SA's Leading Past Year

Exam Paper Portal

STUD.Y

You have Downloaded, yet Another Great Resource to assist you with your Studies :

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

> SAEAMM RADPERES

KWAZULU-NATAL PROVINCE

EDUCATION

NATIONAL SENIOR CERTIFICATE

GRADE 12

PHYSICAL SCIENCES P1 (PHYSICS)

PREPARATORY EXAMINATIONS

MARKING GUIDELINE

SEPTEMBER 2021

MARKS : 150
TIME: 3 hours

This marking guideline consists of 15 pages.

Physical Sciences/P1

QUESTION 1: MULTIPLE CHOICE

1.1 $A \checkmark \checkmark$1.2 $D \checkmark \checkmark$(2)
$1.3 \quad C \checkmark \checkmark$
$1.4 \mathrm{D} \checkmark \checkmark$
1.5 $D \checkmark \checkmark$
1.6 $B \checkmark \checkmark$(2)
1.7 $B \checkmark \checkmark$(2)
1.8 A $\checkmark \checkmark$
1.9 $A \checkmark \checkmark$
$1.10 \quad C \checkmark \checkmark$[20]

QUESTION 2

2.1 When a resultant/net force acts on an object, the object will accelerate in the direction of the force at an acceleration directly proportional to the force and inversely proportional to the mass of the object $\checkmark \checkmark$.

OR
The resultant/net force acting on an object is equal to the rate of change of momentum of the object (in the direction of the net force) $\checkmark \checkmark(2$ or 0$)$.
2.2

ACCEPT

	Accept the following symbols
F	$\mathrm{~F}_{A} / \mathrm{F}_{\text {app }} / \mathrm{F}_{\text {Applied }}$
N	$\mathrm{F}_{\mathrm{N}} /$ Normal/ Normal force
fk	Kinetic friction force/f/ $/ \mathrm{F}_{\mathrm{f}} / \mathrm{f}_{\mathrm{r}}$
T	Tension force/F T
F_{g}	W/58,8N

Notes

- Mark is awarded for label and arrow.
- Do not penalise for length of arrows.
- Deduct 1 mark for any additional force.
- If force(s) do not make contact with body/dot : Max:4/5
- If arrows missing but labels are there: Max:4/5

2.3 For the $4 \mathbf{~ k g ~ c r a t e ~}$

$F_{\text {net }}=m a$
$\mathrm{T}-\mathrm{f}-\mathrm{Fg} / /=\mathrm{ma}$
$T-1-(9,8)(4) \sin 30^{\circ} \checkmark=4(2,5$
T = 30, 6 N upwards
For the 6 kg crate
$F_{\text {net }}=m a$
$F-f-t-F g / /=m a$

$\mathrm{F}-1,5-30,6-(9,8)(6) \sin 30^{\circ} \quad \checkmark=6(2,5)$
$F=76,5 \mathrm{~N} \checkmark$
2.4.1 INCREASES \checkmark
2.4.2 The 4 kg block will move upwards/forward (for a brief moment) \checkmark, stop \checkmark and then slide down the plane / backward \checkmark.

QUESTION 3

3.1.1 Zeror

3.1.2 $\quad 9,8 \mathrm{~m} \cdot \mathrm{~s}^{-2} \checkmark$ downwards \checkmark
3.2.1

OPTION 1

UPWARD POSITIVE	UPWARD NEGATIVE
$\Delta y=v_{i} \Delta t+1 / 2 a \Delta t^{2} \checkmark$	$\Delta y=v_{i} \Delta t+1 / 2 a \Delta t^{2} \checkmark$
$\Delta y=\left(\underline{4,9)(0,5)+1 / 2(-9,8)(0,5)^{2} \downarrow}\right.$	$\Delta y=(-4,9)(0,5)+1 / 2(9,8)(0,5)^{2} \downarrow$
$\Delta y=1,225 \mathrm{~m}$	$\Delta y=-1,225 \mathrm{~m}$
Height after $0,5 \mathrm{~s}=\underline{80+\checkmark 1,225}$	Height after 0,5s= $\underline{80+\checkmark 1,225}$
= 81,23 m	
	= $81,23 \mathrm{~m} \checkmark$
\therefore The ball is $81,23 \mathrm{~m}$ above the ground	\therefore The ball is $81,23 \mathrm{~m}$ above the ground

