

You have Downloaded, yet Another Great Resource to assist you with your Studies ③

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

KWAZULU-NATAL PROVINCE

EDUCATION REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

.

MATHEMATICS

MARKING GUIDELINE

COMMON TEST

APRIL 2021

MARKS: 100

10

This memorandum consists of <u>9</u> pages.

Please Turn Over

1.1	100;124	AA✓✓answers	(2)
1.2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	$2a = 4 \therefore a = 2$ $3a + b = 8 \therefore b = 2$ $a + b + c = 44 \therefore c = 40$ $T_n = 2n^2 = 2n + 40$	$A \checkmark a$ value $CA \checkmark b$ value $CA \checkmark c$ value $CA \checkmark n$ th term	
	OR	OR	
	$2a = 4 \therefore a = 2$ $3a + b = 8 \therefore b = 2$ $\therefore c = T_0 = 40$ $T_n = 2n^2 + 2n + 40$	$A \checkmark a$ value $CA \checkmark b$ value $CA \checkmark c$ value $CA \checkmark n$ th term	(4)
	OR	OR	
	$T_n = T_1 + (n-1)d_1 + (n-1)(n-2)d_2$ OR (n-1)	OR	(4)
	$T_n = \frac{(n-1)}{2} [2a + (n-2)d] + T_1$		
1.3	$T_{30} = 2(30)^2 + 2(30) + 40 = 1900$	CA√substitution CA√answer	(2)
1.4	$T_n = 2n^2 + 2n + 40$ $T_n = 2(n^2 + n + 20)$ $2(n^2 + n + 20)$ is even for all $n \in \mathbb{Z}$	A \checkmark Taking out common factor of 2 A \checkmark Rewriting nth term A \checkmark is even for all $n \in \mathbb{Z}$ Note: Mark CA provided T_n (from 1.2) is a factor of 2	(3)
			[11]

2.	$a + 7d = 31 \rightarrow (1)$	A√ equation (1)	
	15(2a+29d) = 1830		
	$2a + 29d = 122 \qquad \rightarrow (2)$	A \checkmark equation (2)	
	$a = 31 - 7d \qquad \rightarrow (3)$	CA \checkmark making <i>a</i> the subject	
	2(31-7d)+29d=122	CA \checkmark correct substitution of <i>a</i>	
	62 - 14d + 29d = 122		
	15d = 60		
	d = 4	$CA \checkmark d$ value	
	a = 3	$CA \checkmark a$ value	
	3;7;11;	CA√sequence	[7]

3.1	$ar = \frac{5}{128} \longrightarrow (1)$	A√ equation (1)	
	$ar^8 = 5 \qquad \rightarrow (2)$	A \checkmark equation (2)	
	$r^7 = 128$ $r^7 = 2^7$ r = 2	$CA \checkmark r^7 = 128$ CA \checkmark exponential form CA \checkmark answer	(5)
3.2	$(-8) + (-8)(0.5) + (-8)(0.5)^2 + \cdots$	A√generating series	
	$\frac{-8(0.5^m - 1)}{0.5 - 1} = -\frac{255}{16}$	CA√ correct substitution into correct formula	
	$0.5^m - 1 = -\frac{255}{256}$		
	$0.5^m = \frac{1}{256} = 0.5^8$	CA✓ writing in exponential form or using logs	
	m = 8	CA√answer	(4)
3.3.1	-1 < r < 1	A√ condition for convergence	
	$-1 < \frac{x}{2} < 1$	$A \checkmark r$ value	
	-2 < x < 2	CA√answer	(3)
3.3.2	x < -2 or x > 2	CACA✓✓answer	(2)
			[14]

