

You have Downloaded, yet Another Great Resource to assist you with your Studies ③

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

GRADE 12

Marks: 50

This MARKING GUIDELINE consists of 5 pages including cover page

NOTE:

- If a candidate answers a question TWICE, mark the FIRST attempt ONLY.
- Consistent accuracy applies in ALL aspects of the marking guideline.

• If a candidate crossed out an attempt of a question and did not redo the question, mark the crossed-out attempt.

• The mark for substitution is awarded for substitution into the correct formula.

QUESTION 1					
1.1.1	$T_5 = 0,625 \text{ OR } \frac{5}{8}$	✓ answer	(1)		
1.1.2	$T_n = 10 \left(\frac{1}{2}\right)^{n-1} OR \ 20 \left(\frac{1}{2}\right)^n$	✓✓ answer	(2)		
1.1.3	-1 < r < 1				
	$\therefore -1 < \frac{1}{2} < 1$	✓ ✓ answer	(2)		
1.2	$S_{20} = 20(20 + 1)(20 + 2) = 9240$ $S_{19} = 19(19 + 1)(19 + 2) = 7980$ $T_{10} = S_{10} = S_{10}$	$\begin{array}{c} \checkmark S_{20} \\ \checkmark S_{19} \end{array}$			
	$T_{20} = S_{20} - S_{19}$ $\therefore T_{20} = 1260$	$\checkmark T_{20}$	(3)		
1.3	$\sum_{k=1}^{\infty} \left(\frac{1}{3}\right)^k = \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \dots$				
	$S_{\infty} = \frac{\frac{1}{3}}{1 - \frac{1}{3}} = \frac{1}{2}$	✓ substitution $✓ S_{\infty}$	l		
	$\sum_{k=2}^{40} 5 = 5 + 5 + 5 + \dots + 5$				
	n = 40 - 2 + 1 = 39 $S_{39} = 5(39) = 195 \text{ or } S_{39} = \frac{39}{2}(5+5) = 195$	✓ <i>S</i> ₃₉			
	$S_{\infty} - S_{39}$	$\checkmark S_{\infty} - S_{39}$			
	$=\frac{1}{2}-195$				
	$=\frac{-389}{2}$ OR -194,5	✓answer	(5)		

1.4	1;1+d;1+2d;		
	$1;r;r^2;$		
	r = 1 + d(1)		
	$r^2 = 1 + 2d$ (2)	✓ eqn (1) and (2)	
	sub.(1)in(2)	a contraction of	
	$(1+d)^2 = 1+2d$	· substitution	
	$1 + 2d + d^2 = 1 + 2d$		
	$d^2 = 0$	✓ comm. diff	
	$\therefore d = 0 \ and r = 1$		
	∴ 1;1;1;Arithmeticsequence	✓ comm. ratio	
	1;1;1;geometricsequence		
	He is correct	✓ conclusion (5)	
		(18)	
QUEST	FION 2		
0.1.1	00.0	10	
2.1.1	$\frac{QS}{PS} = \frac{3}{5} Line//to one side of \ a \Delta OR \ prop. theorem, ST // PV$	$\checkmark R$ (2)	
2.1.2	lenght: QS = 3a and $QP = 8a$		
	^		
	$Area\Delta PQR = \frac{1}{2} \times QP \times QR \sin Q$		
	$=\frac{1}{2} \times 8a \times 11 \sin \hat{Q}$	✓ area ΔPQR ✓ area ΔSQT	
	$= 44a \sin \hat{Q}$		
	$AreaofaquadPSTR = Areaof \Delta PQR - Area \Delta SQT$	✓ area of a Quad PSTR	
	$= 44 x \sin \hat{Q} - \frac{1}{2} \times 3a \times 3 \sin \hat{Q}$		
	$-79a \sin \hat{0}$	✓ ratio	
	$-\frac{1}{2}surv$	\checkmark answer (5)	
	$\frac{Area\Delta PQR}{AreaofquadPSTR} = \frac{44a\sin Q}{\frac{79}{2}a\sin \hat{Q}} = \frac{88}{79}$	· allswei (5)	
	-		

-		
2.2.1	$\hat{D}_1 = \hat{A}_1 = x$ tan chord theorem	✓ S & R
	$\hat{D}_3 = \hat{A}_1 = x$ Alt. < 's; AB//ED	✓ S & R
	$\hat{D}_3 = \hat{D}_2 = x$ = chords =< 's OR < 's subtended by = chords	$\checkmark S \& R \qquad (3)$
2.2.2	$\hat{AED} = \hat{B}_2 \qquad Ext. < of \ a \Theta \ quad$ $\hat{D}_3 = \hat{D}_1 \qquad provenin \ 2.2.1$ $\hat{A}_1 = \hat{C}_1 \qquad sumof < sina \Delta$ $\therefore \Delta DEA DBC \qquad AAA$	✓ S &R ✓ S & R (2)
223	In ADRC and AADC	
(a)	$\hat{D}_{1} = \hat{A}_{2} \tan chord \ theorem$ $\hat{C} = \hat{C} common <$ $\hat{B}_{2} = ADC sum \ of < 's \ in \ a \ \Delta$	✓ S & R
	$\therefore \Delta DBC \Delta ADC \qquad AAA$	✓ ΔDBC ∆ADC
	$\frac{DB}{AD} = \frac{BC}{DC} \qquad \Delta's$	✓ prop theorem (3)
	$\therefore DC = \frac{BC \times AD}{DB}$	
2.2.3	DB = AE chords subt. by = $<'s$	✓ S & R
(b)	But $\triangle ADC \mid \mid \triangle DBC$ proved in 2.2.3 (a) and	
	$\Delta DEA \Delta DBC \qquad \text{proved in } 2.2.2$	
	$\therefore \Delta ADC \Delta DEA \qquad both \Delta DBC$	✓ ∆ADC ∆DEA
	$\frac{AD}{DE} = \frac{DC}{EA} \qquad \qquad \Delta's$ $EA = \frac{DC \times DE}{AD}$	✓ prop theorem (3)

2.2.4	$EA = \left(\frac{BC \times AD}{DB}\right) \left(\frac{DE}{AD}\right)$	✓ substitutior	1
	$EA = \frac{BC \times DE}{EA}$ since $DB = EA$	✓ EA	(2)
	$EA^2 = BC \times DE$		
OUEST			(20)
QUESI			
3.1.1	<i>r</i> =13		
	$\cos\alpha = \frac{-5}{13}$	✓answer	(1)
3.1.2	$tan(180^{\circ} - \alpha) = -tan \alpha$ (-12)	\checkmark -tan \propto	
	$= -\left(\frac{-1}{-5}\right)$ $= -\frac{12}{5}$	✓ answer	(2)
3.2	$\frac{\sin(x-180^\circ).\cos(x-90^\circ)}{\cos(-x-360^\circ)\sin(90^\circ+x)}$ $=\frac{-\sin x.\sin x}{\cos x.\cos x}$ $=-\frac{\sin^2 x}{\cos^2 x}$ $=-\tan^2 x$	✓ - sinx ✓ sinx ✓ cosx ✓ cosx ✓ - $\frac{\sin^2 x}{\cos^2 x}$ ✓ - tan ² x	(6)
3.3	$sin(A + B) = cos (90^{\circ} - (A + B))$ = cos((90^{\circ} - A) - B)) = cos(90^{\circ} - A)cos (B) + sin (90^{\circ} - A)sin (B) = sinAcosB + cosAsinB	✓ correct co- function ✓ regrouping ✓ simplification	on (3) (12)
	ΤΟΤΑΙ		[50]
	IUIAL		