OPTION 2

UPWARD POSITIVE	UPWARD NEGATIVE
$\mathrm{vf}_{\mathrm{f}}=\mathrm{v}_{\mathrm{i}}+\mathrm{a} \Delta \mathrm{t}$	$\mathrm{vf}_{\mathrm{f}}=\mathrm{v}_{\mathrm{i}}+\mathrm{a} \Delta \mathrm{t}$
$\mathrm{Vf}_{f}=4,9+(-9,8)(0,5)$	$\mathrm{Vff}=-4,9+(9,8)(0,5)$
$\mathrm{v}_{\mathrm{f}}=0 \mathrm{~m} \cdot \mathrm{~s}^{-1}$	$\mathrm{v}_{\mathrm{f}}=0 \mathrm{~m} \cdot \mathrm{~s}^{-1}$
$\mathrm{vf}^{2}=\mathrm{vi}^{2}+2 \mathrm{a} \Delta \mathrm{y} \checkmark$	$v f^{2}=v_{i}{ }^{2}+2 \mathrm{a} \Delta \mathrm{y} \checkmark$
$\underline{0}=4,9^{2}+2(-9,8) \Delta y \checkmark$	$\underline{0=-4,9^{2}+2(9,8) \Delta y \checkmark}$
$\Delta \mathrm{y}=1,225 \mathrm{~m}$	$\Delta \mathrm{y}=-1,225 \mathrm{n}$
$\begin{aligned} \text { Height after } 0,5 \mathrm{~s} & =80+\checkmark 1,225 \\ & =\frac{81,23 \mathrm{~m} \checkmark}{} \end{aligned}$	$\begin{aligned} \text { Height after } 0,5 \mathrm{~s} & =80+\mathrm{r}, 225 \\ & =81,23 \mathrm{~m} \mathrm{r} \end{aligned}$
\therefore The ball is $81,23 \mathrm{~m}$ above the ground	\therefore The ball is $81,23 \mathrm{~m}$ above the ground

OPTION 3

UPWARD POSITIVE	UPWARD NEGATIVE
$\mathrm{vf}_{\mathrm{f}}=\mathrm{v}_{\mathrm{i}}+\mathrm{a} \Delta \mathrm{t}$	$\mathrm{vf}_{\mathrm{f}}=\mathrm{v}_{\mathrm{i}}+\mathrm{a} \Delta \mathrm{t}$
$\mathrm{Vf}_{\mathrm{f}}=4,9+(-9,8)(0,5)$	$\mathrm{vf}_{\mathrm{f}}=4,9+(-9,8)(0,5)$
$\mathrm{vf}_{\mathrm{f}}=0 \mathrm{~m} \cdot \mathrm{~s}^{-1}$	$\mathrm{Vff}_{\mathrm{f}}=0 \mathrm{~m} \cdot \mathrm{~s}^{-1}$
$\Delta y=\frac{v_{f}+v_{i}}{2} \Delta t \checkmark$	$\Delta y=\frac{v_{f}+v_{i}}{2} \Delta t \checkmark$
$\left[\Delta y=\frac{0+4,9}{2} 0,5\right] \checkmark$	$\left[\Delta y=\frac{0-4,9}{2} 0,5\right]$
$\Delta \mathrm{y}=1,225 \mathrm{~m}$	$\Delta \mathrm{y}=-1,225 \mathrm{~m}$
$\begin{aligned} \text { Height after } 0,5 \mathrm{~s} & =\underline{80+\sqrt{ } 1,225} \\ & =81,23 \mathrm{~m} \checkmark \end{aligned}$	$\begin{aligned} \text { Height after } 0,5 \mathrm{~s} & =\underline{80+\checkmark} 1,225 \\ & =81,23 \mathrm{~m} \checkmark \end{aligned}$
\therefore The ball is $81,23 \mathrm{~m}$ above the ground	\therefore The ball is $81,23 \mathrm{~m}$ above the ground