4.1	Draw $AP = DE$ and $AQ = DF$	\checkmark S Construction (or could be	
	In \triangle ABC and \triangle DEF	shown on diagram)	
	1. $AP = DE$ (Construction)		
	2. $AQ = DF$ (Construction)		
	3. $\widehat{\mathbf{A}} = \widehat{\mathbf{D}}$ (Given)		
	$\therefore \Delta \mathbf{APQ} \equiv \Delta \mathbf{DEF} (SAS)$		
	Now $\mathbf{A}\mathbf{\widehat{P}}\mathbf{Q} = \mathbf{D}\mathbf{\widehat{E}}\mathbf{F}$	✓ S/R	
	But $\mathbf{D}\mathbf{\hat{E}}\mathbf{F} = \mathbf{\widehat{B}}$ (Given)	✓ S	
	$\therefore \mathbf{A}\widehat{\mathbf{P}}\mathbf{Q} = \widehat{\mathbf{B}}$	✓ S	
	$PQ \parallel BC$ (Corresponding angles =)	✓ S/R	
	$\frac{AB}{AB} = \frac{AC}{AC}$ (Prop. Thm. PO BC)	√ S /D	
	AP AY (110p. 11m. 10mbc)	V S/K	
	$\frac{AB}{AB} = \frac{AC}{AB}$ (Construction AP = DE	✓R	
	$\mathbf{DE} \mathbf{DF} \qquad (\mathbf{T} = \mathbf{DF})$		(7)
	and $AQ = DF$)		(,)
421	In ADAH and AOCH		
7.2.1			
	1. $D\widehat{A}H = O\widehat{C}H = 90^{\circ}$ (Radius \perp Tangent)	✓ S ✓ R	
	2. $\hat{\mathbf{H}}_2$ is common	√S	
	3. $\mathbf{A}\mathbf{\widehat{D}}\mathbf{H} = \mathbf{C}\mathbf{\widehat{O}}\mathbf{H}$ (Remaining angles)	~	(4)
	$\therefore \Delta \mathbf{DAH} \parallel \!\!\mid \Delta \mathbf{OCH} \qquad (AAA)$	\checkmark R(AAA)	(.)
		()	

Mathematics

4.2.2	$\frac{DA}{OC} = \frac{DH}{OH} = \frac{AH}{CH} \qquad (\Delta DAH \parallel \Delta OCH)$	✓S/R	
	$OH = \frac{DH \times OC}{DA}$	√S	
	DA = DC (Tangents drawn from common point equal)	✓S✓R	
	AO = OC (Radii of a circle)	✓S√R	
	Therefore		
	$OH = \frac{AO. DH}{DC}$		
			(6)
4.2.3	In $\triangle ABF$ and $\triangle BJF$		
	1. $\mathbf{B}\widehat{\mathbf{A}}F = \mathbf{J}\widehat{\mathbf{B}}F$ (Tangent – Chord Theorem)	✓S√R	
	2. $\hat{\mathbf{F}}$ is common)	✓S	
	3. $\mathbf{A}\mathbf{\widehat{B}}\mathbf{F} = \mathbf{B}\mathbf{\widehat{J}}\mathbf{F}$ (Remaining angles)		
	$\therefore \Delta \mathbf{ABF} \parallel \! \mid \Delta \mathbf{BJF} \ (AAA)$	✓S✓R	
	$\therefore \frac{AB}{BJ} = \frac{BF}{JF} = \frac{AF}{BF} \qquad (\Delta ABF \parallel \parallel \Delta BJF)$	√S	
	$\mathbf{BF^2} = \mathbf{JF} \cdot \mathbf{AF}$		
			(6)
			[23]

6 NSC – Marking Guideline

QUESTION	5
-----------------	---

QUES	110N 5		
	3b B C C C C C C C C C C C C C C C C C C		
5.1	Let AE = 2a therefore EB = 3a $\frac{AF}{FG} = \frac{2}{3}$ (Prop. Thm.; FE//GB) or (Line // one side of Δ)	✓S ✓R	(2)
5.2	Let $AF = 2b$ and $FG = 3b$ Then $CG = b$ (Given $AF = 2CG$)	✓S	
	$\frac{CH}{HE} = \frac{CG}{GF} = \frac{b}{3b}$ (Prop. Thm.; GH//FE) or (Line // one side of Δ)	✓S✓R	
	$\therefore \frac{CH}{HE} = \frac{1}{3}$	✓S	(4)
5.3	$\frac{AE}{AB} = \frac{AF}{AG} = \frac{FE}{GB} = \frac{2}{5} \dots \text{ (Prop. Thm; FE GB) or (Line // one side of \Delta)}$		
	C $\widehat{\mathbf{G}}\mathbf{B} = \mathbf{G}\widehat{\mathbf{F}}\mathbf{E}$ (Corresp Angles ; FE GB) Let FE = 2x and GB = 5x Then	✓S/R	
	$\frac{\text{Area of } \triangle BCG}{\text{Area of } \triangle AFE} = \frac{\frac{1}{2}(b)(5x) \sin C\widehat{G}B}{1}$ 2b	✓S	
	Area of $\triangle AFE = \frac{1}{2}(2b)(2x) \sin AFE$ = $\frac{1}{2}(b)(5x) \sin C\widehat{G}B$	✓S	
	$\frac{1}{2}(2b)(2x)\sin(180^\circ - C\widehat{G}B)$ b 5	✓S	
	$=\frac{1}{4}$		(4)
	OR		
	Area of \triangle BCG = $\frac{1}{6}$ Area of \triangle ABC(Equal Heights)		
	Area of $\triangle AEC = \frac{2}{3}$ Area of $\triangle ABC$ (Equal Heights) Area of $\triangle AEC = \frac{2}{3}$ Area of $\triangle ABC$ (Equal Heights)		
	Area of $\triangle AFE = \frac{5}{15}$ Area of $\triangle ABC$	v S	
	15 Area of \triangle BCG 15 5	✓S	
	$\overline{\text{Area of } \triangle \text{ AFE}} = \overline{12} = \overline{4}$		(4) [10]
L	1	1	1 1 2 1

