SA's Leading Past Year

Exam Paper Portal

STUD.Y

You have Downloaded, yet Another Great Resource to assist you with your Studies :

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

> SAEAMM RADPERES
TABLE OF CONTENTS PAGE

1. Introduction 3
2. How to use this self-study guide 4
3. Trigonometry 5
3.1 Grade 10 Revision work 8
3.2 Grade 11 Revision work 12
3.3 Reduction Formulae 13
3.4 Typical EXAM questions 58
2 Euclidean Geometry 98
2.1 Practice Exercises 121

1. Introduction

The declaration of COVID-19 as a global pandemic by the World Health Organisation led to the disruption of effective teaching and learning in many schools in South Africa. The majority of learners in various grades spent less time in class due to the phased-in approach and rotational/ alternate attendance system that was implemented by various provinces. Consequently, the majority of schools were not able to complete all the relevant content designed for specific grades in accordance with the Curriculum and Assessment Policy Statements in most subjects.

As part of mitigating against the impact of COVID-19 on the current Grade 12, the Department of Basic Education (DBE) worked in collaboration with subject specialists from various Provincial Education Departments (PEDs) developed this Self-Study Guide. The Study Guide covers those topics, skills and concepts that are located in Grade 12, that are critical to lay the foundation for Grade 12. The main aim is to close the pre-existing content gaps in order to strengthen the mastery of subject knowledge in Grade 12. More importantly, the Study Guide will engender the attitudes in the learners to learning independently while mastering the core cross-cutting concepts.

2. How to use this Self Study Guide?

- This Self Study Guide summaries only two topics, Trigonometry and Euclidean Geometry. Hence the prescribed textbooks must be used to find more exercises.
- It highlights key concepts which must be known by all learners.
- Deeper insight into the relevance of each of the formulae and under which circumstances it can be used is very essential.
- Learners should know the variables in each formula and its role in the formula. Learners should distinguish variable in different formulae.
- More practice in each topic is very essential for you to understand mathematical concepts.
- The learners must read the question very carefully and make sure that they understand what is asked and then answer the question.
- make sure that Euclidean Geometry is covered in earlier grades. Basic work should be covered thoroughly. An explanation of the theorem must be accompanied by showing the relationship in a diagram.
- After answering all questions in this Self Study Guide, try to answer the previous question paper to gauge your understanding of the concepts your required to know.

1. TRIGONOMETRY

Introduction to trigonometry

Naming of sides in a right-angled triangle with respect to given angles.

In $\triangle \mathrm{ABC}$
1.

- AC is side opposite to 90° In $\triangle \mathrm{PQR}$ known as hypotenuse.
- AB is opposite side to \hat{C}
- $B C$ is adjacent side to \hat{C}.
- $R Q$ is side opposite to 90° known as hypotenuse.
- $P Q$ is opposite side to \hat{R}.
- PR is adjacent side to $\hat{\mathrm{R}}$.

2. - $A C$ is side opposite to 90° known as hypotenuse..

- AB is adjacent side to $\hat{\mathrm{A}}$
- $B C$ is side oppositet to \hat{A}.
- RQ is side opposite to 90° known as hypotenuse.
- $P Q$ is adjacent side to \hat{Q}.
- PR is opposite side to \hat{Q}

DEFINITIONS OF TRIGONOMETRIC RATIOS

Trigonometric ratios can be defined in right-angled triangles ONLY.

- $\sin \theta=\frac{\text { opp.sideto } \theta}{\text { hypotenuse }}=\frac{D E}{D F}$
- $\cos \theta=\frac{\text { adj. sideto } \theta}{\text { hypotenuse }}=\frac{E F}{D F}$
- $\tan \theta=\frac{\text { opp.sideto } \theta}{\text { adj.sideto } \theta}=\frac{D E}{E F}$
- $\operatorname{cosec} \theta=\frac{\text { hypotenuse }}{\text { opp.sideto } \theta}=\frac{D F}{D E}$
- $\sec \theta=\frac{\text { hypotenuse }}{\text { adj.sideto } \theta}=\frac{D F}{E F}$
- $\cot \theta=\frac{\text { adj. } \operatorname{sideto} \theta}{\text { opp.sideto } \theta}=\frac{E F}{D E}$

RECIPROCAL IDENTITIES

NB: ONLY EXAMINED IN GRADE 10

- $\sin \theta=\frac{1}{\operatorname{cosec} \theta}$	$\bullet \operatorname{cosec} \theta=\frac{1}{\sin \theta}$
- $\cos \theta=\frac{1}{\sec \theta}$	$\bullet \sec \theta=\frac{1}{\cos \theta}$
- $\tan \theta=\frac{1}{\cot \theta}$	- $\cot \theta=\frac{1}{\tan \theta}$

Revision grade 8, 9 and 10 work (use of Pythagoras Theorem)

Pythagoras theorem is only used in right-angled triangles: "The square on the hypotenuse is equal to the sum of the squares in the remaining two sides of a triangle".