6 Preparatory Examination September 2021

 NSC
OPTION 4

```
1/2mvi}\mp@subsup{}{}{2}+mg\mp@subsup{h}{i}{}=1/2mv\mp@subsup{f}{}{2}+mg\mp@subsup{h}{f}{}
1/2m(4,9)
    hf = 81,225 m \checkmark
```

OPTION 5

```
1/2mvi}\mp@subsup{}{}{2}+mg\mp@subsup{h}{i}{}=1/2mv\mp@subsup{f}{}{2}+mg\mp@subsup{h}{f}{
1/2m(4,9)2 +m(9,8)(0) = 1/2m(0) 2 +m(9,8)\mp@subsup{h}{f}{\prime}
    h = 1,225m
Height after 0,5s=\underline{80 + 1,225}
    = 81,23 m
\thereforeThe ball is 81,23 m above the ground
```


OPTION 1

UPWARDS POSITIVE	UPWARDS NEGATIVE
$\Delta y=v i \Delta t+1 / 2 a \Delta t^{2} \checkmark$	$\Delta y=v i \Delta t+1 / 2 a \Delta t^{2} \checkmark$
$-80 \checkmark=\underline{(4,9) \Delta t+1 / 2(-9,8) \Delta t^{2} \checkmark}$	$80 \checkmark=\underline{(-4,9) \Delta t+1 / 2(9,8) \Delta t^{2} \checkmark}$
$\Delta t=4,57 s \checkmark$	$\Delta t=4,57 \mathrm{~s} \checkmark$

OPTION 2

UPWARDS POSITIVE	UPWARDS AS NEGATIVE
$\mathrm{vf}^{2}=\mathrm{vi}^{2}+2 \mathrm{a} \Delta \mathrm{y}$	$\mathrm{vf}^{2}=\mathrm{vi}^{2}+2 \mathrm{a} \Delta \mathrm{y}$
$v f^{2}=(4,9)^{2}+2(-9,8)(-80) \checkmark$	$v f^{2}=(-4,9)^{2}+2(9,8)(80) \checkmark$
$\mathrm{vf}_{\mathrm{f}}=-39,9 \mathrm{~m} \cdot \mathrm{~s}^{-1}$	$\mathrm{vf}_{\mathrm{f}}=39,9 \mathrm{~m} \cdot \mathrm{~s}^{-1}$
$v_{f}=\downarrow i i+a \Delta t \checkmark$	$v_{f}=y_{i}+a \Delta t \checkmark$
$\underline{-39,9}=4,9+(-9.8) \Delta t \checkmark$	$39,9=-4,9+(9.8) \Delta t \checkmark$
$\Delta \mathrm{t}=4,57 \mathrm{~s} \checkmark$	$\Delta t=4,57 \mathrm{~s} \checkmark$

OPTION 3: POSITIVE MARKING FROM QUESTION 3.2.1
Considering ball from the maximum height

UPWARDS POSITIVE
$\Delta y=v i \Delta t+1 / 2 a \Delta t^{2} \checkmark$
$-81,23=(0) \Delta t+1 / 2(-9,8) \Delta t^{2} \checkmark$
$\Delta \mathrm{t}=4,07 \mathrm{~s}$
Time to reach ground $=\underline{0,5+} \downarrow 4,07$
$=4,57 \mathrm{~s} \checkmark$

UPWARDS AS NEGATIVE
$\Delta y=v i \Delta t+1 / 2 a \Delta t^{2} \checkmark$
$\underline{81,23 \checkmark}=(0) \Delta t+1 / 2(9,8) \Delta t^{2} \checkmark$
$\Delta t=4,07 \mathrm{~s}$
Time to reach ground $=0,5+4,07$
$=4,57 \mathrm{~s} \checkmark$

3.3 POSITIVE MARKING FROM Q3.2.2

CRITERIA FOR MARKING OF GRAPH	
Correct shape	\checkmark
Indication of initial velocity	\checkmark
Indication of the time for the entire motion	\checkmark

