

NATIONAL SENIOR CERTIFICATE

GRADE 12

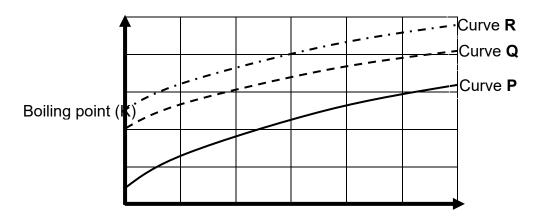
JUNE 2021

PHYSICAL SCIENCES: CHEMISTRY (P2) (EXEMPLAR)

MARKS: 150

TIME: 3 hours

This question paper consists of 20 pages, including 2 data sheets.


INSTRUCTIONS AND INFORMATION

- 1. Write your name and surname in the appropriate space on the ANSWER BOOK.
- 2. This question paper consists of SEVEN questions. Answer ALL the questions in the ANSWER BOOK.
- 3. Start EACH question on a NEW page in the ANSWER BOOK.
- 4. Number the answers correctly according to the numbering system used in this question paper.
- 5. Leave ONE line between two subquestions, for example between QUESTION 2.1 and QUESTION 2.2.
- 6. You may use a non-programmable calculator.
- 7. You may use appropriate mathematical instruments.
- 8. You are advised to use the attached DATA SHEETS.
- 9. Show ALL formulae and substitutions in ALL calculations.
- 10. Round off your FINAL numerical answers to a minimum of TWO decimal places.
- 11. Give brief motivations, discussions, et cetera where required.
- 12. Write neatly and legibly.

QUESTION 1: MULTIPLE-CHOICE QUESTIONS

Various options are provided as possible answers to the following questions. Choose the answer and write only the letter (A-D) next to the question numbers (1.1-1.10) in the ANSWER BOOK, for example 1.11 E.

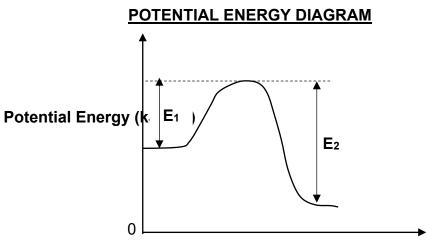
- 1.1 The general formula for ALKANES is ...
 - A C_nH_{2n}.
 - B C_nH_{2n-1}.
 - C C_nH_{2n-2.}
 - $D C_n H_{2n+2}$
- 1.2 The following graph shows the relationship between the number of carbon atoms in a straight chain molecules of alkanes, alcohols and aldehydes. Curves P, Q and R is obtained.

Number of C atoms

Which ONE of the following CORRECTLY describes the homologous series against the curve?

_	Curve P	Curve Q	Curve R
А	Alcohols	Aldehydes	Alkanes
В	Aldehydes	Alcohols	Alkanes
С	Alcohols	Alkanes	Aldehydes
D	Alkanes	Aldehydes	Alcohols

(2)


(2)

1.3		Ikene reacts with an EXCESS amount of water in the presence of an acid lyst to produce compound P as shown in the equation below.	
		ALKENE + H ₂ O \rightarrow compound P	
	Com	pound P is a(n) …	
	А	alcohol.	
	В	alkane.	
	С	haloalkane.	
	D	carboxylic acid.	(2)
1.4	Activ	vation energy of a chemical reaction is defined as:	
	А	Net energy released	
	В	Net energy absorbed	
	С	Minimum energy needed to start the reaction	
	D	Maximum energy needed to start the reaction	(2)

<u>4</u>

1.5 Consider the potential energy diagram for a reversible hypothetical reaction represented by the balanced equation below.

 $\mathbf{X}_{2}(g) \rightleftharpoons 2\mathbf{X}(g)$

Course of reaction

 E_1 and E_2 are the activation energies for the forward and reverse reactions respectively.

The difference $(E_2 - E_1)$ is equal to ...

- A energy of the product.
- B ΔH for the forward reaction.
- C ΔH for the reverse reaction.
- D energy of the activated complex.

