

You have Downloaded, yet Another Great Resource to assist you with your Studies ③

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

QUESTION 1: MULTIPLE CHOICE

1.10	C√√	(2) [20]
1.9	A√√	(2)
1.8	A√√	(2)
1.7	B√√	(2)
1.6	B√√	(2)
1.5	D√√	(2)
1.4	D√√	(2)
1.3	C√√	(2)
1.2	D√√	(2)
1.1	A√√	(2)

2.1 When a resultant/net force acts on an object, the object will accelerate in the direction of the force at an <u>acceleration directly proportional to</u> <u>the force and inversely proportional to the mass of the object</u> $\checkmark \checkmark$. OR

The resultant/net force acting on an object is equal to the rate of change of momentum of the object (in the direction of the net force) $\sqrt[4]{(2 \text{ or } 0)}$.

(2)

2.2

	Accept the following symbols	
F	F _A /F _{app} /F _{Applied}	
Ν	F _N /Normal/Normal force	
fk	Kinetic friction force/f/F _f /f _r	
Т	Tension force/F _T	
Fg	W/58,8N	

Notes

- Mark is awarded for label and arrow.
- Do not penalise for length of arrows.
- Deduct 1 mark for any additional force.
- If force(s) do not make contact with body/dot : Max:4/5
- If arrows missing but labels are there: Max:4/5

(5)

Physical Sciences/P1

4 Preparatory Examination September 2021 NSC

2.3 For the 4 kg crate

2.4.2 The 4 kg block will move upwards/forward (for a brief moment)√, stop√ and then slide down the plane / backward√.
 (3) [16]

QUESTION 3

3.1.1	Zero√	(1)
3.1.2	9,8 m·s⁻² √downwards √	(2)

3.2.1

OPTION 1

UPWARD POSITIVE	UPWARD NEGATIVE
Δy= v _i Δt + ½aΔt²√	∆y= v _i ∆t + ½a∆t²√
$\Delta y = (\underline{4,9})(0,5) + \frac{1}{2}(-9,8)(0,5)^2 \checkmark$	$\Delta y = (-4,9)(0,5) + \frac{1}{2}(9,8)(0,5)^2 \checkmark$
Δy = 1,225 m	Δy = -1,225 m
Height after 0,5 s = $80 + \sqrt{1,225}$	Height after 0,5 s = <u>80 +</u> √ 1,225
= 81,23 m✓	
	= 81,23 m✓
∴The ball is 81,23 m above the ground	∴The ball is 81,23m above the ground

UPWARD POSITIVE	UPWARD NEGATIVE
v _f = v _i + a∆t	v _f = v _i + a∆t
$v_f = 4,9 + (-9,8) (0,5)$	$v_f = -4.9 + (9.8) (0.5)$
$v_{f} = 0 \text{ m} \cdot \text{s}^{-1}$	$v_f = 0 \text{ m} \cdot \text{s}^{-1}$
$v_f^2 = v_i^2 + 2a\Delta y \checkmark$	$v_f^2 = v_i^2 + 2a\Delta y \checkmark$
$0 = 4,9^2 + 2(-9,8)\Delta y \checkmark$	<u>0 = - 4,9² + 2(9,8)∆y</u> √
Δy = 1,225 m	Δy = -1,225 m
Height after 0,5 s = $80 + \sqrt{1,225}$	Height after 0,5 s = <u>80 +</u> √1,225
= 81,23 m√	= 81,23 m√
∴The ball is 81,23 m above the ground	∴The ball is 81,23 m above the
	ground

OPTION 2

OPTION 3

UPWARD POSITIVE	UPWARD NEGATIVE
v _f = v _i + a∆t	v _f = v _i + a∆t
$v_f = 4,9 + (-9,8) (0,5)$	$v_f = 4,9 + (-9,8) (0,5)$
$v_{\rm f} = 0 {\rm m} \cdot {\rm s}^{-1}$	$v_{f} = 0 \text{ m} \cdot \text{s}^{-1}$
$\Delta y = \frac{v_f + v_i}{2} \Delta t \checkmark$	$\Delta y = \frac{v_f + v_i}{2} \Delta t \checkmark$
$[\Delta y = \frac{0+4,9}{2} \ 0,5] \checkmark$	$[\Delta y = \frac{0-4,9}{2} \ 0,5] \checkmark$
Δy = 1,225 m	Δy = -1,225 m
Height after 0,5 s = <u>80 +</u> √ 1,225	Height after 0,5 s = <u>80 +</u> √ 1,225
= 81,23m√	= 81,23 m√
∴The ball is 81,23 m above the	∴The ball is 81,23 m above the
ground	ground

