

NATIONAL SENIOR CERTIFICATE

GRADE 12

JUNE 2021

MATHEMATICS P2 (EXEMPLAR)

MARKS: 150

TIME: 3 hours

This question paper consists of 14 pages, including an information sheet.

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

- 1. This question paper consists of 11 questions.
- 2. Answer ALL the questions in the ANSWER BOOK provided.
- 3. Clearly show ALL calculations, diagrams, graphs, et cetera that you have used in determining your answers.
- 4. Answers only will NOT necessarily be awarded full marks.
- 5. You may use an approved scientific calculator (non-programmable and non-graphical), unless stated otherwise.
- 6. If necessary, round off answers to TWO decimal places, unless stated otherwise.
- 7. Diagrams are NOT necessarily drawn to scale.
- 8. An information sheet with formulae is included at the end of the question paper.
- 9. Write neatly and legibly.

The box and whisker diagram below represents soccer clubs' standings from position 1 to 14 after playing an equal number of games.

The following table is partly completed, from top (position 1) to bottom (position 14):

Position	1	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Points		a	59	58	b	49	45	с	42	37	36	d	32	32	e
1.1	W	rite c	lown	the va	lues c	of <i>a, b,</i>	<i>c</i> , <i>d</i>	and <i>e</i> .							
1.2	Co	ommo	ent or	the s	kewn	ess of	the da	ta.							
1.3	Or agi	ne co ree w	mmei vith th	ntator ne con	says t nment	the top ator of	o four r not?	teams Justif	each ly you	had a r ansv	t least ver.	50 po	ints. I	Do yoi	L

A school organised a weekend camp for the 90 grade 12 learners doing Mathematics. Learners wrote a pre-test (test before classes started) and a post-test (test after classes finished), out of 50 marks. Below is the graph representing the data.

- 2.1 Use the graph to conclude whether the camp had a positive impact (improved performance) or not. Give a reason for your answer.
- 2.2 Write down the modal class of pre-test marks.

(1)

(2)

- 2.3 Is the mean mark of the pre-test greater than, less than or the same as that of the (1) post-test?
- 2.4 Complete the frequency and cumulative frequency table in the ANSWER BOOK. (4)

Monka	Freq	uency	Cumulative Frequency			
IVIALKS	Pre-test Post-test		Pre-test	Post-test		
$0 \le x < 10$						
$10 \le x < 20$						
$20 \le x < 30$						
$30 \le x < 40$						
$40 \le x < 50$						

2.5 Draw the cumulative frequency graphs (ogives) using the grid provided in the ANSWER BOOK.

(3)

2.6 The teacher targeted to have 50% more learners to get 60% or more in post-test compared to pre-test. Determine, with the necessary calculations or justification, whether the teacher achieved the target or not.

(3) [14]

 Δ RPQ with vertices R(2; 6), P (-5; 0) and Q(t; -4) is given below. RQ is perpendicular to the *x*-axis and cuts the *x*-axis at S. O is the origin.

3.1	Write down the value of <i>t</i> .	(1)
3.2	Determine:	
	3.2.1 the length of PR. Leave your answer in simplest surd form.	(2)
	3.2.2 the gradient of PR.	(2)
3.3	Determine the size of $P\hat{R}Q$.	(5)
3.4	Determine whether $\triangle QPR$ is right angled at P or not.	(4)
3.5	Determine the equation of the line parallel to PQ and passing through the origin	n. (3)
3.6	Determine the value of $\frac{\text{Area of } \Delta \text{SPR}}{\text{Area of } \Delta \text{PRQ}}$.	(5) [22]

In the diagram below, the smaller circle with diameter KM passing through centre L has a tangent at M and *y*-intercept at N. The equation of the smaller circle is

 $x^{2} + y^{2} + 6x - 6y + 9 = 0$

The bigger circle passes through M. The origin, O and K (-5; 5) is given.

