac{h^{2}\left(\tan ^{4} \alpha+2 \tan ^{2} \alpha+4\right)}{\tan ^{2} \alpha} \\
B D=\frac{h \sqrt{\tan ^{4} \alpha+2 \tan ^{2} \alpha+4}}{\tan \alpha} \\
C \quad h=\frac{B D \tan \alpha}{\sqrt{\tan ^{4} \alpha+2 \tan ^{2} \alpha+4}} \\
\\
\quad=\frac{509 \cdot \tan 42^{\circ}}{\sqrt{\tan ^{4} 42^{\circ}+2 \tan ^{2} 42^{\circ}+4}} \\
C D=182,90 m
\end{gathered}
$$

2 a $C \widehat{D} B=180^{\circ}-\theta-30^{\circ}=150^{\circ}-\theta$
b $\quad \tan \theta=\frac{p}{C B}$
$\therefore p=C B \cdot \tan \theta$

$$
\begin{aligned}
& \frac{C B}{\sin \left(150^{\circ}-\theta\right)}=\frac{8}{\sin \theta} \\
& \begin{aligned}
& C B=\frac{8 \cdot \sin \left(150^{\circ}-\theta\right)}{\sin \theta} \\
&=\frac{8 \cdot \sin \left(180^{\circ}-\left(150^{\circ}-\theta\right)\right)}{\sin \theta} \\
& \quad=\frac{8 \cdot \sin \left(30^{\circ}+\theta\right)}{\sin \theta} \\
& p=\left(\frac{8 \cdot \sin \left(30^{\circ}+\theta\right)}{\sin \theta}\right) \tan \theta=\frac{8 \cdot \sin \left(30^{\circ}+\theta\right)}{\cos \theta}
\end{aligned}
\end{aligned}
$$

$3 \quad A D=13$ (Pythagoras)
$\hat{A}=180^{\circ}-(\alpha+\beta)$
$\therefore \frac{C D}{\sin \left[180^{\circ}-(\alpha+\beta)\right]}=\frac{13}{\sin \alpha}$
$\therefore \frac{C D}{\sin (\alpha+\beta)}=\frac{13}{\sin \alpha}$
$\therefore C D=\frac{13 \sin (\alpha+\beta)}{\sin \alpha}$

Answers to Mixed Exercises

4 a \quad Area $\triangle A D C=\frac{1}{2} m \cdot p \sin \left(180^{\circ}-\theta\right)$
b Area $\triangle B D C=\frac{1}{2} n . p \sin \theta$
Area $\triangle A B C=$ Area $\triangle A D C+$ Area $\triangle B D C$

$$
\begin{aligned}
& =\frac{1}{2} m p \sin \left(180^{\circ}-\theta\right)+\frac{1}{2} n p \sin \theta \\
& =\frac{1}{2} m p \cdot \sin \theta+\frac{1}{2} n p \cdot \sin \theta \\
& =\frac{1}{2} p(m+n) \sin \theta
\end{aligned}
$$

c $\quad 12,6=\frac{1}{2}(8,1)(5,9) \sin \theta$
$\sin \theta=0,527306968 \ldots$
$\theta=31,82^{\circ} \quad$ OR $\quad \theta=180^{\circ}-31,82^{\circ}=148,18^{\circ}$

5 a $\sin \theta=\frac{p}{B C}$
$\therefore B C=\frac{p}{\sin \theta}$
b $\quad \hat{B}_{1}=180^{\circ}-2 \alpha$
C $\quad \frac{A C}{\sin \hat{B}_{1}}=\frac{B C}{\sin A}$
$\frac{A C}{\sin \left(180^{\circ}-2 \alpha\right)}=\frac{\frac{p}{\sin \theta}}{\sin \alpha}$
$A C=\frac{p \sin \left(180^{\circ}-2 \alpha\right)}{\sin \theta \cdot \sin \alpha}=\frac{p \cdot \sin 2 \alpha}{\sin \theta \cdot \sin \alpha}$

6
a

$$
\begin{aligned}
& \hat{R}=180^{\circ}-30^{\circ}-\left(150^{\circ}-\alpha\right)=\alpha \\
& \frac{12}{\sin \hat{R}}=\frac{Q R}{\sin \left(150^{\circ}-\alpha\right)} \\
& \frac{12}{\sin \alpha}=\frac{Q R}{\sin \left(30^{\circ}+\alpha\right)} \\
& Q R=\frac{12 \sin \left(30^{\circ}+\alpha\right)}{\sin \alpha}
\end{aligned}
$$

Answers to Mixed Exercises

$$
\begin{aligned}
& =\frac{12\left(\sin 30^{\circ} \cdot \cos \alpha+\cos 30^{\circ} \cdot \sin \alpha\right)}{\sin \alpha} \\
& =\frac{12\left(\frac{1}{2} \cdot \cos \alpha+\frac{\sqrt{3}}{2} \sin \alpha\right)}{\sin \alpha} \\
& =\frac{6(\cos \alpha+\sqrt{3} \sin \alpha)}{\sin \alpha}
\end{aligned}
$$

b $\quad \hat{P}=180^{\circ}-90^{\circ}-\alpha=90^{\circ}-\alpha$
$\frac{Q R}{\sin \hat{P}}=\frac{P Q}{\sin \alpha}$
$\frac{\frac{6(\cos \alpha+\sqrt{3} \sin \alpha)}{\sin \alpha}}{\sin \left(90^{\circ}-\alpha\right)}=\frac{P Q}{\sin \alpha}$
$P Q \sin \left(90^{\circ}-\alpha\right)=\frac{\sin \alpha .6(\cos \alpha+\sqrt{3} \sin \alpha)}{\sin \alpha}$
$P Q=\frac{6 \cos \alpha}{\cos \alpha}+\frac{6 \sqrt{3} \sin \alpha}{\cos \alpha}$
$P Q=6+6 \sqrt{3} \tan \alpha$
c $\quad 23=6+6 \sqrt{3} \tan \alpha$
$17=6 \sqrt{3} \tan \alpha$
$\tan \alpha=1,64$
$\alpha=58,56^{\circ}$

Chapter 7: Polynomials

1 a $27 x^{3}-8=(3 x-2)\left(9 x^{2}+6 x+4\right)$
b $\quad 5 x^{3}+40=5\left(x^{3}+8\right)=5(x+2)\left(x^{2}-2 x+4\right)$
c $\quad x^{3}+3 x^{2}+2 x+6$
$=x^{2}(x+3)+2(x+3)$
$=(x+3)\left(x^{2}+2\right)$

$$
\begin{array}{ll}
\mathrm{d} & 4 x^{3}-x^{2}-16 x+4 \\
& =x^{2}(4 x-1)-4(4 x-1) \\
& =(4 x-1)\left(x^{2}-4\right) \\
& =(4 x-1)(x-2)(x+2) \\
\mathrm{e} & 4 x^{3}-2 x^{2}+10 x-5 \\
& =2 x^{2}(2 x-1)+5(2 x-1) \\
& =(2 x-1)\left(2 x^{2}+5\right) \\
\mathrm{f} & x^{3}+2 x^{2}+2 x+1 \\
& =\left(x^{3}+1\right)+\left(2 x^{2}+2 x\right) \\
& =(x+1)\left(x^{2}-x+1\right)+2 x(x+1) \\
& =(x+1)\left(x^{2}+x+1\right)
\end{array}
$$

$$
\text { g } \quad x^{3}-x^{2}-22 x+40
$$

$$
=(x-2)\left(x^{2}+x-20\right)
$$

$$
=(x-2)(x+5)(x-4)
$$

$$
\text { h } \quad x^{3}+2 x^{2}-5 x-6
$$

$$
=(x-2)\left(x^{2}+4 x+3\right)
$$

$$
=(x-2)(x+3)(x+1)
$$

$$
\text { i } \quad 3 x^{3}-7 x^{2}+4
$$

$$
=(x-1)\left(3 x^{2}-4 x-4\right)
$$

$$
=(x-1)(3 x+2)(x-2)
$$

$$
\text { j } \quad x^{3}-19 x+30
$$

$$
=(x-2)\left(x^{2}+2 x-15\right)
$$

$$
=(x-2)(x+5)(x-3)
$$

$$
\mathrm{k} \quad x^{3}-x^{2}-x-2
$$

$$
=(x-2)\left(x^{2}+x+1\right)
$$

$$
\begin{aligned}
& 2 \text { a } \quad x\left(x^{2}+2 x-4\right)=0 \\
& x=0 \text { or } x=-1 \pm \sqrt{5} \\
& \text { b } \quad(x-2)\left(x^{2}-x-3\right)=0 \\
& x=2 \text { or } x=\frac{1 \pm \sqrt{3}}{2} \\
& \text { c }\left(2 x^{3}-12 x^{2}\right)-(x-6)=0 \\
& 2 x^{2}(x-6)-(x-6)=0 \\
& (x-6)\left(2 x^{2}-1\right)=0 \\
& x=6 \text { or } x= \pm \sqrt{\frac{1}{2}} \\
& \text { d } \quad\left(2 x^{3}-x^{2}\right)-(8 x-4)=0 \\
& x^{2}(2 x-1)-4(2 x-1)=0 \\
& \left(x^{2}-4\right)(2 x-1)=0 \\
& x=2 \text { or } x=-2 \text { or } x=\frac{1}{2} \\
& \text { e } \quad(x-1)\left(x^{2}+2 x+2\right)=0 \\
& x=1 \\
& \text { f } \quad(x+2)\left(x^{2}-2 x-8\right)=0 \\
& (x+2)(x-4)(x+2)=0 \\
& x=-2 \text { or } x=4 \\
& \text { g } \quad\left(x^{3}-20 x\right)+\left(3 x^{2}-60\right)=0 \\
& x\left(x^{2}-20\right)+3\left(x^{2}-20\right)=0 \\
& \left(x^{2}-20\right)(x+3)=0 \\
& x= \pm 2 \sqrt{5} \text { or } x=-3
\end{aligned}
$$