Example 1

In the diagram below, $\triangle \mathrm{ABC}, \hat{B}=90^{\circ}, A B=3 \mathrm{~cm}, B C=4 \mathrm{~cm}$

1.1 Calculate the length of $A C$.

Solution

$$
\begin{aligned}
\mathrm{AC}^{2} & =\mathrm{AB}^{2}+\mathrm{BC}^{2} \quad \text { Pyth. theorem } \\
& =(3 \mathrm{~cm})^{2}+(4 \mathrm{~cm})^{2}
\end{aligned}
$$

$$
\mathrm{AC}=5 \mathrm{~cm} \quad \checkmark \text { correct substitution in Pyth. Theo }
$$

$$
\begin{equation*}
\checkmark \text { answer } \tag{2}
\end{equation*}
$$

1.2 Determine the values of the following trigonometric ratios:
1.2.1 $\sin \theta$

$$
\begin{equation*}
\sin \theta=\frac{A B}{A C}=\frac{3}{5} \quad \checkmark \quad \text { correct ratio } \tag{1}
\end{equation*}
$$

1.2.2 $\cos \theta$

$$
\begin{equation*}
\cos \theta=\frac{B C}{A C}=\frac{4}{5} \checkmark \quad \text { correct ratio } \tag{1}
\end{equation*}
$$

1.3 1.3.1 Determine the size of \hat{A} in terms of θ

$$
\begin{align*}
& \hat{A}=180^{\circ}-\left(90^{\circ}+\theta\right) \quad[\angle \sin a \Delta] \\
& \hat{A}=180^{\circ}-90^{\circ}-\theta \\
& \hat{A}=90^{\circ}-\theta \\
& \checkmark \quad \text { size of } \hat{A} \tag{1}
\end{align*}
$$

1.3.2 Hence, or otherwise, determine the value of $\cos \left(90^{\circ}-\theta\right)$

$$
\begin{align*}
\cos \left(90^{\circ}-\theta\right)= & \frac{\text { adj.sideto }\left(90^{\circ}-\theta\right)}{\text { hypotenuse }} \tag{1}\\
& =\frac{A B}{B C} \\
& =\frac{3}{5} \checkmark
\end{align*}
$$

3.1 Revision grade 10

CARTESIAN PLANE AND IDENTITIES

NB r is always positive, whilst x and y can be positive or negative Defining trig ratios in terms of x, y and r.

- $\sin \theta=\frac{y}{r}$
$\operatorname{cosec} \theta=\frac{r}{y}$
- $\cos \theta=\frac{x}{r}$
$\sec \theta=\frac{r}{x}$
- $\tan \theta=\frac{y}{x}$
$\cot \theta=\frac{x}{y}$

3.2 Revision grade 11

DERIVING IDENTITIES (using x, y and r)

1. $\cos ^{2} \theta+\sin ^{2} \theta=\left(\frac{x}{r}\right)^{2}+\left(\frac{y}{r}\right)^{2}$

$$
\begin{aligned}
& =\frac{x^{2}+y^{2}}{r^{2}} \quad N B\left(x^{2}+y^{2}=r^{2} \text { Pyth }\right) \\
& =\frac{r^{2}}{r^{2}} \\
& =1
\end{aligned}
$$

$\therefore \cos ^{2} \theta+\sin ^{2} \theta=1$

$$
\text { 2. } \begin{aligned}
\frac{\sin \theta}{\cos \theta} & =\frac{\frac{y}{r}}{\frac{x}{r}} \\
& =\frac{y}{x} \\
& =\tan \theta \\
\therefore \frac{\sin \theta}{\cos \theta}= & \tan \theta
\end{aligned}
$$

CO-RATIOS/FUNCTIONS

- $\sin \left(90^{\circ}-\theta\right)=\frac{x}{r}=\cos \theta$
- $\cos \left(90^{\circ}-\theta\right)=\frac{y}{r}=\sin \theta$

BASIC IDENTITIES

- $\cos ^{2} \theta+\sin ^{2} \theta=1$
- $\tan \theta=\frac{\sin \theta}{\cos \theta}$