OPTION 4

$$\frac{1}{2}mv_i^2 + mgh_i = \frac{1}{2}mv_f^2 + mgh_f \checkmark$$

 $\frac{1/2m(4,9)^2 + m(9,8)(80)}{2} \checkmark = \frac{1/2m(0)^2 + m(9,8)h_f}{2} \checkmark$

h_f = 81,225 m ✓

OPTION 5

 $\frac{1}{2}mv_i^2 + mgh_i = \frac{1}{2}mv_f^2 + mgh_f \checkmark$ $\frac{1}{2}m(4,9)^2 + m(9,8)(0) = \frac{1}{2}m(0)^2 + m(9,8)h_f}{\Lambda}$ h = 1,225 m Height after 0,5 s = $\frac{80 + \checkmark}{1,225}$ = 81,23 m√ ∴The ball is 81,23 m above the ground

(4)

OPTION 1

UPWARDS POSITIVE	UPWARDS NEGATIVE
Δy= vi∆t + ½a∆t²√	Δy= viΔt + ½aΔt²√
$-80\checkmark = (4,9)\Delta t + \frac{1}{2}(-9,8)\Delta t^2\checkmark$	$80\checkmark = (-4,9)\Delta t + \frac{1}{2}(9,8)\Delta t^2\checkmark$
Δt = 4,57 s✓	∆t = 4,57 s✓

OPTION 2

UPWARDS POSITIVE	UPWARDS AS NEGATIVE
$v_f^2 = v_i^2 + 2a\Delta y$	$v_f^2 = v_i^2 + 2a\Delta y$
$v_{f^2} = (4,9)^2 + 2(-9,8)(-80) \checkmark$	$v_{f^2} = (-4,9)^2 + 2(9,8)(80) \checkmark$
$v_f = -39.9 \text{ m} \cdot \text{s}^{-1}$	$v_f = 39.9 \text{ m} \cdot \text{s}^{-1}$
$v_f = \sqrt{i} + a\Delta t \checkmark$ <u>-39,9 = 4,9 + (-9.8)\Delta t</u> \sigma	$v_{f} = \sqrt{i} + a\Delta t \checkmark$ $\underline{39,9} = -4,9 + (9.8)\Delta t \checkmark$
∆t = 4,57 s✓	∆t = 4,57 s ✓

OPTION 3: POSITIVE MARKING FROM QUESTION 3.2.1

Considering ball from the maximum height

UPWARDS POSITIVE	UPWARDS AS NEGATIVE
Δy= viΔt + ½aΔt²√	Δy= vi∆t + ½aΔt²√
$\frac{-81,23 = (0)\Delta t + \frac{1}{2}(-9,8)\Delta t^2}{\checkmark}$	$\underline{81,23}\checkmark = (0)\Delta t + \frac{1}{2}(9,8)\Delta t^2\checkmark$
$\Delta t = 4,07 s$	∆t = 4,07 s
Time to reach ground = $0.5 + \checkmark 4,07$ = 4,57 s	Time to reach ground = 0,5 + 4,07 = 4,57 s√

3.3 POSITIVE MARKING FROM Q3.2.2

CRITERIA FOR MARKING OF GRAPH	
Correct shape	\checkmark
Indication of initial velocity	✓
Indication of the time for the entire motion	✓
	(3)
	[14]

4.1 The total linear momentum in an isolated system is conserved ✓ ✓
 (accept "closed" instead of "isolated")

OR

In an <u>isolated system</u>, the <u>total linear momentum before a</u> collision is <u>equal to</u> the <u>total linear momentum after the collision</u>. $\checkmark \checkmark$

- 4.2 p_{total} (before) = p_{total} (after) $\Sigma p_i = \Sigma p_f$ $m_1 v_{i1} + m_2 v_{i2} = (m_1 + m_2)v$ 1200 (25) + 1800 (0)v = (1200 + 1800)v v $v = 10 \text{ m} \cdot \text{s}^{-1} \cdot \text{.}$
 - : Speed of the cars after is $10 \text{ m}\cdot\text{s}^{-1}$