Answers to Mixed Exercises

3

$$
\begin{aligned}
& f(3)=3^{3}-3^{2}-5(3)-3 \\
& \quad=27-9-15-3=0 \\
& (x-3) \text { is a factor } \\
& (x-3)\left(x^{2}+2 x+1\right)=0 \\
& (x-3)(x+1)^{2}=0 \\
& x=3 \quad \text { or } x=-1
\end{aligned}
$$

$4 \quad g\left(\frac{1}{2}\right)=4\left(\frac{1}{2}\right)^{3}-8\left(\frac{1}{2}\right)^{2}-\frac{1}{2}+2$

$$
=\frac{1}{2}-2-\frac{1}{2}+2=0
$$

$$
(2 x-1)\left(2 x^{2}-3 x-2\right)=0
$$

$$
(2 x-1)(2 x+1)(x-2)=0
$$

$$
x=\frac{1}{2} \quad \text { or } \quad x=-\frac{1}{2} \quad \text { or } x=2
$$

Chapter 8: Differential calculus

$$
1 \quad \begin{aligned}
& \text { a } \quad f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& = \\
& =\lim _{h \rightarrow 0} \frac{1-(x+h)^{2}-\left(1-x^{2}\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{1-\left(x^{2}+2 x h+h^{2}\right)-\left(1-x^{2}\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{-2 x h-h^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{h(-2 x-h)}{h} \\
& =\lim _{h \rightarrow 0}(-2 x-h) \\
& =-2 x
\end{aligned}
$$

Answers to Mixed Exercises

$$
\text { b } \quad \begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{-3(x+h)^{2}-\left(-3 x^{2}\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{-3\left(x^{2}+2 x h+h^{2}\right)-\left(-3 x^{2}\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{-6 x h-3 h^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{h(-6 x-3 h)}{h} \\
& =\lim _{h \rightarrow 0}(-6 x-3 h) \\
& =-6 x
\end{aligned}
$$

2

$$
\begin{array}{ll}
\text { a } & y=\sqrt{x}-\frac{1}{2 x^{2}}=x^{\frac{1}{2}}-\frac{1}{2} x^{-2} \\
& \frac{d y}{d x}=\frac{1}{2} x^{-\frac{1}{2}}-\frac{1}{2} \times-2 x^{-3} \\
& =\frac{1}{2} x^{-\frac{1}{2}}+x^{-3} \\
& =\frac{1}{2 \sqrt{x}}+\frac{1}{x^{3}} \\
\text { b } & D_{x}\left[\frac{2 x^{2}-x-15}{x-3}\right] \\
& =D_{x}\left[\frac{(2 x+5)(x-3)}{x-3}\right] \\
& =D_{x}[2 x+5]=2
\end{array}
$$

3

$$
\begin{aligned}
& f(x)=-2 x^{3}+3 x^{2}+32 x+15 \\
& f(-2)=-2(-2)^{3}+3(-2)^{2}+32(-2)+15=-21 \\
& f^{\prime}(x)=-6 x^{2}+6 x+32 \\
& f^{\prime}(-2)=-6(-2)^{2}+6(-2)+32=-4
\end{aligned}
$$

$$
\text { Sub }(-2 ;-21) \text { into } y=-4 x+c
$$

$$
-21=-4(-2)+c \quad c=-29 \quad y=-4 x-29
$$

Answers to Mixed Exercises

4

$5 \quad(2 ; 9)$ is a point on the graph and a turning point
$\therefore f(2)=9$ and $f^{\prime}(2)=0$
$f^{\prime}(x)=3 a x^{2}+10 x+4$
$0=3 a(2)^{2}+10(2)+4$
$\therefore a=-2$
$9=(-2)(2)^{3}+5(2)^{2}+4(2)+b$
$\therefore b=-3$
$6 \quad$ a Turning point where $f^{\prime}(x)=0 \quad \therefore x=-2$ and $x=5$
b Point of inflections is where $f^{\prime \prime}(x)=0$, therefor where graph of f^{\prime} turns
c $\quad f$ will decrease where its gradient f^{\prime} is negative $\left(f^{\prime}<0\right)$
$-2<x<5$
$7 \quad$ a The graph bounces at $x=1$ and has an x-intercept at $x=-1$
$\therefore f(x)=(x+1)(x-1)^{2}$
$f(x)=(x+1)\left(x^{2}-2 x+1\right)=x^{3}-x^{2}-x+1$
$\therefore a=-1 ; b=-1 ; c=1$
b $\quad \mathrm{B}$ is a turning point where $f^{\prime}(x)=0$
$3 x^{2}-2 x-1=0$
$(3 x+1)(x-1)=0)$
At $\mathrm{B} x=-\frac{1}{3}$
$f\left(-\frac{1}{3}\right)=\left(-\frac{1}{3}\right)^{3}-\left(-\frac{1}{3}\right)^{2}-\left(-\frac{1}{3}\right)+1=\frac{32}{27}$
$B\left(-\frac{1}{3} ; \frac{32}{27}\right)$

Answers to Mixed Exercises

8 a If $s(t)$ is distance, then $s^{\prime}(t)$ is speed.
$s^{\prime}(t)=3 t^{2}-4 t+3$
b Speed is a minimum where $s^{\prime \prime}(t)=6 t-4=0$
$t=\frac{2}{3}$
c $\quad 6 t-4=8$
$t=2 s$

9 a \quad Volume $=2 x^{2} h=24$
$h=\frac{12}{x^{2}}=12 x^{-2}$
b $\quad C(x)=2 x^{2} \times 25+2 x^{2} \times 20+2 \times x h \times 20+2 \times 2 x h \times 20$
$=90 x^{2}+120 x h$
$=90 x^{2}+120 x\left(12 x^{-2}\right)$
$=90 x^{2}+1440 x^{-1}$
c $\quad C^{\prime}(x)=180 x-1440 x^{-2}=0$

$$
180 x-\frac{1440}{x^{2}}=0
$$

$$
180 x^{3}-1440=0
$$

$$
x^{3}=8
$$

$$
x=2
$$

Chapter 9: AnalyticalgGeometry

1

$$
\begin{array}{ll}
\text { a } & m_{A B}=m_{C D} \\
& \frac{1-(-4)}{-2-p}=\frac{0-2}{5-3} \\
& \frac{5}{-2-p}=\frac{-2}{2}=-1 \\
2+p=5 \\
p=3 \\
\text { b } \quad A B=\sqrt{(3-(-2))^{2}+(-4-1)^{2}}=5 \sqrt{2} \\
& C D=\sqrt{(5-3)^{2}+(0-2)^{2}}=2 \sqrt{2} \\
& A B: C D=5 \sqrt{2}: 2 \sqrt{2}=5: 2 \\
\text { c } \quad m_{N B}=m_{C D} \\
& \\
\frac{y+4}{x-3}=-1 & \therefore y=-x-1 \quad \ldots \text { (1) } \\
m_{N D}=m_{B C} & \tag{2}\\
\frac{y-2}{x-3}=2 & \therefore y=2 x-4 \quad \ldots(2) \\
& \begin{array}{ll}
\text { (1)-(2): } & 0=3 x-3 \\
& x=1 \quad y=-2
\end{array}
\end{array}
$$

Answers to Mixed Exercises

d $\quad B$ and D have the same x-coordinate, so it is a vertical line with equation $x=3$.
e Angle of inclination of a vertical line is 90°.
$\mathrm{f} \quad$ Area of parallelogram $=$ base \times perpendicular height
Area of $N B C D=C D \times$ perp height

$$
=2 \sqrt{2} \times 6=12 \sqrt{2}
$$

g $\quad m_{A R}=m_{A C}$
$\frac{q-1}{-2+1}=\frac{1-0}{-2-5}$
$\frac{q-1}{-1}=\frac{1}{-7}$
$\therefore q=\frac{8}{7}$
a Substitute $x=1$ and $y=-3$ in LHS. If LHS $=0$, then the point $N(1 ;-3)$ lies on the circle.
$\begin{aligned} \text { LHS }= & x^{2}+4 x+y^{2}+2 y-8 \\ & =(1)^{2}+4(1)+(-3)^{2}+2(-3)-8=0\end{aligned}$
$\therefore N$ lies on the circle
b First determine the centre of the circle:
$x^{2}+4 x+4+y^{2}+2 y+1=8+4+1$
$(x+2)^{2}+(y+1)^{2}=13$
Centre of circle is $M(-2 ;-1)$
$m_{M N}=\frac{-1+3}{-2-1}=-\frac{2}{3}$
$\mathrm{MN} \perp \mathrm{PN}$ (radius \perp tangent)
$\therefore m_{P N}=\frac{3}{2}$
Substitute $N(1 ;-3): y=\frac{3}{2} x+c$

$$
\begin{aligned}
& -3=\frac{3}{2}(1)+c \quad \therefore c=-\frac{9}{2} \\
& y=\frac{3}{2} x-\frac{9}{2}
\end{aligned}
$$

c $\quad \theta=\tan ^{-1}\left(\frac{3}{2}\right)=56,3^{\circ}$
d $\quad x$-intercept where $y=0$:
$0=\frac{3}{2} x-\frac{9}{2} \quad \therefore x=3$
e $\quad y$-intercepts are where $x=0$:
$(0)^{2}+4(0)+y^{2}+2 y-8=0$
$\therefore y^{2}+2 y-8=0$
$(y+4)(y-2)=0$
The points are $(0 ;-4)$ and $(0 ; 2)$.

