SA's Leading Past Year

Exam Paper Portal

STUD.Y

You have Downloaded, yet Another Great Resource to assist you with your Studies :

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

> SAEAMM RADPERES

GAUTENG DEPARTMENT OF EDUCATION

JOHANNESBURG NORTH DISTRICT

2021
 GRADE 12
 CONTROL TEST

MARKS : 100
TIME : $\mathbf{2}$ hours

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

1. This question paper consists of $\mathbf{9}$ questions.
2. Answer ALL the questions.
3. Clearly show ALL calculations, diagrams, graphs, etc. which was used in determining the answers.
4. Answers only will not necessarily be awarded full marks.
5. Use an approved scientific calculator (non-programmable and non-graphical), unless stated otherwise.
6. Where necessary, answers should be rounded off to TWO decimal places, unless stated otherwise.
7. Diagrams are NOT necessarily drawn to scale.
8. ANSWER Question 7 on Annexure 7.1-7.2.2
9. ANSWER Question 8 on Annexure 8.1-8.1.3

10. ANSWER Question 9 on Annexure 9.1-9.2

11. Tear off page 12 till page 17 . AND SUBMIT theses pages with your answer scripts .
12. An information sheet is on page 11 of the question paper.
13. Number the questions correctly according to the numbering used in the question paper.
14. Write neatly and legibly.

QUESTION 1

1.1 Solve for x :
1.1.1 $(x-5)(x+1)=0$
1.1.2 $2 x^{2}-11 x+7=0$ (correct to two decimal places)
1.1.3 $x-5 x^{\frac{1}{2}}=-6$
1.2 Calculate a and b if $\sqrt{\frac{5^{2014}-5^{2012}}{6}}=a\left(5^{b}\right)$ and a is not a multiple of 5.
1.3 Solve for x and y :
$1=3 y-x$ and $y^{2}+2 x y=3 x^{2}-7$

QUESTION 2

Given the arithmetic series: $3+10+17+\ldots+150$.
2.1 Write down the fourth term in the series.
2.2 Determine the general term of the series.
2.3 Express the series in sigma notation.

QUESTION 3

3.1 Consider the progression : $3 ; \frac{1}{2} ; 3 ; \frac{4}{10} ; 3 ; \frac{16}{50} ; \ldots \ldots \ldots$
3.1.1 Write down the next TWO terms of the progression.
3.1.2 Calculate the sum of the first thirty-five terms of the progression.
3.2 Calculate: $\quad \sum_{n=3}^{\infty} 5(3)^{1-n}$

QUESTION 4

In the diagram below, the $1^{s t}$ (outer) triangle is an equilateral triangle with sides of 8 cm . A $2^{\text {nd }}$ triangle is drawn within this triangle by joining the midpoints of the sides of the $1^{\text {st }}$ triangle. This process is continued without end.

4.1 What his the perimeter of the $4^{\text {th }}$ triangle?
4.2 Whats is the perimeter of the $n^{\text {th }}$ triangle?

QUESTION 5

5.1 In the sketch below, P is a point on the Cartesian plane, with $P \hat{O} X=\theta$.

Use the sketch to determine the following:

5.1.1 The value of y.
5.1.2 The value of $\frac{2 \sin \theta \cos \theta}{\cos ^{2} \theta-1}$
5.2 Simplify the following, WITHOUT USING A CALCULATOR:
$\frac{\cos \left(180^{\circ}+\theta\right) \cdot \tan \left(720^{\circ}-\theta\right) \cdot \sin ^{2}\left(90^{\circ}-\theta\right)}{\sin \left(180^{\circ}-\theta\right)}+\sin ^{2} \theta$
5.3 If $6 \sin ^{2} \theta-4 \cos ^{2} \theta=-5 \sin \theta \cdot \cos \theta$, determine the general solution for θ.

QUESTION 6

In the sketch below, PS is the median of $\triangle P Q R$, and thus $Q S=S R=x \cdot \hat{Q}=a$ and $Q \hat{P} S=b$.

6.1 Show that $P S=\frac{x \sin a}{\sin b}$
6.2 Express the size of S_{2}, in terms of a and b, without reasons.
6.3 Hence, show that: Area of $\triangle P S R=\frac{x^{2} \sin a \times \sin (a+b)}{2 \sin b}$
6.4 Determine the area of $\triangle P S R$, rounded to two decimal places, if $x=14,2 c m, a=34^{\circ}$ and

$$
\begin{equation*}
b=41^{\circ} . \tag{3}
\end{equation*}
$$

Give reasons for your statements and calculations in QUESTIONS 7, 8 and 9

Use the Annexure's provided to answer QUESTIONS 7, 8 and 9

QUESTION 7

7.1 In the diagram below, AB is a tangent to the circle passing though $\mathrm{B}, \mathrm{E}, \mathrm{C}$ and D

AD cuts the circle at F . AC is drawn.

Give reasons for the following statements:

STATEMENT	REASONS
$\hat{C}_{1}+\hat{C}_{2}=\hat{F}_{2}$	
$\hat{D}_{2}+\hat{E}=180^{\circ}$	
$\hat{B}_{1}=\hat{D}_{1}$	
$\hat{B}_{2}+\hat{B}_{3}+\hat{D}_{1}+\hat{D}_{2}=180^{\circ}$	
$\hat{B}_{2}+\hat{B}_{1}=\hat{C}_{1}+\hat{C}_{2}$	

7.2 In the diagram below, circle centre M intersects a second smaller circle at A and B .
$\mathrm{A}, \mathrm{C}, \mathrm{B}$ and T are points on circle M .
AB is the diameter of the smaller circle.

