## SA's Leading Past Year

## Exam Paper Portal

## STUD.Y

# You have Downloaded, yet Another Great Resource to assist you with your Studies : 

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za


> SAEAMM RADPERES

## EASTERN CAPE

Department of Education

## OR TAMBO INLAND DISTRICT

## GRADE 12



## Date: 16 April 2021

Marks: 50
Time: 1 hour

## This question paper consists of 5 pages including cover page

## INSTRUCTIONS

1. This question paper consists of THREE questions. Answer all the questions.
2. Clearly show all calculations you have used in determining your answers.
3. Write neatly and legibly.
4. Give all your answers to TWO decimal places, except stated otherwise.
5. Diagrams are NOT necessarily drawn to scale.

## QUESTION 1

1.1 The following geometric sequence is given: $10 ; 5 ; 2,5 ; 1,25 ; \ldots$
1.1.1 Calculate the value of the $5^{\text {th }}$ term, $T_{5}$, of this sequence
1.1.2 Determine the $n^{\text {th }}$ term, $T_{n}$, in terms of $n$.
1.1.3 Explain why the infinite series $10+5+2,5+1,25+\ldots$ exists
1.2 The sum of the first $p$ terms of a sequence of numbers is given by:

$$
\begin{equation*}
S_{p}=p(p+1)(p+2) \tag{3}
\end{equation*}
$$

Calculate the value of $T_{20}$
1.3 Evaluate: $\sum_{k=1}^{\infty}\left(\frac{1}{3}\right)^{k}-\sum_{k=2}^{40} 5$
1.4 Atlehang generates a sequence, which he claims that the sequence can be arithmetic and also be geometric if and only if the first term in the sequence 1 .

Is he correct? Motivate your answer by showing all your calculations
(18)

## QUESTION 2

2.1 In the diagram below, $\triangle P Q R$ is given such that $\mathrm{QT}=3$ units, $\mathrm{TV}=5$ units, TR $=8$ units and $\mathrm{ST} \| \mathrm{PV}$


Determine the following with reasons:

### 2.1.1 <br> $$
\begin{equation*} \frac{Q S}{P S} \tag{2} \end{equation*}
$$

2.1.2 $\frac{\text { Area } \triangle P Q R}{\text { Area of quadrilateral } P S T R}$
2.2 In the diagram, a circle with a tangent CD is drawn. $\mathrm{A}, \mathrm{B}, \mathrm{D}$, and E are points on the circumference of the circle. $\mathrm{AE}=\mathrm{AB}$ and $\mathrm{AB} \| E D$.
$\hat{A}_{1}=x$

2.2.1 Give, with reasons, three more angles equal to $x$.
2.2.2 Prove that $\triangle D E A \| \Delta D B C$
2.2.3 Prove that:
(a) $D C=\frac{B C \times A D}{D B}$
(b) $E A=\frac{D C \times D E}{A D}$
2.2.4 Hence, prove that $A E^{2}=B C . E D$
(20)

## QUESTION 3

In the diagram below, reflex $T \hat{O P}=\alpha$ and P has coordinates $(-5 ;-12)$.

3.1 Determine the value of each of the following trigonometric ratios WITHOUT using a calculator:

### 3.1.1 $\cos \alpha$

3.1.2 $\tan \left(180^{\circ}-\alpha\right)$
3.2 Simplify the following expression into a single trigonometric ratio:

$$
\begin{equation*}
\frac{\sin \left(x-180^{\circ}\right) \cdot \cos \left(x-90^{\circ}\right)}{\cos \left(-x-360^{\circ}\right) \cdot \sin \left(90^{\circ}+x\right)} \tag{6}
\end{equation*}
$$

3.3 Given: $\cos (A-B)=\cos A \cos B+\sin A \sin B$

Use the identity for $\cos (A-B)$ to derive an identity for $\sin (A+B)$

## INFORMATION SHEET: MATHEMATICS

$$
\begin{aligned}
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& A=P(1+n i) \quad A=P(1-n i) \quad A=P(1-i)^{n} \quad A=P(1+i)^{n} \\
& \sum_{i=1}^{n} 1=n \quad \sum_{i=1}^{n} i=\frac{n(n+1)}{2} \quad T_{n}=a+(n-1) d \quad \mathrm{~S}_{n}=\frac{n}{2}(2 a+(n-1) d) \\
& T_{n}=a r^{n-1} \quad S_{n}=\frac{a\left(r^{n}-1\right)}{r-1} ; \quad r \neq 1 \quad S_{\infty}=\frac{a}{1-r} ;-1<r<1 \\
& F=\frac{x\left[(1+i)^{n}-1\right]}{i} \quad P=\frac{x\left[1-(1+i)^{-n}\right]}{i} \\
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \quad \mathbf{M}\left(\frac{x_{1}+x_{2}}{2} ; \frac{y_{1}+y_{2}}{2}\right) \\
& y=m x+c \quad y-y_{1}=m\left(x-x_{1}\right) \quad m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad m=\tan \theta \\
& (x-a)^{2}+(y-b)^{2}=r^{2} \\
& \text { In } \triangle A B C: \quad \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \quad a^{2}=b^{2}+c^{2}-2 b c, \cos A \quad \text { area } \triangle A B C=\frac{1}{2} a b \cdot \sin C \\
& \sin (\alpha+\beta)=\sin \alpha \cdot \cos \beta+\cos \alpha \cdot \sin \beta \quad \sin (\alpha-\beta)=\sin \alpha \cdot \cos \beta-\cos \alpha \cdot \sin \beta \\
& \cos (\alpha+\beta)=\cos \alpha \cdot \cos \beta-\sin \alpha \cdot \sin \beta \quad \cos (\alpha-\beta)=\cos \alpha \cdot \cos \beta+\sin \alpha \cdot \sin \beta \\
& \cos 2 \alpha=\left\{\begin{array}{l}
\cos ^{2} \alpha-\sin ^{2} \alpha \\
1-2 \sin ^{2} \alpha \\
2 \cos ^{2} \alpha-1
\end{array} \quad \sin 2 \alpha=2 \sin \alpha \cdot \cos \alpha\right. \\
& \bar{r}=\frac{\sum x}{n} \\
& \sigma^{2}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n} \\
& P(A)=\frac{n(A)}{n(S)} \\
& \hat{y}=a+b x \\
& P(A \text { or } B)=P(A)+P(B)-P(A \text { and } B) \\
& b=\frac{\sum(x-\bar{x})(y-\bar{y})}{\sum(x-\bar{x})^{2}}
\end{aligned}
$$