Answers to Mixed Exercises

3 a $m_{R O}=\frac{-12}{-6}=2$
b $\quad \mathrm{PS} \perp \mathrm{RN}(\mathrm{RN}$ is altitude of $\Delta)$
$m_{P S} \times m_{R N}=-1$
$\therefore m_{P S}=-\frac{1}{2}$
c $\quad P(0 ; 6)(y$-intercept of PR)
$\therefore y=-\frac{1}{2} x+6$
d $\tan ^{-1}\left(\frac{1}{2}\right)=26,57^{\circ}$
Inclination of PS $=180^{\circ}-26,57^{\circ}=153,43^{\circ}$
e Substitute $N\left(2 n ; 3 \frac{3}{5}+n\right)$ into equation of PS
$3 \frac{3}{5}+n=-\frac{1}{2}(2 n)+6$
$3 \frac{3}{5}+n=-n+6$
$2 n=2 \frac{2}{5}=\frac{12}{5}$
$n=\frac{6}{5}$
$f \quad$ Find equation of $S M$. $S M$ is the median, so M is the midpoint of $P R$.
$M\left(\frac{-6+0}{2} ; \frac{-12+6}{2}\right)=(-3 ;-3)$
$m_{M S}=1$ so equation of SM: $y=x$
Solve equations of SM and PS simultaneously to calculate coordinates of S
$x=-\frac{1}{2} x+6 \quad \therefore x=4 ; y=4$
$S(4 ; 4)$
a $\quad x^{2}+4 x+y^{2}-2 y=4$
$x^{2}+4 x+4+y^{2}-2 y+1=4+4+1$
$(x+2)^{2}+(y-1)^{2}=9$
Centre $M(-2 ; 1) \quad$ radius $=3$
b Substitute $N(p ; 1)$ into equation of circle.

$$
\begin{aligned}
& p^{2}+1^{2}+4(p)-2(1)-4=0 \\
& p^{2}+4 p-5=0 \\
& (p+5)(p-1)=0 \\
& \therefore p=1 \text { as } p>0
\end{aligned}
$$

c Radius through N is horizontal.
Therefore the tangent will be vertical.
Equation of tangent: $x=1$

Answers to Mixed Exercises

5 a $m_{A D}=\frac{3-0}{-3-0}=-1$
AD goes through origin: So, equation is $y=-x$
b $\quad B D^{2}=D C^{2}$
$(x-2)^{2}+(y-3)^{2}=(x-6)^{2}+(y+1)^{2}$
Substitute $y=-x$
$(x-2)^{2}+(-x-3)^{2}=(x-6)^{2}+(-x+1)^{2}$
$x^{2}-4 x+4+x^{2}+6 x+9=x^{2}-12 x+36+x^{2}-2 x+1$
$16 x=24$
$x=\frac{3}{2} \quad \therefore y=-\frac{3}{2}$
c $\quad m_{B D}=\frac{3-\left(-\frac{3}{2}\right)}{2-\frac{3}{2}}=9$
Substitute $B(2 ; 3)$ into $y=9 x+c$
$3=9(2)+c \quad \therefore c=-15$
$y=9 x-15$
d Inclination of $B D=\tan ^{-1}(9)=83,7^{\circ}$
$m_{B C}=\frac{3-(-1)}{2-6}=-1$
Inclination of $\mathrm{BC}=135^{\circ}$
$\therefore \theta=135^{\circ}-83,7^{\circ}=51,3^{\circ}$
e $\quad B D=\sqrt{\left(2-\frac{3}{2}\right)^{2}+\left(3+\frac{3}{2}\right)^{2}}=\frac{\sqrt{82}}{2}$
$B C=\sqrt{(3+1)^{2}+(2-6)^{2}}=4 \sqrt{2}$
Area of $\triangle B D C=\frac{1}{2} B D \times B C \times \sin \theta$
$=\frac{1}{2} \times \frac{\sqrt{82}}{2} \times 4 \sqrt{2} \times \sin 51,3^{\circ}$
$=10$ sq units

6 a
First determine equation of $A C$
$m_{A C}=\frac{3-(-3)}{2-5}=-2$
Substitute (2;3): $3=-2(2)+c \quad \therefore y=-2 x+7$
$x-\operatorname{intercept}(y=0): x=\frac{7}{2}$
$D\left(\frac{7}{2} ; 0\right)$
b $\quad B C^{2}=A C^{2}$
$(p-5)^{2}+(0+3)^{2}=(5-2)^{2}+(-3-3)^{2}$
$p^{2}-10 p+25=9+36$
$p^{2}-10 p-20=0$
$p=\frac{10 \pm \sqrt{180}}{2}=5 \pm 3 \sqrt{5}$
$p=5-3 \sqrt{5}$
c $\quad m_{A C}=-2$
Inclination of $A C=180^{\circ}-\tan ^{-1}(2)=116,6^{\circ}$

Answers to Mixed Exercises

d

$$
\begin{aligned}
& B(-1 ; 0) \\
& m_{A B}=\frac{3-0}{2+1}=1 \\
& \text { Inclination of } A B=45^{\circ} \\
& \hat{A}=\text { inclination of } A C-\text { inclination of } A B \\
& =116,6^{\circ}-45^{\circ} \\
& =71,6^{\circ}
\end{aligned}
$$

7 The line will be a tangent if it intersects the circle in only one point.
Substitute $y=x+1$ into equation of circle and solve for x.
There should be only one solution.
$x^{2}+(x+1)^{2}+6(x+1)-7=0$
$x^{2}+x^{2}+2 x+1+6 x+6-7=0$
$2 x^{2}+8 x=0$
$x=0$ or $x=-4$
The line is NOT a tangent.
$8 \quad$ a $\quad y=2$ at C . Substitute into $3 x+4 y+7=0$
$3 x+4(2)+7=0$
$3 x=-15$
$x=-15$
$\therefore C(-5 ; 2)$ and the radius is 5 .
$(x+5)^{2}+(y-2)^{2}=25$
b length of $D E=10$
c $\quad m_{P E}=\frac{2+1}{0+1}=3$
$m_{\text {perp bisector }}=-\frac{1}{3}$
Midpoint of $\mathrm{PE}=\left(\frac{0-1}{2} ; \frac{2-1}{2}\right)=\left(-\frac{1}{2} ; \frac{1}{2}\right)$
Substitute midpoint into $y=-\frac{1}{3} x+c$
$\frac{1}{2}=-\frac{1}{3}\left(-\frac{1}{2}\right)+c$
$c=\frac{1}{3}$
$y=-\frac{1}{3} x+\frac{1}{3}$
d $\quad 3 x+4\left(-\frac{1}{3} x+\frac{1}{3}\right)+7=0$
$3 x-\frac{4}{3} x+\frac{4}{3}+7=0$
$\frac{5}{3} x=-\frac{25}{3}$
$x=-5$
$y=-\frac{1}{3}(-5)+\frac{1}{3}=2 \quad$ The lines intersect at $(-5 ; 2)$

Answers to Mixed Exercises

9 a Let the coordinates of S be $(x ; 0)$
$S T \perp S R$
$m_{S T} \times m_{S R}=\frac{4}{-x} \times \frac{4}{x-4}=-1$
$x(x-4)=16$
$x^{2}-4 x-16=0$
$x=\frac{4 \pm \sqrt{(-4)^{2}-4(-16)}}{2}=2 \pm 2 \sqrt{5}$
But S is on positive x-axis, so $S(2+2 \sqrt{5} ; 0)$
b $\quad m_{S T}=\frac{4-0}{0-(2+2 \sqrt{5})}=-0,62$
c Inclination of TS $=180^{\circ}-\tan ^{-1}(0,62)=148,20^{\circ}$
$m_{T R}=\frac{4+4}{0-4}=-2$
Inclination of $T R=180^{\circ}-\tan ^{-1}(2)=116,57^{\circ}$
$R \widehat{T} S=148,20^{\circ}-116,57^{\circ}=31,63^{\circ}$
a $\quad x^{2}+y^{2}-4 x+6 y+3=0$
$x^{2}-4 x+y^{2}+6 y=-3$
$x^{2}-4 x+4+y^{2}+6 y+9=-3+4+9$
$(x-2)^{2}+(y+3)^{2}=10$
Centre is $(2 ;-3)$
$m_{\text {radius }}=\frac{-2+3}{5-2}=\frac{1}{3}$
$m_{\text {tangent }}=-3$
Substitute (5;-2) into $y=-3 x+c$
$-2=-3(5)+c$
$c=13$
$\therefore y=-3 x+13$
b $\quad \sqrt{(x-2)^{2}+(y+3)^{2}}=\sqrt{20}$
$(x-2)^{2}+(y+3)^{2}=20$
Substitute $y=-3 x+13$ into equation above:

$$
\begin{aligned}
& (x-2)^{2}+(-3 x+13+3)^{2}=20 \\
& (x-2)^{2}+(-3 x+16)^{2}=20 \\
& x^{2}-4 x+4+9 x^{2}-96 x+256=20 \\
& 10 x^{2}-100 x+240=0 \\
& x^{2}-10 x+24=0 \\
& (x-6)(x-4)=0 \\
& x=6 \text { or } x=4 \\
& y=-3(6)+13=-5 \text { or } y=-3(4)+13=1 \\
& T(6 ;-5) \text { or } T(4 ; 1)
\end{aligned}
$$