6.1.1			
	$32^{\circ} 128^{\circ} 64^{\circ} p 64^{\circ} 128^{\circ} 13^{\circ} 13^$	A√diagram	
	$\cos 52^{\circ} = \cos[2(26^{\circ})] \\ = 2\cos^2 26^{\circ} - 1 \\ = 2(\frac{1}{p})^2 - 1$	A√writing as double angle A√expansion CA√answer	(4)
6.1.2	$\sin 71^{\circ} = \sin(45^{\circ} + 26^{\circ})$ = sin 45° cos 26° + cos 45° sin 26° = $\frac{\sqrt{2}}{2} \cdot \frac{1}{p} + \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{p^2 - 1}}{p}$	$A \checkmark sin(45^\circ + 26^\circ)$ A ✓ compound angle expansion CA CA ✓ ✓ each term	(4)
6.2	$\frac{\cos(-180^{\circ}) \cdot \tan \theta \cdot \cos 690^{\circ} \cdot \sin (\theta - 180^{\circ})}{\cos^{2}(\theta - 90^{\circ})}$ $= \frac{\cos(180^{\circ}) \times \frac{\sin \theta}{\cos \theta} \cdot \cos 30^{\circ} \cdot (-\sin \theta)}{\sin^{2} \theta}$ $= \frac{(-1) \times \frac{\sin \theta}{\cos \theta} \cdot \left(\frac{\sqrt{3}}{2}\right)(-\sin \theta)}{\sin^{2} \theta}$ $= \frac{\frac{\sqrt{3} \sin^{2} \theta}{2 \cos \theta}}{\sin^{2} \theta}$ $\sqrt{3}$	$A \sqrt{\frac{\sin \theta}{\cos \theta}}$ $A \sqrt{\cos 30^{\circ}}.$ $A \sqrt{-\sin \theta}$ $CA \sqrt{\frac{\sqrt{3}}{2}} \text{or } 0,866$	(5)
6.3	$= \frac{1}{2 \cos \theta}$ LHS = $\cos 0^{\circ} + \cos 1^{\circ} + \cos 2^{\circ} + \dots + \cos 178^{\circ} + \cos 179^{\circ} + \cos 180^{\circ} + 6\sin 90^{\circ}$ $= \cos 0^{\circ} + \cos 1^{\circ} + \cos 2^{\circ} + \dots + \cos 2^{\circ} + \cos 1^{\circ}$	$A \sqrt{-\cos 2^{\circ}}$ $A \sqrt{-\cos 1^{\circ}}$	
	$-\cos 0^{\circ} + \cos 1^{\circ} + \cos 2^{\circ} + \dots - \cos 2^{\circ} - \cos 1^{\circ}$ $-\cos 0^{\circ} + 6\sin 90^{\circ}$ $= 6 = \text{RHS}$ OR $LHS = (\cos 0^{\circ} + \cos 180^{\circ}) + (\cos 1^{\circ} + \cos 179^{\circ}) + (\cos 2^{\circ} + \cos 178^{\circ}) \dots \dots + 6\sin 90^{\circ}$ $LHS = (0) + (0) + (0) \dots \dots + 6\sin 90^{\circ}$	Av $-\cos \theta$ Av All terms cancel except 6 Av $(\cos \theta^{\circ} + \cos 180^{\circ})$ Av $(\cos \theta^{\circ} + \cos 179^{\circ})$ Av $(\cos 2^{\circ} + \cos 178^{\circ})$	(4)
	LHS = 6	A✓ All terms cancel except 6	[17]