Grade 12 Identities

- $\cos (\alpha-\beta)=\cos \alpha \cdot \cos \beta+\sin \alpha \cdot \sin \beta$
- $\cos (\alpha+\beta)=\cos \alpha \cdot \cos \beta-\sin \alpha \cdot \sin \beta$
- $\sin (\alpha-\beta)=\sin \alpha \cdot \cos \beta-\cos \beta \cdot \sin \alpha$
- $\sin (\alpha+\beta)=\sin \alpha \cdot \cos \beta+\cos \beta \cdot \sin \alpha$
- $\cos 2 \alpha=\left\{\begin{array}{l}\cos ^{2} \alpha-\sin ^{2} \alpha \\ 1-2 \sin ^{2} \alpha \\ 2 \cos ^{2} \alpha-1\end{array}\right\}$
- $\sin 2 \alpha=2 \sin \alpha \cos \alpha$

Proofs for the compound angle identities are examinable

Example 1

If $\sin \theta=-\frac{12}{13}$ and $90^{\circ} \leq \theta \leq 270^{\circ}$, determine the values of the following:

1. $\frac{\sin \theta}{\cos \theta}$

When answering this question, you need to define your trig ratio. Like $\sin \theta=-\frac{12}{13}=\frac{y}{r}$. Then you will know that $y=-12$ and $r=13, r$ will never be negative, then the negative sign will be taken by y. Sine is negative in $3^{\text {rd }}$ and $4^{\text {th }}$ quadrants. $90^{\circ} \leq \theta \leq 270^{\circ}$ is an angle between $2^{\text {nd }}$ and $3^{\text {rd }}$ quadrants. To know which quadrant from the two conditions, we must choose the quadrant that satisfies both conditions. Hence the $3^{\text {rd }}$ quadrant.

$r^{2}=x^{2}+y^{2} \quad$ Pythagoras theorem $\quad 2 . \quad \cos ^{2} \theta$

$$
\begin{array}{rlrl}
x= \pm \sqrt{(13)^{2}-(-12)^{2}} & \cos ^{2} \theta & =\left(\frac{-5}{13}\right)^{2} \\
==-5 & {\left[x \text { in } 3^{r d} \text { quad is neg] } \checkmark\right.} & & =\frac{25}{169} \checkmark
\end{array}
$$

$$
\frac{\sin \theta}{\cos \theta}=\frac{\frac{-12}{13}}{\frac{-5}{13}}=\frac{12}{5} \checkmark
$$

3. $1-\sin ^{2} \theta$

$$
\begin{aligned}
1-\sin ^{2} \theta & =1-\left(\frac{-12}{13}\right)^{2} \checkmark \\
& =1-\frac{144}{169} \\
& =\frac{25}{169} \checkmark
\end{aligned}
$$

CAST DIAGRAM

CAST: ALL STUDENTS TAKE COFFEE

NB: We can do reduction for angles rotating clockwise by adding 360° up until the angle is in the range of 0° to 360°.

$3^{\text {rd }}$ quadrant

SPECIAL ANGLES

$\sin 0^{\circ}=0$	$\sin 30^{\circ}=\frac{1}{2}$	$\sin 45^{\circ}=\frac{1}{\sqrt{2}}$	$\sin 60^{\circ}=\frac{\sqrt{3}}{2}$
$\cos 0^{\circ}=1$	$\cos 30^{\circ}=\frac{\sqrt{3}}{2}$	$\cos 45^{\circ}=\frac{1}{\sqrt{2}}$	$\cos 60^{\circ}=\frac{1}{2}$
$\tan 0^{\circ}=0$	$\tan 30^{\circ}=\frac{1}{\sqrt{3}}$	$\tan 45^{\circ}=1$	$\tan 60^{\circ}=\frac{\sqrt{3}}{1}$

$\sin 90^{\circ}=1$

$$
\sin 180^{\circ}=0
$$

$\sin 270^{\circ}=-1$
$\sin 360^{\circ}=0$
$\cos 90^{\circ}=0$

$$
\cos 180^{\circ}=-1
$$

$\cos 270^{\circ}=0$

$$
\cos 360^{\circ}=1
$$

$\tan 90^{\circ}=$ undefined
$\tan 270^{\circ}=$ undefined
$\tan 360^{\circ}=0$

REDUCTION FORMULAE

Identify in which quadrant the angle(s) lie first, then you will be able to know the sign of each trigonometric ratio(s) referring to CAST diagram, then change the trig ratio to its co-function if you are reducing by 90 .