Answers to Mixed Exercises

Chapter 10: Euclidian geometry

1
a $\quad \hat{B}_{1}=\widehat{M}_{1} \quad$ tan chord
$\hat{B}_{1}=\hat{C}$
$\therefore \widehat{M}_{1}=\hat{C}$
$\therefore M N \| C A \quad$ corr $\angle s$
b $\quad \widehat{K}_{1}=\widehat{M}_{2} \quad$ alt $\angle \mathrm{s}$
$\widehat{K}_{1}=\widehat{N}_{2} \quad$ tan chord
$\therefore \triangle K M N$ is isosceles
c $\quad \widehat{K}_{4}=\widehat{N}_{2} \quad$ alt $\angle \mathrm{s}$
$\widehat{N}_{2}=\widehat{B}_{3} \quad \angle \mathrm{~s}$ in same segment
$\hat{A}_{3}=\hat{B}_{3} \quad \angle \mathrm{~s}$ in same segment
$\therefore \widehat{K}_{4}=\hat{A}_{3}$
$\therefore N K \| A P \quad$ alt $\angle \mathrm{s}=$
$\therefore \frac{B N}{N A}=\frac{B K}{K P} \quad$ line || to one side of Δ
But $\frac{B N}{N A}=\frac{B M}{M C}$ line || to one side of Δ
$\therefore \frac{B K}{K P}=\frac{B M}{M C}$
d $\quad \hat{A}_{3}=\hat{B}_{3} \quad \angle$ s in same segment
$\widehat{B}_{3}=\widehat{B}_{2} \quad$ equal chords subt equal \angle s
$\therefore \hat{A}_{3}=\hat{B}_{2}$
$\therefore D A$ is a tangent to the circle through A, B and K

2 a $\quad \hat{C}_{3}=C \hat{P} R \quad \angle$ s opp equal sides
$\hat{C}_{3}+\hat{C}_{2}=\hat{A}_{1}+\hat{B}$ ext \angle of Δ
$\hat{C}_{2}=\hat{B} \quad$ tan chord
$\therefore \hat{C}_{3}=\hat{A}_{1}$
$\therefore \hat{A}_{1}=C \hat{P} R \quad$ both $=\hat{C}_{3}$
ACPR is a cyclic quadrilateral (ext \angle of quad)
b $\quad \operatorname{In} \triangle C B A$ and $\triangle R P A$:
$\hat{P}_{2}=\hat{C}_{2}$
\angle s in same segment
$=\hat{B} \quad$ proven in 2 a
$\therefore \hat{B}=\hat{P}_{2}$
$\hat{C}_{1}=A \hat{R} P \quad$ ext \angle of cyclic quad
$\hat{A}_{1}=\hat{A}_{3} \quad 3^{\text {rd }} \angle$ of Δ
$\therefore \triangle C B A||\mid \triangle R P A<\angle L$

Answers to Mixed Exercises

C $\quad \frac{R P}{C B}=\frac{R A}{C A} \quad$ from 2 b
$R P=\frac{C B . R A}{C A}$ but $R P=R C$
$\therefore R C=\frac{C B \cdot R A}{C A}$
d $\quad \ln \triangle R A C$ and $\triangle R C B$:
$\hat{C}_{2}=\hat{B} \quad$ tan chord
\hat{R}_{1} is common
$R \hat{C} B=R \hat{A} C \quad 3^{\text {rd }}$ angle
$\therefore \triangle R A C||\mid \triangle R C B<\angle \angle$
$\frac{A C}{C B}=\frac{R C}{R B} \quad \Delta s \|$
$R B . A C=R C . C B$
e $\quad \frac{C B}{R P}=\frac{C A}{R A} \quad$ from 2 b
$\frac{C B}{R C}=\frac{C A}{R A} \quad \mathrm{RC}=\mathrm{RP}$
$A C=\frac{C B \cdot R A}{R C}$
From $2 \mathrm{~d} A C=\frac{R C . C B}{R B}$
$\therefore \frac{C B \cdot R A}{R C}=\frac{R C . C B}{R B}$
$\therefore R C^{2}=R A . R B$

3
$\begin{array}{lll}\text { a } & \widehat{B}_{2}=\hat{A}_{3}=x & \angle \text { s opp equal sides } \\ & \widehat{M}_{1}=180^{\circ}-2 x & \text { sum } \angle \mathrm{s} \text { of } \Delta \\ & \therefore \widehat{D}=2 x & \end{array}$
bi $\quad \hat{C}=\frac{\widehat{M}_{1}}{2} \quad \angle$ at centre $=2 \times \angle$ circ
$=90^{\circ}-x$
$C \widehat{B} D=180^{\circ}-\left(90^{\circ}-x+2 x\right) \quad$ sum $\angle \mathrm{s}$ of Δ
$=90^{\circ}-x$
$\widehat{N}_{1}=\hat{C}=90^{\circ}-x \quad$ ext \angle of cyclic quad
$\therefore C \hat{B D}=\widehat{N}_{1}$
$\therefore C B \| A N \quad$ corr $\angle \mathrm{s}$
b ii $\quad C \hat{B} A=\widehat{D}=2 x \quad$ tan chord
$C \hat{B} A=\hat{A}_{2} \quad$ alt $\angle s$
$\hat{A}_{2}=\widehat{D}$
\therefore AB is a tangent (\angle betw line\&chord $=\angle$ sub chord)

Answers to Mixed Exercises

4
a
$\hat{B}_{3}=\hat{E}_{1}=x$
$\angle s$ in same segment
$\widehat{B}_{3}=\widehat{D}_{2}=x \quad \angle$ s opp $=$ sides
$B \hat{O} D=180^{\circ}-2 x \quad$ sum \angle s of Δ
$\hat{A}=90^{\circ}-x \quad \angle$ at centre $=2 x \angle \operatorname{circ}$
bi $\quad \hat{C}_{1}=90^{\circ}-x \quad$ ext \angle of cyclic quad
$\hat{F}_{2}=180^{\circ}-\left(x+90^{\circ}-x\right)$ sum \angle s of Δ
$=90^{\circ}$
In $\triangle B E F$ and $\triangle C E F$:
$\widehat{F}_{1}=\widehat{F}_{2}=90^{\circ} \quad$ adj $\angle \mathrm{s}$ str line
$B F=F C$
FE is common
$\triangle B E F \equiv \triangle C E F$
$s \angle s$
$\mathrm{BE}=\mathrm{EC}$ (三)
ii $\quad \hat{B}_{1}=90^{\circ}-x \quad$ sum \angle s of Δ
$\therefore \hat{B}_{1}=\hat{A}$
$\therefore \mathrm{BE}$ is not a tangent $\left(\hat{B}_{1}+\hat{B}_{2} \neq \hat{A}\right)$
$5 \quad a$
P is midpoint of $A C$ medians concur
$\mathrm{AB}|\mid \mathrm{PM}$ midpt theorem
In $\triangle B N C$:
$\frac{N D}{N C}=\frac{B M}{B C}=\frac{A P}{A C}$ line || 1 side of Δ
$=\frac{B M}{2 B M}=\frac{1}{2}$
b $\quad \ln \triangle A M P$:
$\frac{A O}{O M}=\frac{2 O M}{O M}$
$\frac{R P}{P C}=\frac{R P}{A P} \quad \mathrm{BP}$ is a median

$$
\begin{aligned}
& =\frac{O M}{A M} \quad \text { line } \| 1 \text { side of } \Delta \\
& =\frac{O M}{3 O M} \\
& =\frac{1}{3}
\end{aligned}
$$

6
$\begin{array}{llrl}\text { a } & \hat{C}_{2}=90^{\circ} & & \angle \text { in semi } \odot \\ & \widehat{M}_{2}=90^{\circ} & & \text { AM } \perp \mathrm{NM} \\ \text { b } & \therefore N Q \| C D & & \text { corr } \angle \mathrm{s}= \\ & \hat{C}_{1}=\widehat{N} & & \| \text { lines, corr } \angle \mathrm{s} \\ & \hat{A}_{2} & =\hat{C}_{1} & \\ & =\widehat{N} & & \text { tan chord }\end{array}$
\therefore ANCQ is a cyclic quad $\quad \angle$ s subt by same line segm

Answers to Mixed Exercises

ci In $\triangle P C D$ and $\triangle P A C$:
$\hat{C}_{1}=\hat{A}_{2} \quad$ tan chord
\hat{P} is common
$\widehat{D}_{1}=A \hat{C} P \quad 3^{\text {rd }} \angle$
$\therefore \triangle P C D\|\| P A C \angle \angle \angle$
$P C^{2}=A P . D P$
d $\quad \ln \triangle N B C$ and $\triangle B C D$:
$\widehat{N}=\hat{A}_{2} \quad \angle \mathrm{~s}$ in same segm
$=\hat{B}_{2} \quad \angle$ s in same segm
$\hat{C}_{4}=\hat{A}_{1} \quad$ tan chord
$=\widehat{D}_{2} \quad \angle \mathrm{~s}$ in same segm
$\hat{B}_{1}=B \hat{C} D \quad 3^{\text {rd }} \angle$
$\therefore \triangle N B C \equiv \triangle B C D \angle \angle \angle$
$\therefore \frac{B C}{N B}=\frac{C D}{N B}$
$B C^{2}=C D . N B$
e $\quad 1-\frac{B M^{2}}{B C^{2}}=\frac{B C^{2}-B M^{2}}{B C^{2}}$

$$
\begin{aligned}
& =\frac{M C^{2}}{B C^{2}} \quad \text { Pyth. } \\
& =\frac{P C^{2}}{B C^{2}} \\
& =\frac{A P . D}{C D . N B}
\end{aligned}
$$