7.1	$1-\sin 2x$		
	sin x - cos x		
	$\sin^2 x - 2\sin x \cos x + \cos^2 x$	$\Delta \checkmark \sin^2 r + \cos^2 r = 1$	
	$=$ $\frac{\sin x - \cos x}{\sin x - \cos x}$	$A \checkmark 2 \sin x \cos x$	
	$(\sin x - \cos x)^2$		
	$=\frac{1}{\sin x - \cos x}$	$A\checkmark(\sin x - \cos x)^2$	
	= sin x - cos x		
	= RHS		
			(3)
7.2	$\tan 3x \cdot \frac{1}{\tan 24^\circ} - 1 = 0$		
		$A\checkmark$ transposing and forming	
	$\tan 3x = \tan 24$	equation	
	$3x=24^{^{\mathrm{o}}}+180k$; $k\in Z$	$A\checkmark 3x = 24^{\circ} A\checkmark 180k$	(5)
	$x = 8^{\circ} + 60k \cdot k \in \mathbb{Z}$	$A \checkmark k \in Z$	
		$CA \checkmark x = 8 + 60k$	
		Note: If calculator is used	
		allocated	
7.3			
,	$2\left[\frac{\sqrt{3}}{2}\sin x + \frac{1}{2}\cos x\right]$	$ \mathbf{A}\checkmark 2 \frac{\sqrt{3}}{2}\sin x + \frac{1}{2}\cos x $	
	$2\left[\frac{\sqrt{3}}{2}\sin x + \frac{1}{2}\cos x\right]$ $= 2[\sin 60^{\circ}\sin x + \cos 60^{\circ}\cos x]$	$A \checkmark 2 \left[\frac{\sqrt{3}}{2} \sin x + \frac{1}{2} \cos x \right]$ $A \checkmark [\sin 60^{\circ} \sin x + \cos 60^{\circ} \cos x]$	
	$2\left[\frac{\sqrt{3}}{2}\sin x + \frac{1}{2}\cos x\right]$ $= 2[\sin 60^{\circ} \sin x + \cos 60^{\circ} \cos x]$ $= 2[\cos(x - 60^{\circ})]$	$A \checkmark 2 \left[\frac{\sqrt{3}}{2} \sin x + \frac{1}{2} \cos x \right]$ $A \checkmark [\sin 60^{\circ} \sin x + \cos 60^{\circ} \cos x]$	
	$2\left[\frac{\sqrt{3}}{2}\sin x + \frac{1}{2}\cos x\right]$ = 2[sin 60° sin x + cos 60° cos x] = 2[cos(x - 60°)] : Maximum value is 2, since maximum value of	$A \checkmark 2 \left[\frac{\sqrt{3}}{2} \sin x + \frac{1}{2} \cos x \right]$ $A \checkmark [\sin 60^{\circ} \sin x + \cos 60^{\circ} \cos x]$ $A \checkmark \cos (x - 60^{\circ})$	
	$2\left[\frac{\sqrt{3}}{2}\sin x + \frac{1}{2}\cos x\right]$ = 2[sin 60° sin x + cos 60° cos x] = 2[cos(x - 60°)] \therefore Maximum value is 2, since maximum value of cos (x - 60°) = 1	$A \checkmark 2 \left[\frac{\sqrt{3}}{2} \sin x + \frac{1}{2} \cos x \right]$ $A \checkmark [\sin 60^{\circ} \sin x + \cos 60^{\circ} \cos x]$ $A \checkmark \cos (x - 60^{\circ})$ $CA \checkmark \text{ answer}$	
	$2\left[\frac{\sqrt{3}}{2}\sin x + \frac{1}{2}\cos x\right]$ = 2[sin 60° sin x + cos 60° cos x] = 2[cos(x - 60°)] :: Maximum value is 2, since maximum value of cos (x - 60°) = 1	$A \checkmark 2 \left[\frac{\sqrt{3}}{2} \sin x + \frac{1}{2} \cos x \right]$ $A \checkmark [\sin 60^{\circ} \sin x + \cos 60^{\circ} \cos x]$ $A \checkmark \cos (x - 60^{\circ})$ $CA \checkmark \text{ answer}$	(4)
	$2\left[\frac{\sqrt{3}}{2}\sin x + \frac{1}{2}\cos x\right]$ = 2[sin 60° sin x + cos 60° cos x] = 2[cos(x - 60°)] \therefore Maximum value is 2, since maximum value of cos (x - 60°) = 1 OR	$A \checkmark 2 \left[\frac{\sqrt{3}}{2} \sin x + \frac{1}{2} \cos x \right]$ $A \checkmark [\sin 60^{\circ} \sin x + \cos 60^{\circ} \cos x]$ $A \checkmark \cos (x - 60^{\circ})$ $CA \checkmark \text{ answer}$ OR	(4)