4.1 Determine:

	4.1.1	the coordinates of L and the length of the radius of the smaller circle	(4)			
	4.1.2	the coordinates of M	(3)			
	4.1.3	the equation of tangent AMB in the form $y = \dots$	(4)			
	4.1.4	the coordinates of N	(2)			
4.2	If the coordinates of the centre of the bigger circle is a result of shifting the coordinates of L, 5 units to the right and 7 units down.					
	4.2.1	Write down the coordinates of the centre of the new circle.	(2)			
	4.2.2	Determine whether the diameter of the bigger circle from a common point of contact M passes through the origin or not.	(4) [19]			

5.1 Given that
$$\sin \alpha = -\frac{5}{13}$$
 and $\tan \beta = -\frac{3}{4}$ where $\alpha, \beta \in [90^{\circ};270^{\circ}]$, calculate, without the use of a calculator, the value of:

5.1.1
$$\sin(\alpha + \beta)$$
 (5)

5.1.2
$$\cos 2\beta$$
 (3)

5.1.3
$$\tan(-\alpha - 180^{\circ})$$
 (2)

5.2 Consider the identity:
$$\frac{\sin \theta}{1 - \cos \theta} - \frac{\cos \theta}{\sin \theta} = \frac{1}{\sin \theta}$$

5.2.1 For which value(s) of
$$\theta$$
, for $\theta \in [0^\circ; 360^\circ]$ is the identity undefined? (2)

5.3 If $\tan x = 3k$ and $\tan y = 2k$,

determine $\frac{\sin(x-y)}{\cos x \cdot \cos y}$ in terms of k

(4) [**20**]

(4)

Given the functions:

 $f(x) = \cos(x-60^\circ)$ and $g(x) = \sin 3x$ for $x \in [-90^\circ; 180^\circ]$

6.1	Write d	Write down:							
	6.1.1	the amplitude of f							
	6.1.2	the period of g	(1)						
6.2	Determ	ine the values of x for which $f(x) = g(x)$ for $x \in [-90^{\circ}; 180^{\circ}]$	(6)						
6.3	On the same set of axes, sketch the graph of f and g for $x \in [-90^\circ; 180^\circ]$ in the								

6.3 On the same set of axes, sketch the graph of f and g for $x \in [-90^\circ; 180^\circ]$ in the SPECIAL ANSWER BOOK. Show ALL intercepts with the axes as well as turning and end points. (5)

6.4 For which value(s) of x is
$$\frac{g(x)}{f(x)}$$
 undefined for $x \in [-90^\circ; 180^\circ]$? (1)

6.5 Write down the equation of h(x) if h(x) is a result of shifting f(x), 15⁰ to the left. (1)

[15]

The diagram below shows $\triangle ABC$ with lengths 5, 5 and 4 units.

Determine the numerical value of cos A-cos B

(5) [**5**]

Give reasons for your statements in QUESTIONS 8, 9, 10 and 11.

QUESTION 8

In the diagram below, O is the centre of circle A, B, C and D. M is the midpoint of chord CD. Line OM is drawn. AB is the diameter. AB = 22 cm and OM = 7 cm.

Determine, with reasons, the length of CD.

(5) [**5**]

In the diagram below, a bigger circle PQRST intersects a smaller circle at R and S. VW is a tangent of the smaller circle at U. SUQ and TUR are straight lines.

Chords RQ, QP, PT, QT, TS and SR are also drawn. $\hat{RTQ} = x$.

9.1	Prove, with reasons, that $\Delta RUS \parallel \Delta QUT$.	(3)
9.2	Determine, with reasons, THREE other angles each equal to x .	(4)
9.3	If $\hat{RQT} = 90^{\circ} - x$, determine :	
	9.3.1 whether QT is a diameter or not.	(4)
	9.3.2 $\hat{\mathbf{P}}$	(2)
9.4	If it is further given that $UQ = UT$, show that:	
	9.4.1 RS QT	(2)
	9.4.2 VW is also a tangent to the circle passing through QUT at U.	(2) [17]

(5)

QUESTION 10

10.1 In the diagram below, O is the centre of circle FGH with DG a tangent at G.

Prove the theorem which states that $\stackrel{\circ}{DGH}=\stackrel{\circ}{F}$.