(2)

1.6 A chemical reaction reaches chemical equilibrium in a closed system.

At equilibrium concentration of products and reactants remains constant because the rate of the forward reaction is ...

- A zero.
- B higher than the rate of the reverse reaction.
- C lower than the rate of the reverse reaction.
- D equal to the rate of the reverse reaction. (2)

(2)

1.7 Consider the following reaction at equilibrium in a closed system.

 $\begin{array}{rcl} Cu(H_2O)_6^{2^+}(aq) &+ 4 \ C\ell^-(aq) &\leftrightarrows \ CuC\ell_4^{2^-}(aq) + 6 \ H_2O(\ell) & \Delta H > 0 \\ & BLUE & GREEN \end{array}$

Which ONE of the following changes to the equilibrium mixture above will ensure a COLOUR change from GREEN to BLUE?

- A Increase in pressure
- B Addition of silver nitrate
- C Increase in temperature
- D Addition of hydrochloric acid
- 1.8 The endpoint in a titration is the exact point where ...
 - A neutralisation occurs.
 - B the indicator changes colour.
 - C equal masses of base and acid have reacted.
 - D equal number of moles of acid and base have reacted. (2)
- 1.9 In the table below the ionisation constant values for bases, K_b at 25 °C are given.

Which ONE of the following bases is the STRONGEST?

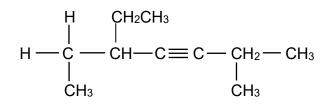
	BASE	K₀ at 25 °C	
A	SO4 ²⁻	8,3 x 10 ⁻¹³	-
В	PO4 ³⁻	5,9 x 10 ⁻³	
С	HCO3 ⁻	2,4 x 10 ⁻⁸	_
D	CH₃COO ⁻	5,6 x 10 ⁻¹⁰	(2)

1.10 Water undergoes auto-ionisation according to the balanced equation:

 $H_2O(\ell) + H_2O(\ell) \iff H_3O^+(aq) + OH^-(aq) \Delta H > 0$

The ionisation constant K_w for water is 1,00 x 10 ⁻¹⁴ at 25 °C

Which ONE of the following is TRUE when the temperature of water in a beaker is increased from 25 $^{\circ}$ C to 30 $^{\circ}$ C?


A **K**_w remains the same and the water becomes acidic

- B **K**_w remains the same and the water remains neutral
- C K_w increases and the water remains neutral
- D **K**_w decreases and the water remains neutral

(2) [**20**]

QUESTION 2 (Start on a new page.)

2.1 The compound **P**, shown below, belongs to alkynes which is <u>a group of</u> <u>organic compounds with the same general formula and functional group</u>.

2.1.1	Write down a general term for the underlined phrase.	(1)
2.1.2	Is compound P a SATURATED or UNSATURATED compound?	
	Give a reason for the answer.	(2)
For co	mpound P write down the:	
2.1.3	Empirical formula	(1)
2.1.4	IUPAC name	(3)
Consid	ler compounds A and B given below.	
	A: propan-1-ol B: HCOOH	
2.2.1	Write down the STRUCTURAL formula of compound A .	(2)
•	ounds A and B are heated together in the presence of a catalyst in a be to produce an ESTER.	
2.2.2	Describe how the mixture of A and B in the test tube is heated.	(2)
For the	e reaction between compounds A and B write down the:	
2.2.3	Name of the reaction taking place	(1)
2.2.4	Formula of the catalyst used	(1)
2.2.5	STRUCTURAL formula of the ester that is produced	(2)

2.2

2.3 Haloalkanes, compounds **C**, **D** and **E** are *structural isomers*.

Compounds **C** and **D** are shown below and compound **E** is not shown:

	C: CH ₃ CH ₂ CH ₂ CH ₂ Br	D: (CH ₃) ₃ CBr	
2.3.1	Define the term structural isomer.		(2)
2.3.2	Give a reason why compound C is haloalkane.	classified as a PRIMARY	(2)
2.3.3	Write down the IUPAC name of comp isomer of compound D .	bound E , the POSITIONAL	(3) [22]

QUESTION 3 (Start on a new page.)