	$2\left[\frac{\sqrt{3}}{2}\sin x + \frac{1}{2}\cos x\right]$ = 2[sin 60° sin x + cos 60° cos x] = 2[cos(x - 60°)] \therefore Maximum value is 2, since maximum value of cos (x - 60°) = 1 OR $2\left[\frac{\sqrt{3}}{2}\sin x + \frac{1}{2}\cos x\right]$	$A \checkmark 2 \left[\frac{\sqrt{3}}{2} \sin x + \frac{1}{2} \cos x \right]$ $A \checkmark [\sin 60^{\circ} \sin x + \cos 60^{\circ} \cos x]$ $A \checkmark \cos (x - 60^{\circ})$ $CA \checkmark \text{ answer}$ OR $A \checkmark 2 \left[\frac{\sqrt{3}}{2} \sin x + \frac{1}{2} \cos x \right]$	(4)
	$2\left[\frac{\sqrt{3}}{2}\sin x + \frac{1}{2}\cos x\right]$ = 2[sin 60° sin x + cos 60° cos x] = 2[cos(x - 60°)] \therefore Maximum value is 2, since maximum value of cos (x - 60°) = 1 OR $2\left[\frac{\sqrt{3}}{2}\sin x + \frac{1}{2}\cos x\right]$ = 2[cos 30° sin x + sin 30° cos x]	$A \checkmark 2 \left[\frac{\sqrt{3}}{2} \sin x + \frac{1}{2} \cos x \right]$ $A \checkmark [\sin 60^{\circ} \sin x + \cos 60^{\circ} \cos x]$ $A \checkmark \cos (x - 60^{\circ})$ $CA \checkmark \text{ answer}$ OR $A \checkmark 2 \left[\frac{\sqrt{3}}{2} \sin x + \frac{1}{2} \cos x \right]$	(4)
	$2 \left[\frac{\sqrt{3}}{2} \sin x + \frac{1}{2} \cos x \right]$ = 2[sin 60° sin x + cos 60° cos x] = 2[cos(x - 60°)] \therefore Maximum value is 2, since maximum value of cos (x - 60°) = 1 OR $2 \left[\frac{\sqrt{3}}{2} \sin x + \frac{1}{2} \cos x \right]$ = 2[cos 30° sin x + sin 30° cos x]	$A \checkmark 2 \left[\frac{\sqrt{3}}{2} \sin x + \frac{1}{2} \cos x \right]$ $A \checkmark [\sin 60^{\circ} \sin x + \cos 60^{\circ} \cos x]$ $A \checkmark \cos (x - 60^{\circ})$ $CA \checkmark \text{ answer}$ OR $A \checkmark 2 \left[\frac{\sqrt{3}}{2} \sin x + \frac{1}{2} \cos x \right]$ $A \checkmark 2 [\cos 30^{\circ} \sin x + \frac{1}{2} \cos x]$	(4)
	$2 \left[\frac{\sqrt{3}}{2} \sin x + \frac{1}{2} \cos x \right]$ = 2[sin 60° sin x + cos 60° cos x] = 2[cos(x - 60°)] \therefore Maximum value is 2, since maximum value of cos (x - 60°) = 1 OR $2 \left[\frac{\sqrt{3}}{2} \sin x + \frac{1}{2} \cos x \right]$ = 2[cos 30° sin x + sin 30° cos x] = 2[sin(x + 30°)]	$A \checkmark 2 \left[\frac{\sqrt{3}}{2} \sin x + \frac{1}{2} \cos x \right]$ $A \checkmark [\sin 60^{\circ} \sin x + \cos 60^{\circ} \cos x]$ $A \checkmark \cos (x - 60^{\circ})$ $CA \checkmark \text{ answer}$ OR $A \checkmark 2 \left[\frac{\sqrt{3}}{2} \sin x + \frac{1}{2} \cos x \right]$ $A \checkmark 2 [\cos 30^{\circ} \sin x + \sin 30^{\circ} \cos x]$	(4)