$90^{0}-\theta\left(1^{\text {st }}\right.$ quadrant)	$-\theta\left(4^{\text {th }}\right.$ quadrant)
- $\sin \left(90^{\circ}-\theta\right)=\cos \theta$	- $\sin (-\theta)=-\sin \theta$
- $\cos \left(90^{\circ}-\theta\right)=\sin \theta$	- $\cos (-\theta)=\cos \theta$
$\text { - } \begin{aligned} \tan \left(90^{\circ}-\theta\right) & =\frac{\sin \left(90^{\circ}-\theta\right)}{\cos \left(90^{\circ}-\theta\right)} \\ & =\frac{\cos \theta}{\sin \theta} \\ & =\frac{1}{\tan \theta} \end{aligned}$	- $\tan (-\theta)=-\tan \theta$ OR - $\tan (-\theta)=\tan \left(360^{\circ}-\theta\right)=-\tan \theta$ Adding 360° until the range is between 0° and 360°

$90^{0}+\theta\left(2^{\text {nd }}\right.$ quadrant $)$

- $\sin \left(90^{\circ}+\theta\right)=\cos \theta$
- $\cos \left(90^{\circ}+\theta\right)=-\sin \theta$

$$
\begin{aligned}
& \theta-90^{\circ}\left(4^{\text {th }} \text { quadrant }\right) \\
& \text { - } \sin \left(\theta-90^{\circ}\right)=-\cos \theta \\
& \text { - } \cos \left(\theta-90^{\circ}\right)=\sin \theta
\end{aligned}
$$

- $\tan \left(90^{\circ}+\theta\right)=-\frac{1}{\tan \theta}$
- $\tan \left(\theta-90^{\circ}\right)=-\frac{1}{\tan \theta}$

$180^{\circ}-\theta\left(2^{\text {nd }}\right.$ quadrant)	$-\theta-90^{\circ}\left(3^{\text {rd }}\right.$ quadrant)
$\bullet \sin \left(180^{\circ}-\theta\right)=\sin \theta$	$\bullet \sin \left(-\theta-90^{\circ}\right)=-\cos \theta$
$\bullet \cos \left(180^{\circ}-\theta\right)=-\cos \theta$	$\bullet \cos \left(-\theta-90^{\circ}\right)=-\sin \theta$
$\bullet \tan \left(180^{\circ}-\theta\right)=-\tan \theta$	$\bullet \tan \left(-\theta-90^{\circ}\right)=\frac{1}{\tan \theta}$

$180^{0}+\theta\left(3^{\text {rd }}\right.$ quadrant)	$\theta-180^{\circ}$ ($3^{\text {rd }}$ quadrant)
- $\sin \left(180^{\circ}+\theta\right)=-\sin \theta$	
- $\cos \left(180^{\circ}+\theta\right)=-\cos \theta$	
- $\tan \left(180^{\circ}+\theta\right)=\tan \theta$	- $\cos \left(\theta-180^{\circ}\right)=-\cos \theta$
	- $\tan \left(\theta-180^{\circ}\right)=\tan \theta$

$360^{\circ}-\theta\left(4^{\text {th }}\right.$ quadrant $)$	$-\theta-180^{\circ}\left(2^{\text {nd }}\right.$ quadrant)
$\bullet \sin \left(360^{\circ}-\theta\right)=-\sin \theta$	$\bullet \sin \left(-\theta-180^{\circ}\right)=\sin \theta$
$\bullet \cos \left(360^{\circ}-\theta\right)=\cos \theta$	$\bullet \cos \left(-\theta-180^{\circ}\right)=-\cos \theta$
$\bullet \tan \left(360^{\circ}-\theta\right)=-\tan \theta$	$\bullet \tan \left(-\theta-180^{\circ}\right)=-\tan \theta$

$360^{\circ}+\theta\left(1^{\text {st }}\right.$ quadrant $)$	$\theta-360^{\circ}\left(1^{\text {st }}\right.$ quadrant $)$
$\bullet \sin \left(360^{\circ}+\theta\right)=\sin \theta$	$\bullet \sin \left(\theta-360^{\circ}\right)=\sin \theta$

$$
\begin{array}{l|l}
\hline \text { - } \cos \left(360^{\circ}+\theta\right)=\cos \theta & \text { - } \cos \left(\theta-360^{\circ}\right)=\cos \theta \\
\hline \text { - } \tan \left(360^{\circ}+\theta\right)=\tan \theta & \text { - } \tan \left(\theta-360^{\circ}\right)=\tan \theta
\end{array}
$$

Worked-out Example 1

Write the following as ratios of θ :

Solutions

1.1. $\cos \left(180^{\circ}-\theta\right)$
1.2. $\tan \left(\theta-360^{\circ}\right)$
1.3. $\sin (-\theta)$
$1.1 \cos \left(180^{\circ}-\theta\right)=-\cos \theta \checkmark$
$1.2 \tan \left(\theta-360^{\circ}\right)=\tan \theta^{\checkmark}$
$1.3 \sin (-\theta)=-\sin \theta \checkmark$