A group of learners investigated the effect of intermolecular forces on the boiling points of compounds.

They tabulated their results below:

		Compounds	Boiling point (°C)	
	А	Propan-1-ol	97	
	В	Butan-1-ol	117,7	
	С	Pentan-1-ol	138	
3.1	Define	the term <i>boiling point</i> .		(2)
3.2		compound (A , B or C) will have the highes emperature?	t vapour pressure at a	
	Refer to	o the data in the table to explain the answe	r.	(2)
3.3	For this	investigation, write down the:		
	3.3.1	Independent variable		(1)
	3.3.2	Controlled variable		(1)
3.4	MÓLEC	n the trend in boiling point in the table above by referring to the CULAR STRUCTURE, INTERMOLECULAR FORCES and CGY involved.		
3.5		mpound, 2-methylpropan-1-ol is a CHAIN unds in table.	I ISOMER of one of the	
	3.5.1	Write down the structural formula for 2-m	ethylpropan-1-ol.	(2)
	3.5.2	Which compound (A , B , or C) in the t ISOMER of 2-methylpropan-1-ol?	able above is a CHAIN	
		Give a reason for the answer.		(2)
	3.5.3	How will the boiling point of 2-methylpro isomer named in QUESTION 3.5.2?	pan-1-ol compare to the	
		Write only HIGHER THAN, LOWER THA	N or EQUAL TO.	(1)
	3.5.4	Explain the answer to QUESTION 3. MOLECULAR STRUCTURE, INTERMO ENERGY involved.		(3)

Fully explain why the boiling point of methanoic acid is higher than propan-1-ol.

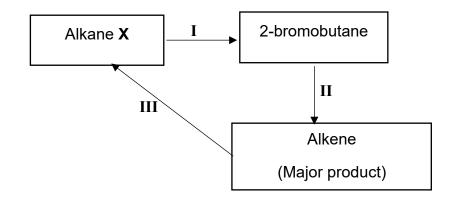
Refer to the TYPE OF INTERMOLECULAR FORCES and energy involved. (4)

[22]

(2)

(1)

QUESTION 4 (Start on a new page.)


Hexane undergoes thermal cracking according to the balanced equation below.

```
C_6H_{14} \rightarrow Alkane X + C_2H_4
```

- 4.1 Define cracking.
- 4.2 Write down the:
 - 4.2.1 Molecular formula of alkane **X** (2)
 - 4.2.2 One reaction condition

The alkane X, produced in the cracking reaction above, is used to produce other organic compounds as shown in the flow diagram below.

The numbers I, II and III represent organic reactions.

4.3 Write down the TYPE of reaction represented by:

	4.3.1 I	(1)
	4.3.2 II	(1)
4.4	Write down the NAME of the type of addition reaction represented by reaction III.	(1)
4.5	Write down the NAME or FORMULA of the:	
	4.5.1 Inorganic reactant used in reaction I	(1)
	4.5.2 Catalyst used in reaction III	(1)
4.6	Write down a balanced equation using CONDENSED structural formulae of organic reagents for reaction II.	(5) [15]

QUESTION 5 (Start on a new page.)

A group of learners conduct experiments to investigate a factor that affects the rate of reactions.

In the experiments, the learners use the reaction between zinc granules and EXCESS hydrochloric acid of concentration 0,5 mol·dm⁻³ at 20 °C as shown below:

Experiment **A**: $Zn(s) + 2 HCl(aq) \rightarrow ZnCl_2(aq) + H_2(g) \Delta H < 0$

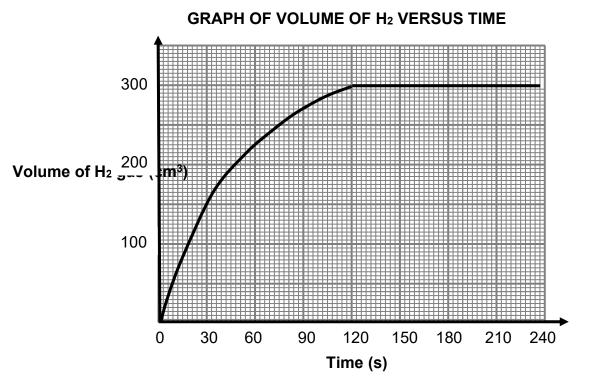
5.1 Define *reaction rate*.