	$2 \left[\frac{\sqrt{3}}{2} \sin x + \frac{1}{2} \cos x \right]$ = 2[sin 60° sin x + cos 60° cos x] = 2[cos(x - 60°)] \therefore Maximum value is 2, since maximum value of cos (x - 60°) = 1 OR $2 \left[\frac{\sqrt{3}}{2} \sin x + \frac{1}{2} \cos x \right]$ = 2[cos 30° sin x + sin 30° cos x] = 2[sin(x + 30°)] \therefore Maximum value is 2, since maximum value of	$A \checkmark 2 \left[\frac{\sqrt{3}}{2} \sin x + \frac{1}{2} \cos x \right]$ $A \checkmark [\sin 60^{\circ} \sin x + \cos 60^{\circ} \cos x]$ $A \checkmark \cos (x - 60^{\circ})$ $CA \checkmark \text{ answer}$ OR $A \checkmark 2 \left[\frac{\sqrt{3}}{2} \sin x + \frac{1}{2} \cos x \right]$ $A \checkmark 2 [\cos 30^{\circ} \sin x + \sin 30^{\circ} \cos x]$ $A \checkmark \sin (x + 30^{\circ})$	(4)
	$2 \left[\frac{\sqrt{3}}{2} \sin x + \frac{1}{2} \cos x \right]$ = 2[sin 60° sin x + cos 60° cos x] = 2[cos(x - 60°)] \therefore Maximum value is 2, since maximum value of cos (x - 60°) = 1 OR $2 \left[\frac{\sqrt{3}}{2} \sin x + \frac{1}{2} \cos x \right]$ = 2[cos 30° sin x + sin 30° cos x] = 2[sin(x + 30°)] \therefore Maximum value is 2, since maximum value of sin (x + 30°) = 1	$A \checkmark 2 \left[\frac{\sqrt{3}}{2} \sin x + \frac{1}{2} \cos x \right]$ $A \checkmark [\sin 60^{\circ} \sin x + \cos 60^{\circ} \cos x]$ $A \checkmark \cos (x - 60^{\circ})$ $CA \checkmark \text{ answer}$ OR $A \checkmark 2 \left[\frac{\sqrt{3}}{2} \sin x + \frac{1}{2} \cos x \right]$ $A \checkmark 2 [\cos 30^{\circ} \sin x + \sin 30^{\circ} \cos x]$ $A \checkmark \sin (x + 30^{\circ})$ $CA \checkmark \text{ answer}$	(4)
	$2 \left[\frac{\sqrt{3}}{2} \sin x + \frac{1}{2} \cos x \right]$ = 2[sin 60° sin x + cos 60° cos x] = 2[cos(x - 60°)] \therefore Maximum value is 2, since maximum value of cos (x - 60°) = 1 OR $2 \left[\frac{\sqrt{3}}{2} \sin x + \frac{1}{2} \cos x \right]$ = 2[cos 30° sin x + sin 30° cos x] = 2[sin(x + 30°)] \therefore Maximum value is 2, since maximum value of sin (x + 30°) = 1	$A \checkmark 2 \left[\frac{\sqrt{3}}{2} \sin x + \frac{1}{2} \cos x \right]$ $A \checkmark [\sin 60^{\circ} \sin x + \cos 60^{\circ} \cos x]$ $A \checkmark \cos (x - 60^{\circ})$ $CA \checkmark \text{ answer}$ OR $A \checkmark 2 \left[\frac{\sqrt{3}}{2} \sin x + \frac{1}{2} \cos x \right]$ $A \checkmark 2 [\cos 30^{\circ} \sin x + \frac{1}{2} \cos x]$ $A \checkmark 2 [\cos 30^{\circ} \sin x + \frac{1}{2} \cos x]$ $A \checkmark \sin (x + 30^{\circ})$ $CA \checkmark \text{ answer}$	(4)

		A \checkmark for both <i>x</i> – intercepts A \checkmark for both turning points	
			(2)
7.4.2	$\cos(x-30^\circ)=0,5$	$\mathbf{A}\checkmark \mathbf{x} - 30^\circ = 60^\circ$	
	$2\cos(x-30^{\circ})=1$	and $x - 30^{\circ} = -60^{\circ}$	
	$x - 30^{\circ} = 60^{\circ}$ or $x - 30^{\circ} = -60^{\circ}$	CA \checkmark 90° and -30°	
	$x = 90^{\circ} at Q or x = -30^{\circ} at P$	$CACA \checkmark \checkmark$ for P and Q	
			(4)
			[18]