Worked-out Example 2

Express the following as ratios of acute angles

Solutions

$2.1 \tan 130^{\circ}$
$2.1 \tan 130^{\circ}=\tan \left(180^{\circ}-50^{\circ}\right)$

$$
=-\tan 50^{\circ} \checkmark
$$

130° cannot just be written in any way but in terms of 90° or 180°. It is in the $2^{\text {nd }}$ quadrant and is greater than 90° but less than 180°.
$\therefore 130^{\circ}=180^{\circ}-50^{\circ}$ OR $130^{\circ}=90^{\circ}+40^{\circ}$. In this case we choose expression by 180° as our ratios remain the same in 180°. We can write $130^{\circ}=90^{\circ}+40^{\circ}$ but bear in mind that our ratios change to their co-ratios when reducing by 90°.
$2.2 \cos (-284)^{0}$
$2.2 \cos (-284)^{0}=\cos \left(76-360^{\circ}\right)$

$$
=\cos 76^{\circ} \checkmark
$$

OR

$$
\begin{aligned}
\cos (-284)^{0} & =\cos \left(-284+360^{\circ}\right) \\
& =\cos 76^{\circ} \checkmark
\end{aligned}
$$

Explanation in 2.1 also applies in 2.2 according the quadrant where the angle lies.

Worked-out Example 3

Simplify the following expressions:
$3.1 \cos (-\theta) \cos \left(90^{\circ}+\theta\right) \tan \left(\theta+180^{\circ}\right)$

$$
\tan \left(360^{\circ}-\theta\right) \cdot \cos \theta \cdot \sin \left(360^{\circ}+\theta\right)
$$

Solutions

$$
\begin{aligned}
& \frac{\cos (-\theta) \cos \left(90^{\circ}+\theta\right) \tan \left(\theta+180^{\circ}\right)}{\tan \left(360^{\circ}-\theta\right) \cdot \cos \theta \cdot \sin \left(360^{\circ}+\theta\right)} \\
& =\frac{(\cos \theta) \cdot(-\sin \theta) \cdot(\tan \theta)}{(-\tan \theta) \cdot \cos \theta \cdot(\sin \theta)} \\
& =1
\end{aligned}
$$

$$
\checkmark \cos \theta
$$

$$
\checkmark-\sin \theta
$$

$$
\checkmark \tan \theta
$$

$$
\checkmark-\tan \theta
$$

$$
\checkmark \sin \theta
$$

$$
\checkmark_{1}
$$

$3.2 \frac{2 \sin 40^{\circ} \cdot \cos \left(-50^{\circ}\right)}{\sin 80^{\circ}}$
Solutions

$$
\begin{aligned}
& =\frac{2 \sin 40^{\circ} \cdot \cos \left(40^{\circ}-90^{\circ}\right)}{2 \sin 40^{\circ} \cos 40^{\circ}} \\
& =\frac{2 \sin 40^{\circ} \cdot\left(\sin 40^{\circ}\right)}{2 \sin 40^{\circ} \cdot \cos 40^{\circ}} \\
& =\tan 40^{\circ}
\end{aligned}
$$

3.3

$$
\begin{aligned}
& \sqrt{\frac{\frac{1}{2} \sin 2 x}{\tan \left(540^{0}+x\right) \cdot\left[\frac{1}{\cos ^{2} x}-\tan ^{2} x\right]}} \\
& =\sqrt{\frac{\frac{1}{2} \cdot 2 \sin x \cdot \cos x}{\left(\frac{\tan x) \cdot\left[\frac{1-\cos ^{2} x \cdot \frac{\sin ^{2} x}{\cos ^{2} x}}{\cos ^{2} x}\right.}{}\right.}} \\
& =\sqrt{\frac{\sin x \cdot \cos x}{\sin x} \cdot\left[\frac{1-\sin ^{2} x}{\cos x}\right]} \\
& =\sqrt{\frac{\cos { }^{2} x}{\sin x \cos x}} \\
& =\sqrt{\sin x} \cdot \frac{\cos ^{2} x}{\cos x} \\
& \sin x \cdot \cos x \cdot \frac{\cos x}{\sin x}
\end{aligned}
$$