[14]

QUESTION 4

4.1 The total linear momentum in an isolated system is conserved $\checkmark \checkmark$ (accept "closed" instead of "isolated")

OR
In an isolated system, the total linear momentum before a collision is equal to the total linear momentum after the collision. $\checkmark \checkmark$
4.2 $\quad \mathrm{p}_{\text {total }}($ before $)=p_{\text {total }}($ after $)$
$\Sigma p_{i}=\Sigma p_{f}$
$m_{1} v_{i 1}+m_{2} v_{i 2}=\left(m_{1}+m_{2}\right) v$

$\underline{1200(25)+1800(0)} \checkmark=\underline{(1200+1800) v} \checkmark$
$v=10 \mathrm{~m} \cdot \mathrm{~s}^{-1} \checkmark$.
\therefore Speed of the cars after is $10 \mathrm{~m} \cdot \mathrm{~s}^{-1}$
4.3

$\Sigma \mathrm{K}_{f}$	$=1 / 2\left(\mathrm{~m}_{1}+\mathrm{m}_{2}\right) \mathrm{v}^{2} \checkmark$			
	$=\underline{1 / 2(1200+1800) 10^{2} \checkmark}$			
	$=\underline{150000 \mathrm{~J}}$		$\Sigma \mathrm{K}_{\mathrm{i}}$	$=1 / 2 \mathrm{~m}_{1} \mathrm{vin}^{2}+1 / 2 \mathrm{~m}_{2} \mathrm{vi}^{2}{ }^{2}$
---:	:---			
	$=\underline{1 / 2(1200)(25)^{2}+1 / 2(1800)(0)^{2}} \checkmark$			
	$=375000 \mathrm{~J}$			

$\Sigma \mathrm{K}_{\mathrm{f}} \neq \Sigma \mathrm{K}_{\mathrm{i}} \checkmark$
\therefore Collision is Inelastic \checkmark
NOTE: If it is assumed that $\Sigma K_{f}=\Sigma K_{i}$ at the outset, Max:2/5

4.4 POSITIVE MARKING FROM QUESTION 4.2

OPTION 1	OPTION 2
$\mathrm{vf}^{2}=\mathrm{vi}^{2}+2 \mathrm{a} \Delta \mathrm{y} \downarrow$	$\Delta y=\frac{v_{f}+v_{i}}{2} \Delta t \checkmark$
$0^{2}=\underline{(10)}^{2}+2 \mathrm{a}(20){ }^{\checkmark}$	$20=\left(\frac{0+10}{2}\right) \Delta t \checkmark$
$\mathrm{a}=-2,5 \mathrm{~m} \cdot \mathrm{~s}^{-2}$	$\Delta \mathrm{t}=4 \mathrm{~s}$
$\mathrm{F}_{\text {net }}=\mathrm{ma}$	$\mathrm{vff}_{\mathrm{f}}=\mathrm{v}_{\mathrm{i}}+\mathrm{a} \Delta \mathrm{t}$
$\mathrm{F}_{\mathrm{f}}=\mathrm{ma}$	$0=10+a(4)$
$\mathrm{F}_{\mathrm{f}}=3000(-2,5) \checkmark$	$\mathrm{a}=-2,5 \mathrm{~m} \cdot \mathrm{~s}^{-2}$
$\begin{equation*} F_{f}=-7500 \mathrm{~N} \tag{5} \end{equation*}$ \therefore Magnitude of frictional force is $7500 \mathrm{~N} \checkmark$	

OPTION 3

$$
\begin{aligned}
& \Delta \mathrm{y}=\frac{\mathrm{v}_{\mathrm{f}}+\mathrm{v}_{\mathrm{i}}}{2} \Delta \mathrm{t} \checkmark \\
& \begin{aligned}
20 & =\left(\frac{0+10}{2}\right) \Delta t \checkmark \quad \therefore \Delta \mathrm{t}=4 \mathrm{~s} \\
\text { Fnet }= & \mathrm{f}
\end{aligned} \\
& \begin{aligned}
\mathrm{f} & =\frac{\Delta p}{\Delta t} \\
& =\frac{n\left(v_{f}-v_{i}\right)}{\Delta t} \checkmark \\
& =\frac{30000-10)}{4} \\
& =-7500 \mathrm{~N}
\end{aligned}
\end{aligned}
$$