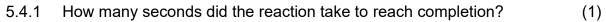
5.2 Is net energy ABSORBED or RELEASED during the reaction?

Give a reason for the answer.

(2)

(2)


5.3 How will the rate of reaction in experiment **A** be affected by the following changes?


Choose from INCREASES, DECREASES or NO EFFECT.

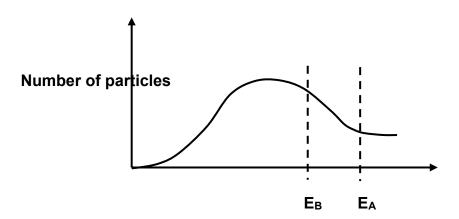
5.3.1	Using H ₂ SO ₄ solution of concentration 0,5 mol·dm ⁻³ in place of the HCł.	(1)
5.3.2	Pressure is increased.	(1)

5.4 In experiment **A**, 50 cm³ of hydrochloric acid (HC*l*) solution of concentration 0,5 mol·dm⁻³ reacts with 7,15 g of zinc (Zn) granules.

The volume gas formed versus time for the reaction in experiment **A** is shown below.

It is observed that the rate of reaction is HIGHEST during the interval 0 to 30 s.

5.4.2 Write down TWO factors that influence reaction rate that explains this observation. (2)


5.5 Calculate the:

- 5.5.1 Average rate of reaction (in $cm^{3} s^{-1}$) for the first 120 s (3)
- 5.5.2 Mass of the EXCESS reactant remaining in the flask if the molar volume of hydrogen gas at 20 °C is 24 dm³·mol⁻¹ (7)

5.6 In experiment **B**, the reaction in experiment **A** is repeated under the same conditions, but copper is also added to the reaction mixture.

Experiment **B**: Zn (s) + HCl (aq) \rightarrow ZnCl₂ (aq) + H₂ (g)

The Maxwell-Boltzman distribution curve for the reaction in experiment **A** and in experiment **B** is shown below:

 E_A and E_B represent the activation energy for the reaction in experiments A and B respectively.

5.6.1	What is the function of copper in experiment B ?	(1)
-------	---	-----

5.6.2 Explain how the addition of copper in reaction **B** affects the rate of reaction by referring to the collision theory. (4)

[24]

QUESTION 6 (Start on a new page.)

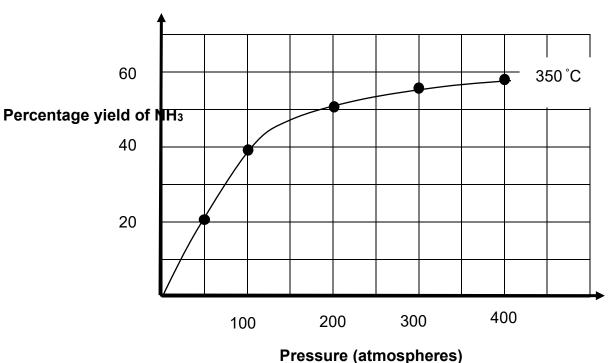
The reversible reaction given below reaches equilibrium at 350 $^\circ \rm C$ in a closed container.

$$N_2(g) + 3 H_2(g) \Leftrightarrow 2 NH_3(g) \qquad \Delta H < 0$$

- 6.1 Define the term *reversible* reaction.
- 6.2 The temperature of the equilibrium mixture is decreased.

How will the decrease in temperature affect the following?

Choose from INCREASES, DECREASES or REMAINS CONSTANT.