Worked-out Example 4

If $\cos 35^{\circ}=p$, determine the following in terms of p :
Solutions

$4.1 \sin 35^{\circ}$ According to the definition of cosine, p represents x and 1 represents r	4.1 $\cos 35^{\circ}=\frac{p}{1}=\frac{x}{r}$
NB: Consider finding the $3^{\text {rd }}$ angle before you start doing your calculations.	
$\begin{aligned} & y=\sqrt{(1)^{2}-(p)^{2}} \quad \text { Pythagoras } \\ & \\ & =\sqrt{1-p^{2}} \\ & \therefore \sin 35^{0}=\frac{y}{r} \\ & =\frac{\sqrt{1-p^{2}}}{1} \\ & =\sqrt{1-p^{2}} \\ & \therefore \sin 35^{0}=\frac{\sqrt{1-p^{2}}}{1} \end{aligned}$	$y=\sqrt{1-p^{2}}$ $\sin 35^{\circ}=\frac{\sqrt{1-p^{2}}}{1}$

4.2	$\tan 215^{\circ}+\sin \left(-55^{\circ}\right)$		
	$=\tan \left(180^{\circ}+35^{\circ}\right)+\left(-\sin 55^{\circ}\right)$		
	$=\left(\tan 35^{\circ}\right)+\left(-\sin 55^{\circ}\right)$		
	$\left(\frac{\sqrt{1-p^{2}}}{p}\right)+\left(-\frac{p}{1}\right)$		
	$=\frac{\sqrt{1-p^{2}}-p^{2}}{p}$	\quad	
:---			

HOW TO USE DOUBLE ANGLE IDENTITIES [always change double angles to single angle to make your expression to be in a more simplified form]

1. If you see $\sin 2 x$ always substitute it by $2 \sin \cos x$. There is only 1 option for $\sin 2 x$.
2. $\cos 2 x$ has 3 options
2.1 If you see $\sin x$ before or after $\cos 2 x$, replace $\cos 2 x$ by $1-2 \sin ^{2} x$
2.2 If you see $\cos x$ before or after $\cos 2 x$, replace $\cos 2 x$ by $2 \cos ^{2} x-1$
2.3 If you see $\sin x \cos x$ before or after $\cos 2 x$, replace $\cos 2 x$ by $\cos ^{2} x-\sin ^{2} x$
2.4 If you see ± 1 before or after $\cos 2 x$.try to eliminate it by replacing by $1-2 \sin ^{2} x$ or $2 \cos ^{2} x-1$.

$$
\left[\begin{array}{rl}
\cos 2 x-1 & =\left(1-2 \sin ^{2} x\right)-1 \\
& =-2 \sin ^{2} x \\
\text { OR } \\
1-\cos 2 x & =1-\left(2 \cos ^{2} x-1\right) \\
& =-2 \cos ^{2} x \\
\text { OR } \\
\cos 2 x+1 & =2 \cos ^{2} x-1+1 \\
= & 2 \cos ^{2} x
\end{array}\right]
$$

For example:

By doing so you will be left with 1 term. Replace $\cos 2 x$ by the identity which will be the additive inverse to ± 1

TRIGONOMETRIC IDENTITIES INCLUDING DOUBLE ANGLES

Worked-out Example1: Prove that $\frac{\sin 2 x}{\cos 2 x+1}=\tan x$

$$
\begin{array}{rlr}
L H S & =\frac{\sin 2 x}{\cos 2 x+1} & \begin{array}{l}
\text { Numerator has } 1 \text { option only } \\
\\
\end{array}=\frac{2 \sin x \cos x}{2 \cos ^{2} x-1+1} \\
& =\frac{2 \sin x \cos x}{2 \cos ^{2} x} & \begin{array}{l}
\text { Denominator } \cos 2 x+1 \text { by replacing } \cos 2 x \text { by } 2 \cos ^{2} x-1
\end{array} \\
& =\frac{\sin x}{\cos x} & \text { Simplify } \\
& =\tan x & \\
& =\text { RHS } &
\end{array}
$$

Worked-out Example 2: Prove that $\frac{\sin 2 x-\cos x}{\sin x-\cos 2 x}=\frac{\cos x}{\sin x+1}$

$$
\begin{aligned}
\text { LHS } & =\frac{\sin 2 x-\cos x}{\sin x-\cos 2 x} \\
& =\frac{2 \sin x \cos x-\cos x}{\sin x-\left(1-2 \sin ^{2} x\right)} \\
& =\frac{\cos x(2 \sin x-1)}{\sin x-1+2 \sin ^{2} x} \\
& =\frac{\cos x(2 \sin x-1)}{2 \sin ^{2} x+\sin x-1} \\
& =\frac{\cos x(2 \sin x-1)}{(2 \sin x-1)(\sin x+1)} \\
& =\frac{\cos x}{\sin x+1} \\
& =R H S
\end{aligned}
$$