Chapter 11: Statistics: regression and correlation

1 a

	Lower Q	Median	Upper Q
Matches played	3	5	6
Wins	1	7	3
Goals scored against	3	4,5	9

b

Positively skewed (skewed to the right)
c
$\frac{65}{14}=4,64$
d \quad Standard deviation $=1,72$

2

b

$$
\text { Median }= \pm 32 \%
$$

C

Class midpoint	Frequency	FreqxMidpoint
15	6	90
25	14	350
35	16	560
45	11	495
55	3	165
TOTAL	50	1660

Estimated mean $\bar{x}=\frac{1660}{50}=33,2 \%$
d

Class midpt x_{i}	Freq f	$\bar{x}-x_{i}$	$\left(\bar{x}-x_{i}\right)^{2}$	$f\left(\bar{x}-x_{i}\right)^{2}$
15	6	$-18,2$	331,24	1987,44
25	14	$-8,2$	67,24	941,36
35	16	1,8	3,24	51,84
45	11	11,8	139,24	1531,64
55	3	21,8	475,24	1425,72
TOTAL	50			5938

Standard deviation $=\sqrt{\frac{5938}{50}}=10,90$

Answers to Mixed Exercises

3

b $\quad y=0,2432 x+3,6834$
d Substitute $y=19$ then $x=62,98\left(\mathrm{VO}^{2}\right)$
e $\quad r=0,8985$..
Strong positive correlation

4

Number	$\left(\right.$ Number $^{\text {Mean }}{ }^{2}$
4	36
8	4
10	0
x	$(x-10)^{2}$
y	$(y-10)^{2}$

Mean $=10$
$\therefore \frac{4+8+10+x+y}{5}=10$
Which simplifies to: $x+y=28 \ldots$...(1)

Standard deviation $=4$
$\therefore \sqrt{\frac{36+4+0+(x-10)^{2}+(y-10)^{2}}{5}}=4$
Which simplifies to: $(x-10)^{2}+(y-10)^{2}=40$
Substitute $y=28-x$ from (1) into (2):

$$
\begin{aligned}
& x^{2}-28 x+192=0 \\
& (x-12)(x-16)=0 \\
& x=12 \text { or } x=16 \\
& y=16 \text { or } y=12
\end{aligned}
$$

Answers to Mixed Exercises

5 The standard deviation will remain 7,5.
If all the numbers are 2 bigger, then the mean will also be 2 bigger.
The difference between each number and the mean will therefore remain the same leaving the standard deviation unchanged.

Chapter 12: Probability

17 spaces that have to be filled using 7 digits without repetition(as 0,7 and 4 may not be used again)
$\therefore 7!=5040$

27 spaces have to be filled - 10 digits are available for each space
$\therefore 10^{7}=10000000$
$3 \quad P($ Queen of diamonds $)=\frac{1}{52}$

4 a 11!
b $\frac{11!}{2!2!2!2!2!}=1247400$ (5 letters repeat)

5 a Regard the 4 English books as a unit. The number of arrangements for the English books is $4!=24$
Total number of arrangements $=4!\times 6!=17280$
b $\quad 4!\times 3!\times 2!\times 3!=1728$
c $\quad 9!=362880$
$6 \quad 12 \times 11=132$
7 First calculate the total number of words: $\frac{11!}{2!2!2!}=4989600$
Now calculate how many of these WILL start and end on the same letter.
It can start and end with M, A or T
$\therefore \frac{9!}{2!2!}=90720$
$\mathrm{P}($ not start and end on same letter $)=1-\frac{90720}{4989600}=\frac{54}{55}$
$8 \quad$ a $\quad \frac{10!\times 2}{2!2!2!}=907200$
b $\frac{10!}{2!2!2!}=453600$

Exemplar Paper 1

Exemplar Paper 1 (3 hours; 150 marks)

1 a Solve for x :

i	$x+2=\frac{2}{x+1}$
ii	$x-\sqrt{x}=6$
iii	$\frac{\left(x^{2}+4\right)(2-x)}{x+2} \geq 0$
iv	$5^{x-2}+5^{x+1}=126$

b Consider the equation: $f(x)=2 x^{3}+p x^{2}+b x-9 p$
If $(2 x+p)$ is a factor of $f(x)$ and $p \neq 0$, determine the value(s) of b. (5)
c $\quad 2$ is a root of $2 x^{2}-3 x-p=0$. Determine the value of p and hence the other root.
(4)
a The sum of the first 20 terms of an arithmetic progression is 410 , while the sum of the next 30 terms is 2865 . Determine the first three terms of the progression.
b $\quad 3 ; x ; 15 ; y ; 35$ is a quadratic sequence.
i Determine the values if x and y.
(4)
ii \quad Determine formula for T_{n}.
(4)
c Find n such that $\sum_{k=7}^{n}(2 k-3)$ is equal to the sum of the first 6 terms of the sequence $-24 ; 48 ;-96 ; \ldots$
(7)
d For which value(s) of x will the following series be convergent?

$$
\begin{equation*}
(x+2)+(x+2)^{2}+(x+2)^{3}+\cdots \tag{2}
\end{equation*}
$$

Melissa decides to save R1 200 per month for a certain period. The bank offers her an interest rate of 12% p.a. compounded monthly for this period.

Determine how long Melissa has to make this monthly payment if she wants to have a lump sum of R200 000. $\mathrm{R}_{5} 000$ per month. If the interest rate is currently $\mathbf{1 2 \%}$ per annum compounded monthly, determine the size of the mortgage he can take, if he starts paying one month after the mortgage was approved.
(3)
c An amount of R300 000 is to be used to provide quarterly withdrawals for the next 10 years. The withdrawal amount will remain fixed and the first withdrawal will be in 3 months' time. An interest rate of 15% p.a. compounded quarterly applies. Determine the value of each quarterly withdrawal. (4)

In the diagram f is the graph of $y=-\frac{1}{2} x^{2}+\frac{1}{2} x+k$ cuts the x-axis at B and C and the y-axis at D. g is the graph of $y=a x-\frac{3}{2}$ and cuts the x-axis at B. h is the graph of $y=m^{x}$ and cuts the y-axis at D. QR and ST are parallel to the y-axis. $A\left(x ; \frac{1}{4}\right)$ is a point on h and vertically above C.

a \quad Determine the values of k and m.
b Determine the value of a.
c Calculate the length of QR if $\mathrm{OP}=2$ units.
d Determine the length op OF, if $\mathrm{ST}=4$ units.
e Determine the equation of h^{-1}.
$\mathrm{f} \quad$ Write down the domain of h^{-1}.

Exemplar Paper 1

5 The functions $f(x)=\frac{a}{x+b}+c$ and $g(x)=2 x-13$ intersect each other. The asymptotes of $f(x)$ intersect in(6;-8). $f(x)$ goes through (7; 4).

a Determine the values of a, b and c.
(4)
b Determine the co-ordinates of the intersects of f and g.
c For which values of x would $g(x) \geq f(x)$?
d Determine the equation of the dotted line which is the axis of symmetry of the hyperbola.
(3)
[15]

6 Determine:
a $\quad \lim _{x \rightarrow 1} \frac{x^{2}-1}{1-x}$
b $\quad f^{\prime}(x)$ from first principles if $f(x)=-2 x^{2}$.
(4)
c $\quad g^{\prime}(t)$ if $g(t)=2 \sqrt{t}+\frac{1}{2 t^{2}} ; t \neq 0$
$7 \quad$ The figure shows the graph of $f(x)=2 x^{3}+a x^{2}+b x+3$. The curve has a local minimum turning point F at $(2 ;-9)$.

a Show that $a=-5$ and $b=-4$.
b If it is given that $A(-1 ; 0)$, calculate the coordinates of B and C .
c Determine the equation of the tangent to the graph at $x=3$.

8 A container firm is designing an open-top rectangular box that will hold $108 \mathrm{~cm}^{3}$. The box has a square base with sides x and height h.
a Show that the total outside surface area of the
 box will be $S=x^{2}+\frac{432}{x}$.
b For which value of x and h will the outer surface area be a minimum.