6.2.1	Rate of the forward reaction	(1)
6.2.2	Number of moles of NH3 at equilibrium	(1)
	n the answer to QUESTION 6.2.2 above by referring to atelier's principle.	(2)
an em 350 [°] C	action is started by placing 7,84 grams of N ₂ and 0,6 moles of H ₂ in pty flask which is then sealed. When equilibrium is reached at the amount of NH ₃ present is 0,12 moles. The volume of the ner is 2 dm ³ .	
Calcul	ate the value of the equilibrium constant at 350 $^\circ$ C.	(8)

6.3

6.4

(2)

The graph shown below shows the percentage yield of NH_3 at 350 °C at different pressure values.

GRAPH OF PERCENTAGE YIELD VS PRESSURE

6.5 Write down a CONCLUSION that can be drawn from the graph about the relationship between percentage yield of NH₃ and pressure at constant temperature.

6.6 Use information from QUESTION 6.4 and the graph to determine the pressure at which the reaction reached equilibrium.

. .

(2)

QUESTION 7 (Start on a new page.)

7.1 Sodium carbonate ionises in water into sodium ions (Na⁺) and carbonate ions (CO_3^{2-}).

Carbonate ions in solution undergo hydrolysis according to the balanced equation:

 $CO_3^{2-}(aq) + H_2O(\ell) \Leftrightarrow HCO_3^{-}(aq) + OH^{-}(aq)$

7.1.1	Define hydrolysis.	(2)
7.1.2	Give a reason why a solution of sodium carbonate in water is alkaline by referring to substance(s) in the equation above.	(2)
7.1.3	Write down the FORMULAE of the TWO acids in the equation.	(2)
7.1.4	Give a reason why HCO ₃ - can act as an ampholyte.	(2)
A solution	on of a strong diprotic acid X has pH = 1.	
7.2.1	Define an <i>acid</i> according to the Lowry-Bronsted theory.	(2)
7.2.2	Calculate the concentration of acid X .	(4)
A solutio	on of acid X of concentration 0,049 mol.dm ⁻³ is diluted by adding	

 15 cm^3 of the acid to water to produce 90 cm³ of a dilute standard solution.

7.2.3 Explain the meaning of the term *standard solution*. (2)

The DILUTE solution of acid \mathbf{X} is titrated with a solution of potassium hydroxide.

The following list of indicators are available for the titration.

Indicator	pH-range
Methyl orange	3,1-4,4
Bromothymol blue	6,0 - 7,6
Phenolphthalein	8,3 - 10,0

7.2.4 Which ONE of the indicators is the most suitable for this titration?

Explain the answer.

(3)

During the titration 25 cm³ of the DILUTE acid X solution neutralises exactly 28,5 cm³ of a potassium hydroxide solution.

7.2.5	Calculate the concentration of the potassium hydroxide solution.	(7)

[26]

TOTAL: 150

7.2

NATIONAL SENIOR CERTIFICATE NASIONALE SENIOR SERTIFIKAAT

DATA FOR PHYSICAL SCIENCES GRADE 12 PAPER 2 (CHEMISTRY)

GEGEWENS VIR FISIESE WETENSKAPPE GRAAD 12 VRAESTEL 2 (CHEMIE)

TABLE 1: PHYSICAL CONSTANTS/TABEL 1: FISIESE KONSTANTES

NAME/NAAM	SYMBOL/SIMBOOL	VALUE/WAARDE
Standard pressure Standaarddruk	p ^θ	1,013 x 10⁵ Pa
Molar gas volume at STP Molêre gasvolume teen STD	Vm	22,4 dm ^{3.} mol ⁻¹
Standard temperature Standaardtemperatuur	Τ ^θ	273 K
Charge on electron Lading op elektron	е	-1,6 x 10 ⁻¹⁹ C
Avogadro's constant Avogadro se konstante	NA	6,02 x 10 ²³ mol ⁻¹