\therefore Magnitude of f is $7500 \mathrm{~N} \checkmark$

OPTION 4

$W_{\text {net }}=\Delta E_{k}$
f $\left.\Delta x \cos \theta=1 / 2 m v^{2}-1 / 2 m v_{i}^{2}\right\} \checkmark$
$\underline{f(20)} \cos 180^{\circ} \checkmark=\underline{1 / 2(3000)(0)^{2}-1 / 2(3000)(10)^{2} \checkmark}$
$\mathrm{f}=7500 \mathrm{~N}$

Nagnitude of is 7500 N

QUESTION 5

5.1.1 OPTION 1

$W=F \Delta x \cos \theta \checkmark$
$\mathrm{W}_{\text {gravity }}=\mathrm{mg} \Delta \mathrm{y} \cos \theta$
$=(1300)(9,8)(60) \cos 180^{\circ} \checkmark$
$=-764400 \mathrm{~J} \checkmark\left(-7,64 \times 10^{5} \mathrm{~J}\right)$

OPTION 2

$W=-\Delta E p \checkmark$
$=-(1300)(9,8)(60-0) \checkmark$
$=-764400 \mathrm{~J} \checkmark\left(-7,64 \times 10^{5} \mathrm{~J}\right)$
-1 mark if either negative is omitted
5.1.2 $\mathrm{W}_{\text {counterweight }}=\mathrm{mg} \Delta \mathrm{y} \cos \theta$

$$
\begin{align*}
& =\frac{(900)(9,8)(60) \cos 0^{\circ}}{} \quad \\
& =529200 \mathrm{~J}\left(5,29 \times 10^{5} \mathrm{~J}\right) \tag{2}
\end{align*}
$$

5.2 OPTION 1

POSITIVE MARKING FROM 5.1.1 $\quad \mathrm{F}_{\text {motor }}=\mathrm{T}_{\text {right }}-\mathrm{T}_{\text {left }}$
AND 5.1.2 = 1300(9,8) - 900(9,8)
$W_{\text {net }}=\Delta E_{k} \quad=3920 \mathrm{~N}$
$\mathrm{W}_{\text {gravity }}+\mathrm{W}_{\text {countweight }}+\mathrm{W}_{\text {motor }}=0 L \checkmark \mathrm{~W}_{\text {motor }}=F_{\text {motor }} \Delta \mathrm{y} \cos 0 \checkmark$
$\mathrm{W}_{\text {motor }}=-\left(\mathrm{W}_{\text {gravity }}+\mathrm{W}_{\text {countweight }}\right)$
NSC
\qquad
$=(3920)(60) \cos 0 \checkmark$
$=235200 \mathrm{~J}$
$-764400+529200 \checkmark+W_{\text {motor }}=0$
$\therefore \mathrm{W}_{\text {motor }}=235200 \mathrm{~J}$

QUESTION 6

6.1 The change in frequency (or pitch) of the sound detected by a listener because the sound source and the listener have different velocities relative to the medium of sound propagation.
6.2

$$
\begin{align*}
& \mathrm{v}=\frac{\mathrm{d}}{\Delta \mathrm{t}} \quad \mathrm{v}=\frac{45}{3} v \quad \therefore \mathrm{vL}=15 \mathrm{~m} \cdot \mathrm{~s}^{-1} \tag{2}\\
& \mathrm{f}_{\mathrm{L}}=\frac{\mathrm{v} \pm \mathrm{v}_{\mathrm{L}}}{\mathrm{v} \pm \mathrm{v}_{\mathrm{s}}} \mathrm{f}_{\mathrm{S}} / \quad f_{\mathrm{L}}=\frac{v-v_{L}}{\mathrm{v}} \mathrm{f}_{\mathrm{s}} \\
& \mathrm{f}_{\mathrm{L}}=\left(\frac{340-15}{340+0}\right) 77^{r} 55 \\
& \mathrm{f}_{\mathrm{L}}=721,69 \mathrm{~Hz} \mathrm{v} \tag{5}
\end{align*}
$$