(4)

(5)

(2)

4.3	$\Sigma K_{\rm f} = \frac{1}{2} (m_1 + m_2) v^2 \checkmark$	$\Sigma K_i = \frac{1}{2} m_1 v_{i1}^2 + \frac{1}{2} m_2 v_{i2}^2$
	= <u>½ (1200 + 1800) 10 ²</u> √	$= \frac{1}{2} (1200)(25)^2 + \frac{1}{2}(1800)(0)^2 \checkmark$
	= 150 000 J	= 375 000 J

 $\Sigma K_f \neq \Sigma K_i \checkmark$

::Collision is Inelastic \checkmark

<u>NOTE</u>: If it is assumed that $\Sigma K_f = \Sigma K_i$ at the outset, *Max:2/*5

4.4 POSITIVE MARKING FROM QUESTION 4.2

OPTION 3 OPTION 4 $W_{net} = \Delta E_k$ $\Delta y = \frac{v_f + v_i}{2} \Delta t \checkmark$ $vv_{net} = \Delta E_k$ f $\Delta x \cos \theta = \frac{1}{2}mv_f^2 - \frac{1}{2}mv_i^2$ $f(20) \cos 180^{\circ} \checkmark = \frac{1}{2}(3000)(0)^2 - \frac{1}{2}(3000)(10)^2 \checkmark$ $20 = \left(\frac{0+10}{2}\right) \Delta t \checkmark \qquad \therefore \Delta t = 4 \text{ s}$ f = 7500 N ✓ $F_{net} = f = \frac{\Delta \rho}{\Delta t}$ $f = \frac{n(v_f - v_i)}{\Lambda t} \checkmark$ $=\frac{30000-10}{4}$ = -7500 N

10

∴ Magnitude of f is 7500 N√

QUESTION 5

OPTION 1 5.1.1 W = F∆xcosθ✓ $W_{\text{gravity}} = mg \Delta y \cos \theta$ <u>= (1 300)(9,8)(60)cos180°</u>√ $= -764 400 \text{ J} \checkmark (-7.64 \text{ x} 10^5 \text{ J})$

OPTION 2

W = - ΔEp√ = <u>-(1300)(9,8)(60 -0)</u> ✓ = - 764 400 J√ (-7,64 x10⁵ J)

-1 mark if either negative is omitted

(3)

(4)

[16]

5.1.2 $W_{counterweight} = mg\Delta ycos\theta$

$$= (900)(9,8)(60)\cos 0^{\circ} \checkmark$$

= 529 200 J (5,29 x 10⁵ J) \lambda (2)

11

NSC

QUESTION 6

6.1 The <u>change in frequency</u> (or pitch) of the sound detected by a listener because the <u>sound source and the listener have different velocities</u> relative to the medium of sound propagation. $\checkmark \checkmark$

6.2

$$v = \frac{d}{\Delta t} \qquad v = \frac{45}{3} \checkmark :: v_{L} = 15 \text{ m} \cdot \text{s}^{-1}$$

$$f_{L} = \frac{v \pm v_{L}}{v \pm v_{S}} f_{S} / f_{L} = \frac{v - v_{L}}{v} f_{S}$$

$$f_{L} = (\frac{340 - 15}{340 + 0}) 755 \checkmark$$

$$f_{L} = 721,69 \text{ Hz} \checkmark$$

6.3 Any two√√

- Ultrasound waves (to measure the heartbeat of a foetus in the womb).
- Doppler flowmeter (to measure the rate of blood flow)
- Traffic management systems, (especially speed control)
- Radar, (allowing for the tracking of weather systems)
- Astronomy, (where the application of the red-shift and blue-shift of light from the stars has revolutionised our understanding of the universe)
- 6.4.1 The spectral lines (light) from the star are shifted towards longer wavelengths. $\checkmark \checkmark$

(2)

(1)

[12]

(2)

(2)

(5)

6.4.2 Decrease√

Copyright reserved

(2)

QUESTION 7

7.1.1 The magnitude of the electrostatic force exerted by one point charge (Q_1) on another point charge (Q_2) is <u>directly proportional</u> to the <u>product of the magnitudes</u> <u>of the charges</u> and <u>inversely proportional</u> to the <u>square of the distance</u> (r) between them $\sqrt{\sqrt{}}$

