

You have Downloaded, yet Another Great Resource to assist you with your Studies ③

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

GAUTENG DEPARTMENT OF EDUCATION

JOHANNESBURG NORTH DISTRICT

2021 GRADE 12 CONTROL TEST

MATHEMATICS TERM1

MARKS : 100 TIME : 2 hours

This question paper consist of 17 pages

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

- 1. This question paper consists of **9** questions.
- 2. Answer ALL the questions.
- 3. Clearly show ALL calculations, diagrams, graphs, etc. which was used in determining the answers.
- 4. Answers only will not necessarily be awarded full marks.
- 5. Use an approved scientific calculator (non-programmable and non-graphical), unless stated otherwise.
- 6. Where necessary, answers should be rounded off to TWO decimal places, unless stated otherwise.
- 7. Diagrams are NOT necessarily drawn to scale.
- 8. ANSWER Question 7 on Annexure 7.1 7.2.2
- 9. ANSWER Question 8 on Annexure 8.1 8.1.3
- 10. ANSWER Question 9 on Annexure 9.1 9.2
- 11. Tear off page 12 till page 17. AND SUBMIT theses pages with your answer scripts .
- 12. An information sheet is on page 11 of the question paper.
- 13. Number the questions correctly according to the numbering used in the question paper.
- 14. Write neatly and legibly.

1.1 Solve for x:

1.1.1 (x-5)(x+1) = 0 (2)

1.1.2
$$2x^2 - 11x + 7 = 0$$
 (correct to two decimal places) (3)

$$1.1.3 \quad x - 5x^{\frac{1}{2}} = -6 \tag{4}$$

1.2 Calculate *a* and *b* if
$$\sqrt{\frac{5^{2014} - 5^{2012}}{6}} = a(5^b)$$
 and *a* is not a multiple of 5. (4)

1.3 Solve for *x* and *y*:

$$1 = 3y - x \text{ and } y^2 + 2xy = 3x^2 - 7 \tag{7}$$

QUESTION 2

Given the arithmetic series: $3 + 10 + 17 + \ldots + 150$.

2.1 Write down the fourth term in the series. (1)
2.2 Determine the general term of the series. (2)
2.3 Express the series in sigma notation. (1)

QUESTION 3

3.1 Consider the progression : 3;
$$\frac{1}{2}$$
; 3; $\frac{4}{10}$; 3; $\frac{16}{50}$;....

3.1.1 Write down the next TWO terms of the progression.	(1)
---	-----

3.1.2 Calculate the sum of the first thirty-five terms of the progression. (5)

3.2 Calculate :
$$\sum_{n=3}^{\infty} 5(3)^{1-n}$$
 (4)

[10]

[4]

In the diagram below, the 1^{st} (outer) triangle is an equilateral triangle with sides of 8cm. A 2^{nd} triangle is drawn within this triangle by joining the midpoints of the sides of the 1^{st} triangle. This process is continued without end.

- 4.1 What his the perimeter of the 4^{th} triangle ? (2)
- 4.2 Whats is the perimeter of the n^{th} triangle? (3)
 - [5]

5.1 In the sketch below, P is a point on the Cartesian plane, with $P\hat{O}X = \theta$.

Use the sketch to determine the following:

5.1.1 The value of y. (2)

5.1.2 The value of
$$\frac{2sin\theta cos\theta}{cos^2\theta - 1}$$
 (5)

5.2 Simplify the following, WITHOUT USING A CALCULATOR:

$$\frac{\cos(180^\circ + \theta) \cdot \tan(720^\circ - \theta) \cdot \sin^2(90^\circ - \theta)}{\sin(180^\circ - \theta)} + \sin^2\theta \tag{7}$$

5.3 If
$$6sin^2\theta - 4cos^2\theta = -5sin\theta \cdot cos\theta$$
, determine the general solution for θ . (8)

[22]

In the sketch below, PS is the median of $\triangle PQR$, and thus QS = SR = x. $\hat{Q} = a$ and $Q\hat{P}S = b$.

6.1 Show that
$$PS = \frac{xsina}{sinb}$$
 (2)

6.2 Express the size of
$$S_2$$
, in terms of *a* and *b*, without reasons. (1)

6.3 Hence, show that: Area of
$$\triangle PSR = \frac{x^2 sina \times sin(a+b)}{2sinb}$$
 (3)

6.4 Determine the area of $\triangle PSR$, rounded to two decimal places, if x = 14,2cm, $a = 34^{\circ}$ and $b = 41^{\circ}$. (3)

[9]

Give reasons for your statements and calculations in QUESTIONS 7, 8 and 9

Use the Annexure's provided to answer QUESTIONS 7, 8 and 9

QUESTION 7

7.1 In the diagram below, AB is a tangent to the circle passing though B, E, C and D

AD cuts the circle at F. AC is drawn.

Give reasons for the following statements:

(5)

STATEMENT	REASONS
$\hat{C}_1 + \hat{C}_2 = \hat{F}_2$	
$\hat{D}_2 + \hat{E} = 180^{\circ}$	
$\hat{B}_1 = \hat{D}_1$	
$\hat{B}_2 + \hat{B}_3 + \hat{D}_1 + \hat{D}_2 = 180^{\circ}$	
$\hat{B}_2 + \hat{B}_1 = \hat{C}_1 + \hat{C}_2$	

7.2 In the diagram below, circle centre M intersects a second smaller circle at A and B.

A, C, B and T are points on circle M.