10.2 In the diagram below, O is the centre of circle LMP with tangents KL and KP at L and P respectively. $OLM = 67^{\circ}$

10.2.1	What type of quadrilateral is KLOP?	(1)
10.2.2	Give, with reasons, 3 angles each equal to 90°.	(5)
10.2.3	Prove, stating reasons, that KLOP is a cyclic quadrilateral.	(2)
10.2.4	Hence, determine $\stackrel{\circ}{K}$.	(5) [18]

In the diagram below, $\triangle ABC$ is drawn with PQ || BC and RS || AC. AQ : QC = 3 : 5 and BR : RA = 1 : 3

Prove that AP = PR.

(7) [7]

INFORMATION SHEET: MATHEMATICS

$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$					
A = P(1+ni)	A = P(1 - ni)		$A = P(1-i)^n$		$A = P(1+i)^n$
$T_n = a + (n-1)d$	$\mathbf{S}_n = \frac{n}{2} \Big[2a + (n) \Big]$	(n-1)d			
$T_n = ar^{n-1}$	$S_n = \frac{a(r^n - 1)}{r - 1}$	<u>)</u> ;r≠	≤ <u>1</u>	$S_{\infty} = \frac{1}{2}$	$\frac{a}{1-r}; -1 < r < 1$
$F = \frac{x\left[(1+i)^n - 1\right]}{i}$	$P = \frac{x[1]}{x[1]}$	$\frac{1-(1+i)^{-1}}{i}$	<u>n]</u>		
$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f}{h}$	<u>(x)</u>				
$d = \sqrt{(x_2 - x_1)^2 + (y_2 - x_1)^2}$	$(y_1)^2$	$M\left(\frac{x_1}{x_1}\right)$	$\frac{x_1}{2}; \frac{y_1 + y_2}{2}$		
$y = mx + c$ $y - y_1$	$=m(x-x_1)$		$m = \frac{y_2 - y_1}{x_2 - x_1}$		$m = \tan \theta$
$(x-a)^2 + (y-b)^2 = r^2$					
In $\triangle ABC$: $\frac{a}{\sin A} = \frac{b}{\sin A}$	$\frac{c}{B} = \frac{c}{\sin C}$		$a^2 = b^2 + c^2$	-2 <i>bc</i> .co	s A
area∆ABC =	$=\frac{1}{2}ab.\sin C$				
$\sin(\alpha+\beta)=\sin\alpha.\cos\beta$	$\beta + \cos \alpha . \sin \beta$		$\sin(\alpha - \beta) =$	$\sin \alpha.co$	$s\beta - \cos\alpha.\sin\beta$
$\cos(\alpha+\beta)=\cos\alpha.\cos\beta$	$-\sin \alpha . \sin \beta$		$\cos(\alpha - \beta) =$	$\cos \alpha . \cos \alpha$	$s\beta + \sin \alpha . \sin \beta$
$\cos 2\alpha = \begin{cases} \cos^2 \alpha - \sin^2 \alpha \\ 1 - 2\sin^2 \alpha \\ 2\cos^2 \alpha - 1 \end{cases}$		$\sin 2\alpha$	$= 2\sin \alpha .\cos \alpha$	α	
$\overline{x} = \frac{\sum x}{n}$			$\sigma^2 = \frac{\sum_{i=1}^n (x_i - x_i)}{n}$	$(\overline{x})^2$	
$P(A) = \frac{n(A)}{n(S)}$			P(A or B) = I	P(A) + P(A)	(B) - P(A and B)
$\hat{y} = a + bx$			$b = \frac{\sum (x - \bar{x})}{\sum (x - \bar{x})}$	$\frac{(y-\bar{y})}{\bar{x})^2}$	