12 NSC

NB DO NOT MARK QUESTION 7.1.2. MAX MARK FOR QUESTION 7 WILL BE 13. CONVERT THIS MARK TO 21 USING THE CONVERSION TABLE PROVIDED AT THE END OF THESE GUIDELINES

<mark>7.1.2</mark>

F_{YZ} = 9×10⁹ (
$$\frac{1,5×10^{-6}×1,8×10^{-6}}{(3×10^{-2})^2}$$
)√

Fyz = 27 N downwards.

$$F_{xz} = 9 \times 10^9 \left(\frac{2,1 \times 10^{-6} \times 1,8 \times 10^{-6}}{(6 \times 10^{-2})^2} \right) \checkmark$$

F_{AC} = 9,45 N at 60° to the vertical But F_{XZ} has two perpendicular components i.e. F_{XZx} and F_{XZy}

F_{YZx} = F_{YZ}Sin60^o

F_{YZx} = 9,45Sin60°√

F_{ACx} = 8,184 N to the left

F_{YZy} = F_{YZ}Cos60°

F_{YZy} = 9,45Cos60°√

F_{ACy} = 4,725 N upwards

Fnet x = 8,814 N to the left

F_{net y} = <u>27 – 4,725</u> ✓ = 22,275 N downwards

(F_{net})² = (F_{net x})² + (F_{net y})²

 $\frac{(\mathsf{F}_{\mathsf{net}})^2 = (8,814)^2 + (22,275)^2 \checkmark}{}$

 $F_{net} = \sqrt{(8,814^2 + 22,275^2)}$

<mark>F_{net} = 23,73 N√</mark>

<mark>(8)</mark>

7.2.1 The electric field at a point is <u>the (electrostatic) force</u> experienced per <u>unit positive charge</u> placed at that point. \checkmark

7.2.2

CRITERIA FOR MARKING THE ABOVE ELECTRIC FIELD PATTERN		
Correct direction of field lines	\checkmark	
Shape of the electric field lines (At least 4 lines on each sphere)	\checkmark	
No field lines crossing each other/No field lines inside the spheres	\checkmark	

(3)

(2)

7.2.3

$$Q = \frac{Q_{1}+Q_{2}}{2}$$

$$Q = \frac{5 \times 10^{-6} + (10 \times 10^{-6})}{2} \checkmark$$

$$= -2.5 \times 10^{-6} \text{ C} (-2.5 \,\mu\text{C})$$

$$E = k \frac{Q}{r^{2}} \checkmark$$

$$E_{AP} = 9 \times 10^{9} (\frac{2.5 \times 10^{-6}}{0.045^{2}}) \checkmark$$

$$E_{QP} = 1,11 \times 10^{7} \text{N} \cdot \text{C}^{-1} \text{ to the left}$$

$$E_{BP} = 9 \times 10^{9} (\frac{2.5 \times 10^{-6}}{0.015^{2}}) \checkmark$$

$$E_{BP} = 1,00 \times 10^{8} \text{ N} \cdot \text{C}^{-1} \text{ to the left}$$

$$E_{net} = E_{AP} + E_{BP}$$

$$E_{net} = 1,11 \times 10^{7} + \sqrt{1,00} \times 10^{8}$$

$$E_{net} = 1,11 \times 10^{8} \text{ N} \cdot \text{C}^{-1} \checkmark$$

(6) **[21]**

Please turn over

13 NSC

8.1 (Maximum) <u>energy provided (work done)</u> by a battery <u>per coulomb/unit</u> <u>charge passing through it $\checkmark \checkmark$ (2)</u>

8.2.1	8.2.1 OPTION 1 $P = I^2 R \checkmark$ $40 = 2^2 R_3 \checkmark$ $R_3 = 10 \Omega$		OPTION 2		
			$P_s = V_3 I \checkmark$		
			40 = V ₃ (2)		
			V3= 20 V		
			$\therefore R_3 = \frac{V_3}{I} = \frac{20}{2} \checkmark$	ζ = 10 Ω	
	$\frac{1}{R_P} = \frac{1}{R_1} + \frac{1}{R_2}$	$R_P = (\frac{1}{R})$	$\frac{1}{R_1} + \frac{1}{R_2})^{-1}$	$R_P = \frac{R_1 R_2}{R_1 + R_2}$	
	$\frac{1}{R_P} = (\frac{1}{10} + \frac{1}{10})\checkmark$	$R_P = (\frac{1}{1})$	$\frac{1}{10} + \frac{1}{10})^{-1}$	$R_P = \frac{(10)(10)}{10+10} \checkmark$	
REXT = RP + Rs REXT =		R _P = 5 0	2	R _P = 5 Ω	
		R _{EXT} = F	R _P + R₅	Rext = R _P + R _s	
	$R_{EXT} = \frac{5 + 10}{4} \checkmark \qquad R_{EXT} = \frac{10}{2}$		<u>5 + 10</u> √	R _{EXT} = <u>5 + 10</u> √	
	R _{EXT} = 15 Ω√	REXT = 1	5 Ω√	R _{EXT} = 15 Ω√	(5)