AB is the diameter of the smaller circle.

7.2.1 Determine the size of \hat{C} .		
7 0 0		(1)

7.2.2Explain why AMBC is not a cyclic quadrilateral.(1)

In the figure below, RDS is a tangent to circle O at D. BC = DC, and $\hat{CDS} = 40^{\circ}$.

Thus, calculate the size of the following angles, with reasons.

The diagram below is the top view design of a new railway system. There are eight stations being built and these are labelled with letters from A- H.You have been asked to do some calculations fro the railway company. As the engineer you know that:

- $AF \parallel BE \text{ and } AC \parallel GD.$
- $\frac{AB}{BC} = \frac{4}{7}$ and $\frac{AG}{AF} = \frac{9}{17}$.

9.1 Calculate

9.1.1
$$\frac{FE}{FC}$$
. (3)

9.1.2
$$\frac{CD}{DF}$$
. (2)

9.2 If the straight line distance of the track from F to C is 374 kilometres and its takes 50 hours to build one kilometre of the track, determine the number of hours it will take to build the section from E to D.(6)

[11]

TOTAL 100 MARKS

Page 10

$$\begin{aligned} x &= \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \\ A &= P(1+ni) \qquad A = P(1-ni) \qquad A = P(1-i)^n \qquad A = P(1+i)^n \\ \sum_{i=1}^n 1 &= n \qquad \sum_{i=1}^n i = \frac{n(n+1)}{2} \qquad T_n = a + (n-1)d \qquad S_n = \frac{n}{2}(2a + (n-1)d) \\ T_n &= ar^{n-1} \qquad S_n = \frac{a(r^n - 1)}{r - 1} \quad ; \ r \neq 1 \qquad \qquad \sum_{i=1}^{\infty} \frac{a}{1 - r} \quad ; \ -1 < r < 1 \\ F &= \frac{x[(1+i)^n - 1]}{i} \qquad P = \frac{x[1 - (1+i)^{-n}]}{i} \\ f'(x) &= \lim_{n \to 0} \frac{f(x+h) - f(x)}{h} \\ d &= \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \qquad M\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right) \\ y &= mx + c \qquad y - y_1 = m(x - x_1) \qquad m = \frac{y_2 - y_1}{x_2 - x_1} \qquad m = \tan \theta \\ (x - a)^2 + (y - b)^2 &= r^2 \end{aligned}$$

 $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \qquad a^2 = b^2 + c^2 - 2bc \cdot \cos A \qquad area\Delta ABC = \frac{1}{2}ab \cdot \sin C$ $\sin(\alpha + \beta) = \sin\alpha \cdot \cos\beta + \cos\alpha \cdot \sin\beta \qquad \sin(\alpha - \beta) = \sin\alpha \cdot \cos\beta - \cos\alpha \cdot \sin\beta$ $\cos(\alpha + \beta) = \cos\alpha \cdot \cos\beta - \sin\alpha \cdot \sin\beta \qquad \cos(\alpha - \beta) = \cos\alpha \cdot \cos\beta + \sin\alpha \cdot \sin\beta$ $\cos 2\alpha = \begin{cases} \cos^2\alpha - \sin^2\alpha \\ 1 - 2\sin^2\alpha \\ 2\cos^2\alpha - 1 \end{cases} \qquad \sin 2\alpha = 2\sin\alpha \cdot \cos\alpha \end{cases}$

 $(x; y) \rightarrow (x \cos \theta - y \sin \theta; y \cos \theta + x \sin \theta)$

$$\bar{x} = \frac{\sum fx}{n} \qquad \qquad \sigma^2 = \underbrace{\sum_{i=1}^n (x_i - \bar{x})^2}_{n}$$

 $P(A) = \frac{n(A)}{n(S)}$ P(A or B) = P(A) + P(B) - P(A and B)

$$\hat{y} = a + bx \qquad \qquad b = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sum (x - \bar{x})^2}$$

ANNEXURE 7.1 - 7.2.2

QUESTION 7

7.1

Give reasons for the following statements:

(5)

STATEMENT	REASONS
$\hat{C}_1 + \hat{C}_2 = \hat{F}_2$	
$\hat{D}_2 + \hat{E} = 180^\circ$	
$\hat{B}_1 = \hat{D}_1$	
$\hat{B}_2 + \hat{B}_3 + \hat{D}_1 + \hat{D}_2 = 180^\circ$	
$\hat{B}_2 + \hat{B}_1 = \hat{C}_1 + \hat{C}_2$	

7.2.1 Determine the size of \hat{C} .

(6)

7.2.2 Explain why AMBC is not a cyclic quadrilateral.

(1)

[12]

ANNEXURE 8.1 - 8.1.3

QUESTION 8

8.1 *BDC*

(2)

8.2 \hat{C}

8.3	Â	(2)
8.4	\hat{O}_1	(1)
		[7]

Class:					
--------	--	--	--	--	--

ANNEXURE 9.1 - 9.2

QUESTION 9

9.1 Calculate

9.1.2 $\frac{CD}{DF}$.

(2)

9.2 If the straight line distance of the track from F to C is 374 kilometres and its takes 50 hours to build one kilometre of the track, determine the number of hours it will take to build the section from E to D.(6)

[11]