6.3 Any twor \checkmark

- Ultrasound waves (to measure the heartbeat of a foetus in the womb).
- Doppler flowmeter (to measure the rate of blood flow)
- Traffic management systems, (especially speed control)
- Radar, (allowing for the tracking of weather systems)
- Astronomy, (where the application of the red-shift and blue-shift of light from the stars has revolutionised our understanding of the universe)

6.4.1 The spectral lines (light) from the star are shifted towards longer wavelengths. $\checkmark \checkmark$

6.4.2 Decrease \checkmark

QUESTION 7

7.1.1 The magnitude of the electrostatic force exerted by one point charge $\left(Q_{1}\right)$ on another point charge $\left(Q_{2}\right)$ is directly proportional to the product of the magnitudes of the charges and inversely proportional to the square of the distance (r) between them $\checkmark \checkmark$

NB DO NOT MARK QUESTION 7.1.2. MAX MARK FOR QUESTION 7 WILL BE 13. CONVERT THIS MARK TO 21 USING THE CONVERSION TABLE PROVIDED AT THE END OF THESE GUIDELINES
7.1.2
$F=k \frac{q_{1} q_{2}}{r^{2}} v$
$F_{Y Z}=9 \times 10^{9}\left(\frac{1,5 \times 10^{-6} \times 1,8 \times 10^{-6}}{\left(3 \times 10^{-2}\right)^{2}}\right) \checkmark$
$F_{Y Z}=27 \mathrm{~N}$ downwards.

$$
F_{x z}=9 \times 10^{9}\left(\frac{2,1 \times 10^{-6} \times 1,8 \times 10^{-6}}{\left(6 \times 10^{-2}\right)^{2}}\right) \checkmark
$$

$\mathrm{F}_{\mathrm{AC}}=9,45 \mathrm{~N}$ at 60° to the vertical
But $F_{x z}$ has two perpendicular components i.e. Fxzx and Fxzy
$\mathrm{F}_{Y Z x}=\mathrm{F}_{Y Z} \operatorname{Sin} 60^{\circ}$
$F_{Y Z x}=9,45 \operatorname{Sin} 60^{\circ} \checkmark$

$F_{A C x}=8,184 \mathrm{~N}$ to the left
$F_{Y z y}=F_{Y z} \operatorname{Cos} 60^{\circ}$
$F_{Y z y}=9,45 \operatorname{Cos} 60^{\circ} \checkmark$
$F_{A C y}=4,725 \mathrm{~N}$ upwards

$\left(F_{\text {net }}\right)^{2}=\left(F_{\text {net }} \mathrm{x}\right)^{2}+\left(F_{\text {net }} \mathrm{y}\right)^{2}$
$\left(F_{\text {net }}\right)^{2}=(8,814)^{2}+(22,275)^{2} \checkmark$
$\left.F_{\text {net }}=\sqrt{\left(8,814^{2}+22,275^{2}\right.}\right)$
$F_{\text {net }}=23,73 \mathrm{~N} \checkmark$
7.2.1 The electric field at a point is the (electrostatic) force experienced per unit positive charge placed at that point.
7.2.2

CRITERIA FOR MARKING THE ABOVE ELECTRIC FIELD PATTERN	
Correct direction of field lines	\checkmark
Shape of the electric field lines (At least 4 lines on each sphere)	\checkmark
No field lines crossing each other/No field lines inside the spheres	\checkmark