- $\sin 2 x$ has only 1 option
- Denominator has $\sin x$, then replace $\cos 2 x$ by $1-2 \sin ^{2} x$
- Denominator must be written in standard form
- Factorise numerator and denominator

Worked-out Example 3: Prove that $\cos 4 x=8 \cos ^{4} x-\cos ^{2} x+1$

$$
\begin{aligned}
L H S & =\cos 4 x \\
& =2 \cos ^{2} 2 x-1 \\
& =2\left(2 \cos ^{2} x-1\right)^{2}-1 \\
& =2\left(4 \cos ^{4} x-4 \cos ^{2} x+1\right)-1 \\
& =8 \cos ^{4} x-8 \cos ^{2} x+2-1 \\
& =8 \cos ^{4} x-8 \cos ^{2} x+1
\end{aligned}
$$

Worked-out Example 1 Expressions

1.1 Determine, without using a calculator, the value of the following trigonometric expression:

Solutions

$$
\begin{aligned}
\frac{\sin 2 x \cdot \cos (-x)+\cos 2 x \cdot \sin \left(360^{\circ}-x\right)}{\sin \left(180^{\circ}+x\right)} & =\frac{\sin 2 x \cdot \cos (-x)+\cos 2 x \cdot \sin \left(360^{\circ}-x\right)}{\sin \left(180^{\circ}+x\right)} \\
& =\frac{\sin 2 x \cdot \cos x+\cos 2 x \cdot(-\sin x)}{(-\sin x)} \\
& =\frac{\sin (2 x-x)}{-\sin x} \\
& =\frac{\sin x}{-\sin x} \\
& =-1
\end{aligned}
$$

Worked-out

Example 2

Solutions

2.1

Prove that $\cos 15^{\circ}=\frac{\sqrt{2}(\sqrt{3}+1)}{4}$ without

$$
\begin{aligned}
\mathrm{LHS} & =\cos 15^{\circ} \\
& =\cos \left(45^{\circ}-30^{\circ}\right) \\
& =\cos 45^{\circ} \cos 30^{\circ}+\sin 45^{\circ} \sin 30^{\circ} \\
& =\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2}+\frac{\sqrt{2}}{2} \cdot \frac{1}{2} \\
& =\frac{\sqrt{2}(\sqrt{3}+1)}{4}
\end{aligned}
$$

Express 15° in terms of special angles as you are told to prove without using a calculator. 15^{0} is an acute angle that can be expressed in terms of $15^{0}=45^{0}-30^{\circ}$ or $15^{0}=60^{\circ}-45^{0}$. From there, these angles are forming compound angles. We cannot reduce 15° as it is acute angle already. Compound angle identity for $\cos \left(45^{0}-30^{\circ}\right)$ needs to be applied.

Worked-out Example 3

3.1 If $\tan 20^{\circ}=k$, determine, without using a calculator, expressions in terms of k :

Solutions

Express 40° in terms 20° as they are related. $40^{\circ}=2 \times 20^{\circ}$, then apply double angle identities
$3.1 \sin 40^{\circ}$

$3.2 \cos 35^{\circ}$

$\cos 2 \alpha=2 \cos ^{2} \alpha-1$
$\alpha=35^{\circ}$
$\sin 40^{\circ}=2 \sin 20^{\circ} \cdot \cos 20^{\circ}$
$=2 \cdot \frac{\sqrt{1-k^{2}}}{1} \cdot k$
$=2 k \sqrt{1-k^{2}}$
Express 35° in terms 70° as
they are related. $35^{0}=\frac{1}{2} \times 70^{0}$,
then apply double angle identities
$\cos 35^{\circ}$
$\cos 70^{\circ}=2 \cos ^{2} 35^{\circ}-1$
$\cos 70^{\circ}+1=2 \cos ^{2} 35^{\circ}$
$\frac{\cos 70^{\circ}+1}{2}=\cos ^{2} 35^{\circ}$
$\cos 35^{\circ}=\sqrt{\frac{\cos 70^{\circ}+1}{2}}$
$=\sqrt{\frac{\sqrt{1-k^{2}+1}}{2}}$
$=\sqrt{\frac{\sqrt{2-k^{2}}}{2}}$

TRIGONOMETRIC EQUATIONS

Solving of equations if $0^{0} \leq x \leq 360^{\circ}$
Any trigonometric function is positive in two quadrants and negative in two quadrants; so there will always be two solutions if $0^{\circ} \leq x \leq 360^{\circ}$. The sign of the ratio tells us in which quadrant the angle is. Reference angle is an acute angle that is always positive irrespective of the ratio.