9 a A six-member working group is to be selected from five teachers and nine students. If the working group is randomly selected, what is the probability that it will include at least two teachers?
b $\quad P(A$ or $B)=0,6$ and $P(A)=0,2$
i Find $P(B)$ given that events A and B are mutually exclusive. (2)
ii Find $P(B)$ given that events A and B are independent. (4)
C i In how many ways can the letters of the word PROBABILITY be arranged to form different "words" - the word "probability" itself is included?
(3)
ii In how many ways can the letters of the word PROBABILITY be arranged to form different "words" if the R and O have to be kept together?
[16]

MEMORANDUM: Exemplar Paper 1

$1 \quad$ a \quad i \quad| | $x+2=\frac{2}{x+1}$ |
| :--- | :--- |
| | |
| | $(x+2)(x+1)=2$ |
| | $x^{2}+3 x=0$ |
| | $x(x+3)=0$ |
| | $\therefore x=0$ or $x=-3$ |
| | $x-\sqrt{x}=6$ |
| | Let $=\sqrt{x}$, then $k^{2}=x$ |
| | $k^{2}-k-6=0$ |
| | $(k-3)(k+2)=0$ |
| | $k=\sqrt{x}=3 \quad$ or $\quad k=\sqrt{x}=-2$ |
| | $x=9$ |
| | |
| | $\frac{\left(x^{2}+4\right)(2-x)}{x+2} \geq 0$ |
| | $\left(x^{2}+4\right)>0$ for all values of $x \in R$ |
| | $\frac{(2-x)}{(x+2)} \geq 0$ |
| | $\frac{(x-2)}{(x+2)} \leq 0$ |
| | $\therefore-2<x \leq 2$ |

Exemplar Paper 1

iv

$$
\begin{aligned}
& 5^{x-2}+5^{x+1}=126 \\
& 5^{x} \cdot 5^{-2}+5^{x} \cdot 5^{1}=126 \\
& 5^{x}\left(\frac{1}{25}+5\right)=126 \\
& 5^{x}\left(\frac{126}{25}\right)=126 \\
& 5^{x}=5^{2} \\
& x=2
\end{aligned}
$$

b If $(2 x+p)$ is a factor, then $f\left(-\frac{p}{2}\right)=2\left(\frac{-p}{2}\right)^{3}+p\left(-\frac{p}{2}\right)^{2}+b\left(-\frac{p}{2}\right)-9 p=0$
$-\frac{p^{3}}{4}+\frac{p^{3}}{4}-\frac{b p}{2}-9 p=0$
×2) $b p=-18 p$
$\div p$) $b=-18$
c \quad Substitute $x=2: 2(2)^{2}-3(2)-p=0$
$\therefore p=2$
$2 x^{2}-3 x-2=0$
$(2 x+1)(x-2)=0$
$\therefore x=-\frac{1}{2}$ is the other root

2 a
$S_{20}=410$
$S_{50}=S_{20}+$ sum of next 30 terms $=410+2865=3275$
$410=\frac{20}{2}[2 a+19 d]$
$41=2 a+19 d \ldots$. (1)
$3275=\frac{50}{2}[2 a+49 d]$
$131=2 a+49 d$
(2)-(1): $30 d=90$

$$
\therefore d=3 \text { en } a=-8
$$

b i

$$
x=8 ; y=24
$$

ii $\quad \mathrm{T}: \quad 3 ; 8 ; 15 ; 24 ; 35$
$f: \quad 5 ; 7$; 9; 11
s: 2; 2; 2
$a=2 \div 2=1 \quad b=5-3(1)=2 \quad c=3-1-2=0$
$T_{n}=n^{2}+2 n$

Exemplar Paper 1

c $\quad-24 ; 48 ;-96 ; \ldots$ is a geometric series with $a=-24$ and $r=-2$
$S_{6}=\frac{-24\left((-2)^{6}-1\right)}{-2-1}=504$
$\sum_{k=7}^{n}(2 k-3)=11+13+15+\cdots+(2 n-3)$
$504=\frac{n}{2}[2(11)+(n-1)(2)]$
$n^{2}+10 n-504=0$
$(n+28)(n-18)=0$
$\therefore n=18$
d $\quad r=x+2$
For convergent series $-1<r<1$
$-1<x+2<1$
$-3<x<-1$
$3 \quad$ a $\quad 200000=\frac{1200\left[\left(1+\frac{0,12}{12}\right)^{n}-1\right]}{\frac{0,12}{12}}$
$(1,01)^{n}=\frac{5}{3}$
$n=\frac{\log \frac{5}{3}}{\log 1,01}=51,33755$
Melissa must make at least 52 payments
b
$P=\frac{5000\left[1-\left(1+\frac{0,12}{12}\right)^{-240}\right]}{\frac{0,12}{12}}=R 454$ 097,08
C $\quad 300000=\frac{x\left[1-\left(1+\frac{0,15}{4}\right)^{-40}\right]}{\frac{0,15}{4}}$
$x=\frac{300000 \times \frac{0,15}{4}}{\left[1-\left(1+\frac{0,15}{4}\right)^{-40}\right]}=R 14957,84$
$4 \quad \mathrm{a} \quad \mathrm{D}$ is the y-intercept of f and h.
Substitute $x=0$ into $y=m^{x}$
$\therefore y=1$
$\therefore k=1$
To find m we need the coordinates of A.
First find the roots of f os we can get the x-value of A.
$-\frac{1}{2} x^{2}+\frac{1}{2} x+1=0$
$x^{2}-x-2=0$
$(x-2)(x+1)=0$
$x=2$ at C and A

Sub $A\left(2 ; \frac{1}{4}\right)$ into $y=m^{x}$
$\frac{1}{4}=m^{2}$
$\therefore m=\frac{1}{2}$
b $\quad \operatorname{Sub} B(-1 ; 0): 0=a(-1)-\frac{3}{2} \quad \therefore a=-\frac{3}{2}$
C $\quad x=-2$ at Q and R
$Q R=y_{Q}-y_{R}$
$=-\frac{3}{2}(-2)-\frac{3}{2}-\left[-\frac{1}{2}(-2)^{2}+\frac{1}{2}(-2)+1\right]$
$=\frac{7}{2}$
d
$-\frac{1}{2} x^{2}+\frac{1}{2} x+1+\frac{3}{2} x+\frac{3}{2}=4$
$-\frac{1}{2} x^{2}+2 x-\frac{3}{2}=0$
$x^{2}-4 x+3=0$
$(x-3)(x-1)=0$
$\therefore O F=1$
e $\quad h^{-1}=\log _{\frac{1}{2}} x$
f $\quad x>0 ; x \in R$

5 a Asymptotes go through (6; -8)
$\therefore b=-6$ and $c=-8$
Substitute (7; -4) into $f(x)=\frac{a}{x-6}-8$
$-4=\frac{a}{7-6}-8$
$\therefore a=4$
b $\frac{4}{x-6}-8=2 x-13$
$\frac{4}{x-6}=2 x-5$
$4=(2 x-5)(x-6)$
$2 x^{2}-17 x+26=0$
$(2 x-13)(x-2)=0$
$x=\frac{13}{2}$ or $x=2$
$y=0$ or $y=-9$
Intersects are $\left(\frac{13}{2} ; 0\right)$ and (2;-9)
c $\quad x \in[2 ; 6)$ or $x \in\left[\frac{13}{2} ; \infty\right)$
d \quad Substitute $(6 ;-8)$ into $y=x+c$
$-8=6+c \quad \therefore c=-14 \quad y=x-14$

Exemplar Paper 1

6 a $\quad \lim _{x \rightarrow 1} \frac{x^{2}-1}{1-x}=\lim _{x \rightarrow 1} \frac{(x-1)(x+1)}{-(x-1)}$
$=\lim _{x \rightarrow 1}-(x+1)=-2$
b $\quad f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
$=\lim _{h \rightarrow 0} \frac{-2(x+h)^{2}-\left(-2 x^{2}\right)}{h}$
$=\lim _{h \rightarrow 0} \frac{-2 x h-2 h^{2}}{h}$
$=\lim _{h \rightarrow 0}-2 x-h$
$=-2 x$
c $\quad g(t)=2 \sqrt{t}+\frac{1}{2 t^{2}}=2 t^{\frac{1}{2}}+\frac{1}{2} t^{-2}$
$g^{\prime}(t)=2 \times \frac{1}{2} t^{-\frac{1}{2}}+\frac{1}{2} \times-2 t^{-3}$
$=\frac{1}{\sqrt{t}}-\frac{1}{t^{3}}$

7 a $\quad f(2)=-9$ and $f^{\prime}(2)=0$
$f^{\prime}(x)=6 x^{2}+2 a x+b$
$0=6(2)^{2}+2 a(2)+b$
$4 a+b=-24 \ldots$. (1)
$-9=2(2)^{3}+a(2)^{2}+b(2)+3$
$2 a+b=-14 \ldots$... 2)
(1)-(2): $2 a=-10$

$$
\therefore a=-5
$$

$b=-2 a-14$

$$
=-2(-5)-14=-4
$$

b From (a) it follows that $f(x)=2 x^{3}-5 x^{2}-4 x+3$
If $x=-1$ is a root, then $(x+1)$ is a factor of f
$f(x)=2 x^{3}-5 x^{2}-4 x+3$
$=(x+1)\left(2 x^{2}-7 x+3\right.$
$=(x+1)(2 x-1)(x-3)$
$x=-1$, or $x=\frac{1}{2}$ or $x=3$
$B\left(\frac{1}{2} ; 0\right)$ and $C(3 ; 0)$
c $\quad f^{\prime}(x)=6 x^{2}-10 x-4$
$f^{\prime}(3)=6(3)^{2}-10(3)-4=20$
Sub $(3 ; 0)$ into $y=20 x+c$
Eq of tangent: $y=20 x-60$

Exemplar Paper 1

$8 \quad$ a \quad Volume $=108$
$x^{2} h=108$
$\therefore h=\frac{108}{x^{2}}$
$S=x^{2}+4 x h$
$=x^{2}+4 x\left(\frac{108}{x^{2}}\right)$
$=x^{2}+\frac{432}{x}$
b $\quad S$ will be a minimum where $S^{\prime}(x)=0$
$S=x^{2}+432 x^{-1}$
$S^{\prime}(x)=2 x-\frac{432}{x^{2}}=0$
$x^{3}=216$
$x=6 \mathrm{~m}$ and $h=\frac{108}{(6)^{2}}=3 \mathrm{~m}$

9 a Total number of different six-member groups $=\frac{14!}{7!}=17297280$
Number of groups with no teacher $=\frac{9!}{3!}=60480$
Number of groups with one teacher only= $5 \times 9 \times 8 \times 7 \times 6 \times 5=75600$
Total number of groups with less than two teachers $=136080$
Total number of groups with two or more teachers
= $17297280-136080=17161200$
$\mathrm{P}(\mathrm{two}$ or more teachers $)=\frac{17161200}{17297280}=0,99$
b i $\quad P($ Aor $B)=P(A)+P(B)$ for mutually exclusive
$0,6=0,2+P(B)$
$P(B)=0,4$
ii $\quad P(A$ and $B)=P(A) \times P(B)$ for independentevents
$P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$
$P(A$ or $B)=P(A)+P(B)-P(A) \times P(B)$
$0,6=0,2+P(B)-0,2 P(B)$
$0,4=0,8 P(B)$
$P(B)=0,5$
ci $\quad \frac{11!}{2!2!}=9979200$
ii $\quad \frac{10!}{2!2!}=907200$

Exemplar Paper 2 (3 hours; 150 marks)

1 Given the following box-and-whisker plot:

a Which quarter has the smallest spread of data?
What is the spread?
b Determine the inter quartile range.
C Are there more data in the interval 5-10 or in the interval 10-13? How do you know this?
d Which interval has the fewest data in it? Is it 0-2, 2-4, 10-12 or 12-13? How do you know it?