7.2.3

$$
\begin{align*}
& \mathrm{Q}=\frac{\mathrm{Q}_{1}+\mathrm{Q}_{2}}{2} \tag{3}\\
& \mathrm{Q}=\frac{5 \times 10^{-6}+\left(-10 \times 10^{-6}\right)}{2} \\
& =-2,5 \times 10^{-6} \mathrm{C}(-2,5 \mu \mathrm{C}) \\
& E=k \frac{Q}{r^{2}} \checkmark \\
& E_{A P}=9 \times 10^{9}\left(\frac{2,5 \times 10^{-6}}{0,045^{2}}\right) r \\
& E_{Q P}=1,11 \times 10^{7} \mathrm{~N} \cdot \mathrm{C}^{-1} \text { to the left } \\
& E_{B P}=9 \times 1 \phi^{9}\left(\frac{2,5 \times 10^{-6}}{0,015^{2}}\right)^{\checkmark} \\
& E_{B P}=1,00 \times 10^{8} \mathrm{~N} \cdot \mathrm{C}^{-1} \text { to the left } \\
& E_{\text {net }}=E_{A P}-E_{B P} \\
& E_{\text {net }}=1,11^{\downarrow} \times 10^{7}+\checkmark 1,00 \times 10^{8} \\
& E_{\text {net }}=1,11 \times 10^{8} \mathrm{~N} \cdot \mathrm{C}^{-1} \checkmark \tag{6}
\end{align*}
$$

QUESTION 8

8.1 (Maximum) energy provided (work done) by a battery per coulomb/unit charge passing through it $\checkmark \checkmark$
8.2.1

OPTION 1	OPTION 2	
$\begin{aligned} & P=I^{2} R \checkmark \\ & 40=2^{2} R_{3} \checkmark \end{aligned}$		$\begin{aligned} & P_{s}=V_{3} \mid \checkmark \\ & 40=V_{3}(2) \\ & V_{3}=20 \mathrm{~V} \end{aligned}$
$\mathrm{R}_{3}=10 \Omega$		$\therefore R_{3}=\frac{v_{3}}{1}=\frac{20}{2} \checkmark=10 \Omega$
$\frac{1}{R_{P}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}$	$R_{P}=\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)^{-1}$	$R_{P}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}$
$\frac{1}{R_{P}}=\left(\frac{1}{10}+\frac{1}{10}\right)^{\checkmark}$	$R_{P}=\left(\frac{1}{10}+\frac{1}{10}\right)^{-1} \checkmark$	$R_{P}=\frac{(10)(10)}{10+10} \checkmark$
$\mathrm{R}_{\mathrm{P}}=5 \Omega$	$\mathrm{R}_{\mathrm{P}}=5 \Omega$	$\mathrm{R}_{\mathrm{P}}=5 \Omega$
$\mathrm{R}_{\mathrm{EXT}}=\mathrm{R}_{\mathrm{P}}+\mathrm{R}_{\mathrm{s}}$	$\mathrm{R}_{\mathrm{EXT}}=\mathrm{R}_{\mathrm{P}}+\mathrm{R}_{\text {s }}$	$\mathrm{Rext}_{\text {ex }}=\mathrm{R}_{\mathrm{P}}+\mathrm{R}_{\mathrm{s}}$
$\mathrm{R}_{\text {EXt }}=\underline{\text { 5 + } 10}$	$\mathrm{Rext}_{\text {Ex }}=\underline{5+10}$	$\mathrm{R}_{\text {EXt }}=\underline{5+10}$
Rext $=15 \Omega \checkmark$	$\mathrm{Rext}^{\text {e }}=15 \Omega \checkmark$	$\mathrm{Rexx}^{\text {e }}=15 \Omega \checkmark$

8.2.2 POSITIVE MARKING FROM QUESTION 8.2.1

$$
\begin{align*}
& \varepsilon=I(R+r) \checkmark \\
& \varepsilon=2(15+0,1), \\
& \varepsilon=30,2 V \checkmark \tag{3}
\end{align*}
$$