8.2.2 POSITIVE MARKING FROM QUESTION 8.2.1

 $\varepsilon = I(R + r) \checkmark$ $\varepsilon = 2(15 + 0,1) \checkmark$ $\varepsilon = 30,2 \lor \checkmark$

(3)

	OPTION 1	OPTION 2 (Positive marking	
		from Q8.2.1)	
8.2.3	W = P x t√	$W = I^2 Rt \checkmark$	
	W = 40 x 20 x 60√	$W = (2)^2 (10) (20 \times 60) \checkmark$	
	W = 48000 J√	W = 48000 J✓	(3)
			[13]

15 NSC

QUESTION 9

9.1.1	AC (generator) ✓	(1)
9.1.2	Slip rings✓	(1)
9.1.3	(Faraday's Law of) Electromagnetic induction✓	(1)

9.2.1 The rms value of AC is the DC potential difference which dissipates the same amount of energy as AC. $\checkmark \checkmark$ (2 OR 0) (2)

OPTION 1 9.2.2 **OPTION 2** $V_{\text{RMS}} = \frac{V_{\text{Max}}}{\sqrt{2}} \checkmark$ Imax $=\frac{V_{Max}}{R} \checkmark$ $V_{\rm RMS} = \frac{311,13}{\sqrt{2}} \checkmark$ $=\frac{311,13}{807}$ V_{RMS} = 220,00 V = 0,3855 A $\mathsf{P}_{\mathsf{ave}} = \frac{\mathsf{V}_{\mathsf{RMS}}^2}{\mathsf{R}} \checkmark$ $P_{ave} = \frac{I_{max}V_{max}}{2} \checkmark$ $\mathsf{P}_{\mathsf{ave}} = \frac{31113 \times 0.3855}{2} \checkmark$ $P_{ave} = \frac{220^2}{807} \checkmark$ Pave = 59,97 W√ Pave = 59,98 W√ (5) 9.3.1 /oltage/V

9.3.2 (Commutator) allows the induced current to flow in the same direction / in one direction in the external circuit $\checkmark \checkmark$

(2) **[14]**

10.1 Threshold frequency, f_o , is the minimum frequency of light needed to emit electrons from a certain metal surface. $\checkmark \checkmark$ (2 or 0) (2)

10.2 Q = nq_e

Q= 2,01 x 10^9 X 1,6 x 10^{-19} Q = 3,22 x 10^{-10} C

$$I = \frac{Q}{\Delta t} \checkmark$$
$$I = \frac{3,22 \times 10^{-10}}{1} \checkmark$$

$$I = 3,22 \times 10^{-10} \,\text{A} \,\checkmark \tag{4}$$

10.3 Decreases√

When the intensity of the light is decreased, the <u>number of photons</u> (2) <u>per second will decrease</u>√

10.4
$$E = W_o + K_{max}$$

 $E = hf_o + K_{max}$
2,12x10⁻¹⁸ $\checkmark = (6,63x10^{-34})(2,21x10^{15}) \checkmark + K_{max}$
 $K_{max} = 6,55 \times 10^{-19} J\checkmark$ (4)

10.5 Decreases√

 $\Theta_{\mathbf{i}}$

More energy is used to release the electrons. \checkmark

OR Work function is greater. ✓ (2) [14]

TOTAL: 150

17 NSC

CONVERSION OF MARKS FOR QUESTION 7

MARK OBTAINED	CONVERTED MARK OUT
OUT OF 13	OF 21
0	0
1	2
2	2 3
3	5
4	6
5	8
6	10
7	11
8	13
9	15
10	16
11	18
12	19
13	21