A factory produces and stockpiles metal sheets to be shipped to a motor vehicle manufacturing plant. The factory only ships when there is a minimum of 3254 sheets in stock at the beginning of that day. The table shows the day and the number of sheets in stock at the beginning of that day.

Day	1	2	3	4	5	6
Sheets	854	985	1054	1195	1204	1384

a Determine the equation of the least squares regression line for this set of data rounding coefficients to three decimal places.
b Use this equation to determine the day the sheets will be shipped.

Exemplar Paper 2

The ogive below represents the results of a survey amongst first year students on the average time per day they spend exercising. Answer the questions that follow.

a How many students participated in the survey?
b Approximately how many students spend more between 10 and 20 minutes per day exercising?
(1)
c Use the ogive to determine the median time spent on daily exercise.

In the diagram, $K C$ is a diameter of the circle and $K(1 ; 4) ; C(7 ; 2)$ and $B(x ; y)$ are points on the circle.

Determine:
a the equation of the circle
b point B if the gradient of $K B=\frac{1}{2}$

In the diagram, $A B C D$ is a quadrilateral with $A(4 ; 12), B(1 ; 3), C(4 ; 2)$ and $D(8 ; 4)$.
a Determine the gradients of $B C$ and $C D$.
b Show that $A B \perp B C$.
c Prove that $A B C D$ is a cyclic quadrilateral.
d Determine the equation of the circle $A B C D$.
(3)
(7)

[18]

6 Given the vertices $A(2 ; 3), B(5 ; 4), C(4 ; 2)$ and $D(1 ; 1)$ of parallelogram ABCD. Determine:
a the coordinates of M, the point of intersection of diagonals $A C$ and BD
b the equation of the median PM of $\triangle \mathrm{DMC}$

7 a If $\sec A=\frac{5}{4}$ and $180^{\circ}<A<360^{\circ}$, determine the following without the use of a calculator:
i $\cos A$
(1)
ii $\quad \sin 2 A$
(4)
b If $\sin 17^{\circ}=k$, express $\frac{\operatorname{cosec} 73^{\circ}}{\cos 343^{\circ}}$ in terms of k.

8 a Determine the value of the following without using a calculator:

$$
\begin{equation*}
\cos 69^{\circ} \cdot \cos 9^{\circ}+\cos 81^{\circ} \cdot \cos 21^{\circ} \tag{4}
\end{equation*}
$$

b Consider the following identity:

$$
\frac{1+\cos x+\cos 2 x}{\sin x+\sin 2 x}=\frac{1}{\tan x}
$$

i For which values of x will the identity be undefined?
i Prove the identity.

Exemplar Paper 2

9 a Solve the following equations for the interval [$-90^{\circ} ; 90^{\circ}$]:

$$
\begin{array}{ll}
\text { i } & 2 \tan x=-0,6842 \\
\text { ii } & \sin 2 x \cdot \cos x-\sin x \cdot \cos 2 x=0,5 \tag{2}
\end{array}
$$

b Determine the general solution of:

$$
\begin{equation*}
\cos \left(\frac{1}{2} x+15^{\circ}\right)=\sin \left(2 x-15^{\circ}\right) \tag{5}
\end{equation*}
$$

[9]

The graphs of $y=a \sin x$ and $y=\cos b x$ are drawn over the interval

a Write down the values of a and b.
(2)
b Use your graph to determine approximate values of $x ; x \in\left[-180^{\circ} ; 180\right]$ for which $\cos ^{2} x-\sin x=\frac{1}{2}$

Exemplar Paper 2

a Show that $P Q=\frac{2 \operatorname{Atan} x}{a \sin y}$
b Calculate the value of y if $P Q=76,8 m ; a=87,36 ; A=480,9 m^{2}$ and $x=46,5^{\circ}$.
In the diagram below, Q is the base of a vertical tower $P Q$, while R and S are points in the same horizontal plane as Q . The angle of elevation of P , the top of the tower, as measured from R, is x. Furthermore, $R \widehat{Q} S=y, Q S=a$ metres and the area of $\triangle Q R S=A \mathrm{~m}^{2}$.

a Write down the converse of the following theorem:

The angle between a tangent to a circle and a chord drawn through the point of contact, is equal to an angle in the alternate segment.
(2)

Exemplar Paper 2

b The diagonal AC of quadrilateral $A B C D$ bisects $B \hat{C} D$ while $A D$ is a tangent to the circle $A B C$ at point A. Prove that $A B$ is a tangent to circle ACD.

(5)
c Two circles intersect at A and $B . A B$ is produced to $P . P Q$ is a tangent to the smaller circle at Q. QB produced meets the larger circle at R. PR cuts the larger circle at X. $A X$ and $A Q$ are drawn.

Prove that:
i Points $\mathrm{A}, \mathrm{X}, \mathrm{P}$ and Q are on the circumference of the same circle.
(5)
ii $\quad P Q$ is a tangent to the circumscribed circle of $\triangle Q R X$.
(3)

13
a In $\triangle A B C$ and $\triangle D E F, \hat{A}=\widehat{D}$ and $\hat{B}=\hat{E}$.

$$
\begin{equation*}
\text { Prove the theorem that } \frac{D E}{A B}=\frac{E F}{B C}=\frac{D F}{A C} \text {. } \tag{8}
\end{equation*}
$$

b In the diagram A, B, C and E are points on a circle.
$A E$ bisects $B \hat{A} C$ and $B C$.
AE intersect in D.

Prove that:
i
$\triangle A B D / / / \triangle A E C$

(4)
(7)

14 In $\triangle A B C, \mathrm{P}$ is the midpoint of $\mathrm{AC}, \mathrm{RS} / / \mathrm{BP}$ and $\frac{A R}{A B}=\frac{3}{5}$.
$C R$ and BP intersect at T.
Determine, giving reasons, the following ratios:
a $\quad \frac{A S}{S P}$
(4)
b $\quad \frac{A S}{S C}$
(3)
C $\frac{R T}{T C}$
(3)
d $\frac{\text { Area } \triangle T P C}{\text { Area } \triangle R S C}$
(6)
[15]

Exemplar Paper 2

MEMORANDUM: Exemplar Paper 2

1 a Fourth quarter. Spread = 13-12 = 1
b $\quad I Q R=12-2=10$
c More data in 10-13
Median = 10 and $\operatorname{Max}=13$. Therefore 50% of the data lies in interval 10-13
25% of data lies between 2-10. Therefore less than 50% in 5-10
d $\quad 2-4$ has fewest data
0-2, 2-10, 10-12 and 12-13 all represent 25% of the data
$2-4$ will only be a part of 25% (less than 25%)

2 a $y=767,867+98,514 x$
b $\quad 3254=767,867+98,514 x$
$98,514 x=2486,133$
$x=25,236$
Shipping will be done on the $26^{\text {th }}$ day.

3 a 100
b $80-20=60$
c $\quad 14$ minutes

4 a Midpoint $=\left(\frac{1+7}{2} ; \frac{4+2}{2}\right)=(4 ; 3)$
Radius $=\sqrt{(4-1)^{2}+(3-4)^{2}}=\sqrt{10}$
$(x-4)^{2}+(y-3)^{2}=10$
b $\quad \mathrm{KB} \perp \mathrm{BC}\left(\widehat{B}=90^{\circ}\right.$; angle in semi circle $)$

$$
\begin{array}{rlr}
m_{B C}=-2 \\
\therefore m_{K B}=\frac{y-4}{x-1}=\frac{1}{2} & 2(y-4)=x-1 \\
& \therefore m_{B C}=\frac{y-2}{x-7}=-2 & \tag{2}\\
\ldots(y-2)=-2(x-7)
\end{array}
$$

Solving equations (1) and (2) simultaneously yields:
$x=5 ; y=6$

Exemplar Paper 2

$$
\begin{array}{lll}
5 & \text { a } & m_{B C}=\frac{3-2}{1-4}=-\frac{1}{3} \\
\text { b } & m_{A B}=\frac{12-3}{4-1}=3 & \therefore m_{C D}=\frac{4-2}{8-4}=\frac{1}{2} \\
& \therefore \mathrm{AB} \perp \mathrm{BC} & \\
& \text { c } & m_{A D}=\frac{12-4}{4-8}=-2 \\
& \therefore \mathrm{AD} \perp \mathrm{CD} & \therefore m_{C D} \times m_{A D}=\frac{1}{2} \times-2=-1 \\
& \hat{B}=90^{\circ} \text { from } 5 \mathrm{~b} & \widehat{D}=90^{\circ} \\
& \hat{B}+\widehat{D}=180^{\circ} &
\end{array}
$$