TABLE 2: FORMULAE/TABEL 2: FORMULES

$n = \frac{m}{M} \text{or/of}$ $n = \frac{N}{N_A} \text{or/of}$ $n = \frac{V}{V_o}$	$c = \frac{n}{V} \text{ or/of } c = \frac{m}{MV}$ $\frac{c_a V_a}{c_b V_b} = \frac{n_a}{n_b}$	pH= -log[H ₃ O ⁺] K _w = [H ₃ O ⁺][OH ⁻] = 1x10 ⁻¹⁴ at/by 298 K								
$E^{\theta}_{cell} = E^{\theta}_{cathode} - E^{\theta}_{anode} / E^{\theta}_{sel} = E^{\theta}_{katode} - E^{\theta}_{anode}$										
$E^{\theta}_{cell} = E^{\theta}_{reduction} - E^{\theta}_{oxidation} / E^{\theta}_{sel} = E^{\theta}_{reduksie} - E^{\theta}_{oksidasie}$										
$E^{\theta}_{cell} = E^{\theta}_{oxidising agent} - E^{\theta}_{reducing agent} / E^{\theta}_{sel} = E^{\theta}_{oksideermiddel} - E^{\theta}_{reduseermiddel}$										

TABLE 3: THE PERIODIC TABLE OF ELEMENTS/TABEL 3: DIE PERIODIEKE TABEL VAN ELEMENTE

1		2	4	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
(I)	((II)			KEY/ SLEUTEL Atoomgetal (III) (IV) (V) (VI) (VII											(VII)	(VIII)		
				Atomic number															2
4 <mark>7</mark>									◀	,									He 4
3		4	1			Ela	ktronogo	tivuitait	2	9	Simb	ool		5	6	7	8	9	4 10
ç, Li	1,5	Be					ktronega		ح م ÷	Cu ∣⁴	_			0. 2. B	2.5 2.5	0. N ຕິ N	3.5	4.0 F	Ne
7		9			Electronegativity Symbol									1 1	ີ 12	¹⁴	ິ 16	1 9	20
11	2	12													<u> </u>	_ 15	16	17	18
	1,2	Mg		Benaderde relatiewe atoommassa										γ. γ. Αί	°, Si	N P	S 5.5	90. Cf	Ar
23 19		24 20		21	22	23	24	25	26	27	28	29	30	27 31	28 32	31 33	32 34	35,5 35	40 36
8,0 K	1,0	Ca	1,3	Sc	42. Ti	4. v	<u>ب</u> ۲ Cr	ې Mn	∞. Fe	~ Co	∞. Ni	6. Cu	<u>ب</u> 2n ∵	φ. Ga	∞. Ge	o As	7 Se	80 N Br	Kr
39		40		45	48	51	52	55	56	59	59	63,5	65	70	73	75	79	80	84
³⁷	0	38	2	39	40	41	<mark>م 42</mark>	43	⊲ 44	⊲ 45	<mark>46</mark>	47	48	49	<u>50</u>	51	_ 52	53	54
° Rb	1,0	Sr	1,2	Y	4 . Zr	Nb	₩. Mo	€. Tc		Rh		· ·	Cd		[∞] . Sn	<u>σ</u> , Sb	Te	1 2.5	Xe
86 55		<u>88</u> 56		89 57	91 72	92 73	96 74	75	101 76	103 77	106 78	108 79	112 80	115 81	119 82	122 83	128 84	127 85	131 86
	0,9	Ba		La	9. Hf	Ta	- 74 W	Re	0s	lr	Pt	Au	Hg	~ Tℓ	∞. Pb	၀ ၇ Bi	04 0 P0	20 22 21 21	Rn
133	0	137		139	179		184	186	190	192		197	201	204	207	209	<u>м , , , , , , , , , , , , , , , , , , ,</u>	N /	
87		88		89															
ר. ה Fr	0,9	Ra		Ac		58	59	60	61	62	63	64	65	66	67	68	69	70	71
		226				Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
						140	141	144	• • • •	150	152	157	159	163	165	167	169	173	175
						90	91	92	93	94	95	96	97	98	99	100	101	102	103
						Th	Ра	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
						232		238											