OPTION 1		$\begin{array}{l}\text { OPTION 2 (Positive marking } \\ \text { from Q8.2.1) }\end{array}$
	$\mathrm{W}=\mathrm{P} \times \mathrm{t} \checkmark$	$\mathrm{W}=\mathrm{I}^{2} \mathrm{Rt} \checkmark$
$\mathrm{W}=40 \times 20 \times 60 \checkmark$	$\mathrm{~W}=(2)^{2}(10)(20 \times 60) \checkmark$	
$\mathrm{W}=48000 \mathrm{~J} \checkmark$	$\mathrm{~W}=48000 \mathrm{~J} \checkmark$	

QUESTION 9

9.1.1 AC (generator) \checkmark
9.1.2 Slip rings \checkmark
9.1.3 (Faraday's Law of) Electromagnetic induction \checkmark
9.2.1 The rms value of $A C$ is the DC potential difference which dissipates the same amount of energy as AC. $\checkmark \checkmark$ (2 OR 0)

9.2.2 OPTION 1

$$
\text { OPTION } 2
$$

$$
\begin{array}{ll}
V_{\text {RMS }}=\frac{V_{\text {Max }}}{\sqrt{2}} \checkmark & I_{\max } \\
=\frac{V_{\text {Max }}}{R} \checkmark \\
V_{\text {RMS }}=\frac{311,13}{\sqrt{2}} \checkmark & =\frac{311,13}{807} \checkmark \\
V_{\text {RMS }}=220,00 \mathrm{~V} & =0,3855 \mathrm{~A} \\
\text { Pave }=\frac{V_{\text {R }}^{2}}{R} \checkmark & \text { Pave } \\
\text { Pave }=\frac{220^{2}}{807} \checkmark & =\frac{I_{\text {max }} V_{\text {max }}}{2} \checkmark \\
\text { Pave }=59,98 \mathrm{~W} \checkmark & \text { Pave }=\frac{311,13 \times 0,3855}{2} \checkmark
\end{array}
$$

9.3.1

CRITERIA FOR MARKING THE ABOVE GRAPH	
Correct shape	\checkmark
At least one complete cycle	\checkmark

9.3.2 (Commutator) allows the induced current to flow in the same direction / in one direction in the external circuit $\checkmark \checkmark$

QUESTION 10

10.1 Threshold frequency, f_{o}, is the minimum frequency of light needed to emit electrons from a certain metal surface. $\checkmark \checkmark$ (2 or 0)
10.2 $Q=n q_{e}$
$Q=2,01 \times 10^{9} \times 1,6 \times 10^{-19} \checkmark$
$Q=3,22 \times 10^{-10} \mathrm{C}$
$\mathrm{I}=\frac{\mathrm{Q}}{\Delta \mathrm{t}} \downarrow$
$I=\frac{3,22 \times 10^{-10}}{1}$
$I=3,22 \times 10^{-10} \mathrm{~A} \checkmark$
10.3 Decreases \checkmark

When the intensity of the light is decreased, the number of photons per second will decrease \checkmark

```
10.4 \(\mathrm{E}=\mathrm{W}_{0}+\mathrm{K}_{\text {max }}\)
\(\mathrm{E}=\mathrm{hf}_{\mathrm{o}}+\mathrm{K}_{\text {max }}\)
```

```
\(2,12 \times 10^{-18} \checkmark=\left(6,63 \times 10^{-34}\right)\left(2,21 \times 10^{15}\right) \checkmark+K_{\max }\)
\(K_{\text {max }}=6,55 \times 10^{-19} \mathrm{~J} \checkmark\)
```

10.5 Decreases \checkmark

More energy is used to release the electrons.
OR
Work function is greater.

CONVERSION OF MARKS FOR QUESTION 7
\(\left.\begin{array}{|c|c|}\hline MARK

OBTAINED

OUT OF 13\end{array}\right)\)| CONVERTED |
| :--- |
| MARK OUT |
| OF 21 |$|$| | 0 |
| :---: | :---: |
| 0 | 2 |
| 1 | 3 |
| 2 | 5 |
| 3 | 6 |
| 4 | 8 |
| 5 | 10 |
| 6 | 11 |
| 7 | 13 |
| 8 | 15 |
| 9 | 18 |
| 10 | 19 |
| 11 | 21 |
| 12 | |
| 13 | |