$A B C D$ is a cyclic quad (opp angles supp)
d $\quad A C$ is diameter of circle (angles in semi circle $=90^{\circ}$)
Midpoint of $\mathrm{AC}=\left(\frac{4+4}{2} ; \frac{12+2}{2}\right)=(4 ; 7)$
Radius $=12-7=5$
$(x-4)^{2}+(y-7)^{2}=25$

6 a $M\left(\frac{2+4}{2} ; \frac{3+2}{2}\right)=\left(3 ; \frac{5}{2}\right) \quad$ (diagonals bisect each other)
b Median $P M$ join M with point P on $D C$, where P is the midpoint of $D C$
$\mathrm{P}\left(\frac{1+4}{2} ; \frac{1+2}{2}\right)=\left(\frac{5}{2} ; \frac{3}{2}\right)$
$7 \quad$ a \quad i $\quad \cos A=\frac{1}{\sec A}=\frac{4}{5}$
ii $\quad \sin 2 A=2 \sin A \cos A$
$=2 \times \frac{-3}{5} \times \frac{4}{5}$
$=\frac{-24}{25}$

b

$$
\frac{\operatorname{cosec} 73^{\circ}}{\cos 343^{\circ}}=\frac{\operatorname{cosec} 17^{\circ}}{\cos 17^{\circ}}=\frac{\frac{1}{k}}{\frac{\sqrt{k^{2}-1}}{1}}=\frac{1}{k \sqrt{k^{2}-1}}
$$

8 a

$$
\begin{aligned}
\cos 69^{\circ} \cdot \cos 9^{\circ}+\cos 81^{\circ} \cdot \cos 21^{\circ} & =\sin 21^{\circ} \cdot \cos 9^{\circ}+\sin 9^{\circ} \cdot \cos 21^{\circ} \\
& =\sin \left(21^{\circ}+9^{\circ}\right) \\
& =\sin 30^{\circ}=\frac{1}{2}
\end{aligned}
$$

Exemplar Paper 2

b i
Undefined at asymptotes of $\tan x: x=90^{\circ}+k .180^{\circ} ; k \in Z$
Also undefined where $\sin x+\sin 2 x=0$
$\sin x+2 \sin x \cos x=0$
$\sin x(1+2 \cos x)=0$
$\therefore \sin x=0$ or $\cos x=-\frac{1}{2}$
$x=k .360^{\circ}$ or $x= \pm 120^{\circ}+k .360^{\circ} ; k \in Z$
ii $\frac{1+\cos x+\cos 2 x}{\sin x+\sin 2 x}=\frac{1+\cos x+2 \cos ^{2} x-1}{\sin x+2 \sin x \cos }$
$=\frac{\cos x(1+2 \cos x)}{\sin x(1+2 \cos x)}$
$=\frac{\cos x}{\sin x}$
$=\frac{1}{\tan x}$

```
9 a i \(2 \tan x=-0,6842\)
    \(\tan x=-0,3421\)
    \(x=-18,89^{\circ}\)
    ii \(\quad \sin 2 x \cdot \cos x-\sin x \cdot \cos 2 x=0,5\)
    \(\sin (2 x-x)=0,5\)
    \(\sin x=0,5\)
    \(x=60^{\circ}\)
    b \(\quad \cos \left(\frac{1}{2} x+15^{\circ}\right)=\sin \left(2 x-15^{\circ}\right)\)
    \(\cos \left(\frac{1}{2} x+15^{\circ}\right)=\cos \left[90^{\circ}-\left(2 x-15^{\circ}\right)\right]\)
    \(\cos \left(\frac{1}{2} x+15^{\circ}\right)=\cos \left[90^{\circ}-\left(2 x-15^{\circ}\right)\right]\)
    \(\cos \left(\frac{1}{2} x+15^{\circ}\right)=\cos \left(105^{\circ}-2 x\right)\)
    \(\left(\frac{1}{2} x+15^{\circ}\right)=\left(105^{\circ}-2 x\right)+k .360^{\circ}\)
or \(\left(\frac{1}{2} x+15^{\circ}\right)=-\left(105^{\circ}-2 x\right)+k .360^{\circ}\)
\(x=36^{\circ}+k .144^{\circ} ; k \in Z\)
                                    \(x=80^{\circ}-k .240^{\circ} ; k \in Z\)
10 a \(\quad a=2 ; b=2\)
b \(\quad \cos ^{2} x-\sin x=\frac{1}{2}\)
\(2 \cos ^{2} x-2 \sin x=1\)
\(2 \cos ^{2} x-1=2 \sin x\)
\(\therefore\) It is where the two graphs meet.
\(x=20^{\circ}\) or \(160^{\circ}\)
```


Exemplar Paper 2

$11 \quad$ a $\quad \tan x=\frac{P Q}{Q R} \quad \therefore P Q=Q R \tan x$
Area of $\Delta Q R S=\frac{1}{2} Q S . Q R \sin Q \hat{R} S$
$\therefore A=\frac{1}{2} a \times Q R \sin y$
$Q R=\frac{2 A}{a \sin y}$
$P Q=\frac{2 A}{a \sin y} \tan x=\frac{2 A \tan x}{a \sin y}$
b $\quad 76,8=\frac{2(480,9) \tan 46,5^{\circ}}{87,36 \sin y}$
$\sin y=\frac{2(480,9) \tan 46,5^{\circ}}{87,36(76,8)}=0,151064$
$y=8,69^{\circ}$ or $171,31^{\circ}$
a If a line is drawn through the endpoint of a chord to form an angle which is equal to the angle in the opposite segment, then this line is a tangent.
b $\quad \hat{A}_{2}=\hat{B}=x$ tan chord
$\hat{C}_{1}=\hat{C}_{2}=y$ given
$\hat{A}_{1}=180^{\circ}-(x+y)$ sum of angles of $\triangle A B C$
$\widehat{D}=180^{\circ}-(x+y)$ sum of angles of $\triangle A D C$
$\therefore \hat{A}_{1}=\widehat{D}$
$\therefore \mathrm{AB}$ is a tangent to the circle
c i $\quad \hat{X}_{1}=\hat{B}_{2}$ angles in same segm $=\hat{A}_{2}+\hat{Q}_{3}$ ext angle of triangle
But
$\hat{A}_{2}=\hat{Q}_{1}+\hat{Q}_{2} \tan$ chord
$\therefore \hat{X}_{1}=\hat{Q}_{1}+\hat{Q}_{2}+\hat{Q}_{3}$
$\therefore \mathrm{A}, \mathrm{X}, \mathrm{P}, \mathrm{Q}$ concyclic (ext angle $=\mathrm{opp}$ int angle)
ii $\quad \hat{Q}_{1}=\hat{A}_{1} \quad$ AXPQ cyclic quad $=\hat{R} \quad$ angles in same segm
$\therefore \mathrm{PQ}$ is a tangent

Exemplar Paper 2

13 a Book work
b i In $\triangle A B D$ and $\triangle A E C$:

$$
\begin{array}{ll}
\hat{A}_{1}=\hat{A}_{2} & \text { given } \\
\hat{B}=\hat{E} & \text { angles in same segm }
\end{array}
$$

$\therefore \triangle \mathrm{ABD} \|| | \triangle \mathrm{AEC}$ (AAA)
ii $\quad \ln \triangle A B D$ and $\triangle C E D$:

$$
\hat{B}=\hat{E} \quad \text { proven }
$$

$$
\widehat{D}_{1}=\widehat{D}_{2} \quad \text { vert opp }\llcorner s
$$

$$
\therefore \triangle A B D \| \Delta C E D(A A A)
$$

$$
\therefore \frac{A B}{A E}=\frac{A D}{A C}
$$

$$
\therefore A B \cdot A C=A E \cdot A D
$$

$$
=(A D+D E) A D
$$

$$
=A D^{2}+A D \cdot D E
$$

But AD.DE=BD.DC $\quad\left(\frac{A D}{D C}=\frac{B D}{D E}\right)$
$\therefore A B . B C=A D^{2}+B D . D C$
$14 \quad$ a $\quad \frac{A R}{A B}=\frac{3}{5}$ given
Let $A R=3 k$ and $A B=5 k$
$\therefore \frac{A S}{S P}=\frac{3}{2} \quad \mathrm{RS} / / \mathrm{BP}$
b Let $A S=3 m$ and $A P=5 m$
but $\mathrm{AP}=\mathrm{PC}$ (given)
$\therefore A P=P C=5 m$
$\therefore \frac{A S}{S C}=\frac{3 m}{7 m}=\frac{3}{7}$
c $\quad \frac{R T}{T C}=\frac{2 m}{5 m} \quad \mathrm{RS} / / / \mathrm{TP}$

$$
=\frac{2}{5}
$$

d $\frac{\text { Area } \Delta T P C}{\text { Area } \triangle R S C}=\frac{\frac{1}{2} T C . P C . \sin A \hat{C} R}{\frac{1}{2} R C . S C . \sin A \hat{C} R}$

$$
=\frac{T C}{R C} \cdot \frac{P C}{S C}=\frac{5}{7} \cdot \frac{5}{7}=\frac{25}{49}
$$

[^0]: "Pure Mathematics is, in its way, the poetry of logical ideas." Albert Einstein