7.2.1 Determine the size of \hat{C}.
7.2.2 Explain why AMBC is not a cyclic quadrilateral.

QUESTION 8

In the figure below, RDS is a tangent to circle O at $\mathrm{D} . \mathrm{BC}=\mathrm{DC}$, and $C \hat{D} S=40^{\circ}$.

Thus, calculate the size of the following angles, with reasons.

8.1 B $\hat{D} C$
$8.2 \hat{C}$
$8.3 \hat{A}$
$8.4 \hat{O}_{1}$

QUESTION 9

The diagram below is the top view design of a new railway system. There are eight stations being built and these are labelled with letters from A- H.You have been asked to do some calculations fro the railway company. As the engineer you know that:

- $\quad A F \| B E$ and $A C \| G D$.
- $\frac{A B}{B C}=\frac{4}{7}$ and $\frac{A G}{A F}=\frac{9}{17}$.

9.1 Calculate
9.1.1 $\frac{F E}{F C}$.
(3)
9.1.2 $\frac{C D}{D F}$.
9.2 If the straight line distance of the track from F to C is 374 kilometres and its takes 50 hours to build one kilometre of the track, determine the number of hours it will take to build the section from E to D.

$$
\begin{aligned}
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& A=P(1+n i) \quad A=P(1-n i) \quad A=P(1-i)^{n} \quad A=P(1+i)^{n} \\
& \sum_{i=1}^{n} 1=n \quad \sum_{i=1}^{n} i=\frac{n(n+1)}{2} \quad T_{n}=a+(n-1) d \quad S_{n}=\frac{n}{2}(2 a+(n-1) d) \\
& T_{n}=a r^{n-1} \quad S_{n}=\frac{a\left(r^{n}-1\right)}{r-1} \quad ; r \neq 1 \quad \begin{array}{ll}
& S_{\infty} \\
& =\frac{a}{1-r} \quad ;-1<r<1
\end{array} \\
& F=\frac{x\left[(1+i)^{n}-1\right]}{i} \quad P=\frac{x\left[1-(1+i)^{-n}\right]}{i} \\
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \quad \mathrm{M}\left(\frac{x_{1}+x_{2}}{2} ; \frac{y_{1}+y_{2}}{2}\right) \\
& y=m x+c \quad y-y_{1}=m\left(x-x_{1}\right) \quad m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad m=\tan \theta \\
& (x-a)^{2}+(y-b)^{2}=r^{2}
\end{aligned}
$$

In $\triangle A B C$:

$$
\begin{array}{ll}
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} & a^{2}=b^{2}+c^{2}-2 b c \cdot \cos A \\
\sin (\alpha+\beta)=\sin \alpha \cdot \cos \beta+\cos \alpha \cdot \sin \beta & \sin (\alpha-\beta)=\sin \alpha \cdot \cos \beta-\cos \alpha \cdot \sin \beta \\
\cos (\alpha+\beta)=\cos \alpha \cdot \cos \beta-\sin \alpha \cdot \sin \beta & \cos (\alpha-\beta)=\cos \alpha \cdot \cos \beta+\sin \alpha \cdot \sin \beta \\
\cos 2 \alpha=\left\{\begin{array}{l}
\cos ^{2} \alpha-\sin ^{2} \alpha \\
1-2 \sin ^{2} \alpha \\
2 \cos ^{2} \alpha-1
\end{array}\right. & \sin 2 \alpha=2 \sin \alpha \cdot \cos \alpha \\
(x ; y) \rightarrow(x \cos \theta-y \sin \theta ; y \cos \theta+x \sin \theta) & \\
\bar{x}=\frac{\sum f x}{n} & \sigma^{2}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n} \\
P(A)=\frac{n(A)}{n(S)} & P(A \text { or } B)=P(A)+P(B)-P(A \text { and } B) \\
\hat{y}=a+b x & b=\frac{\sum(x-\bar{x})(y-\bar{y})}{\sum(x-\bar{x})^{2}}
\end{array}
$$

\qquad Class: \qquad

ANNEXURE 7.1-7.2.2

QUESTION 7

7.1

Give reasons for the following statements:

STATEMENT	REASONS
$\hat{C}_{1}+\hat{C}_{2}=\hat{F}_{2}$	
$\hat{D}_{2}+\hat{E}=180^{\circ}$	
$\hat{B}_{1}=\hat{D}_{1}$	
$\hat{B}_{2}+\hat{B}_{3}+\hat{D}_{1}+\hat{D}_{2}=180^{\circ}$	
$\hat{B}_{2}+\hat{B}_{1}=\hat{C}_{1}+\hat{C}_{2}$	

7.2

7.2.1 Determine the size of \hat{C}.
\qquad
7.2.2 Explain why AMBC is not a cyclic quadrilateral.
\qquad
\qquad
\qquad
\qquad
\qquad
ANNEXURE 8.1-8.1.3
QUESTION 8

8.1 B $\hat{D} C$
(2)
\qquad

Page 14

[7]

Page 15
\qquad
\qquad

ANNEXURE 9.1-9.2

QUESTION 9

9.1 Calculate
9.1.1 $\frac{F E}{F C}$.
\qquad

9.1.2 $\frac{C D}{D F}$.
(2)
\qquad
9.2 If the straight line distance of the track from F to C is 374 kilometres and its takes 50 hours to build one kilometre of the track, determine the number of hours it will take to build the section

$$
\begin{equation*}
\text { from } E \text { to } D \text {. } \tag{6}
\end{equation*}
$$

\qquad