If $\sin x=+$ ratio, $0 \leq$ ratio $\leq 1 \quad$ If $\cos x=+$ ratio $0 \leq$ ratio ≤ 1 If $\tan x=+$ ratio, ratio ≥ 0

1 st $: x=\operatorname{ref} \angle$
or
$2 n d: x=180^{\circ}-r e f \angle$
NB: ${ }^{1 s t}: x \neq 90^{0}-\operatorname{ref} \angle$
$2 n d: x \neq 90^{\circ}+r e f \angle$
$90^{\circ}+x$ is in the $2^{\text {nd }}$ quad but it is not advisable to use 90 as our ratios are changing to their co-ratios

$1 s t: x=\operatorname{ref} \angle$
or
4th : $x=360^{\circ}-r e f \angle$
NB: ${ }^{1 \text { st }: ~} x \neq 90^{\circ}-r e f \angle$
4th: $x \neq 270^{\circ}+\operatorname{ref} \angle$
$270^{\circ}+x$ is in the 4th quad but it is not advisable to use 270 as our ratios are changing to their co-ratios as well as 90

If $\cos x=-$ ratio
$-1 \leq$ ratio ≤ 0

$1 s t: x=r e f \angle$
or
$3 r d: x=180^{\circ}+r e f \angle$
NB: ${ }^{1 s t}: x \neq 90^{\circ}-r e f \angle$ $3 r d: x \neq 270^{\circ}-r e f \angle \prime$
$270^{\circ}-x$ is in the $3^{\text {rd }}$ quad but it is not advisable to use 270 as our ratios are changing to their co-ratios as well as 90

If $\tan x=-$ ratio
ratio ≤ 0

$3 r d: x=180^{\circ}+r e f \angle$
or
$4 t h: x=360^{\circ}-r e f \angle$
NB: ${ }^{3: ~} x \neq 270^{0}-r e f \angle$
$4 t h: x \neq 270^{\circ}+r e f \angle$
270° - ref \angle is in the $3^{\text {nd }}$ quad but it is not advisable to use 270° as our ratios are changing to their coratios

$2 n d: x=180^{\circ}-r e f \angle$
or
$3 r d: x=180^{\circ}+r e f \angle$
NB: $:^{2 n d}: x \neq 90^{\circ}+r e f \angle$ $3 r d: x \neq 270^{\circ}-r e f \angle$ $90^{\circ}+r e f \angle$ is in the $2^{\text {nd }}$ quad but it is not advisable to use as our ratios are changing to their co-ratios when reducing by 90° as well as 270°

2nd : $x=180^{\circ}-r e f \angle$
or
4th: $x=360^{\circ}-\operatorname{ref} \angle$
NB: ${ }^{2 n d}: x \neq 90^{\circ}+r e f \angle$
4 th: $x \neq 270^{\circ}+r e f \angle$
$270^{\circ}+r e f \angle$ is in the $3^{\text {rd }}$ quad but it is not advisable to use 270° as our ratios are changing to their co-ratios as well as 90°

Solve for x :
$1.1 \cos x=\frac{2}{3}$

$$
\cos x=\frac{2}{3}
$$

$$
\cos x=\frac{2}{3}
$$

ref $\angle=\cos ^{-1}\left(\frac{2}{3}\right)$

$$
=48,19^{0}
$$

$$
1 s t: x=\operatorname{ref} \angle=48,19^{\circ}
$$

$$
4 t h: x=360^{\circ}-r e f \angle=311,81^{0} \quad x=-311,81^{\circ} \text { or }-48,19^{\circ} \text { or } 48,19^{\circ} \text { or } 311,81^{\circ}
$$

$$
\therefore x=48,19^{\circ} \text { or } 311,81^{0}
$$

$1.2 \sin x=-\frac{1}{2} \quad \sin x=-\frac{1}{2}$

$$
\begin{aligned}
\operatorname{ref} \angle & =\sin ^{-1}\left(\frac{1}{2}\right) \\
& =30^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& 3 r d: x=180^{\circ}+30^{\circ} \\
& =210^{\circ} \\
& 4 t h: x=360^{\circ}-30^{\circ} \\
& x=330^{\circ}
\end{aligned}
$$

When determining the reference angle, ignore the negative sign to the ratio as you will get negative angle which will not preserve a reference angle.

GENERAL SOLUTIONS

note that \boldsymbol{k} element of intergers

In determining general solutions, we do the same way as solving equations but consider the period of sine and cosine graphs as they repeat their shapes after a period of 360 and tan graph repeating itself after a period of 180.
$\sin \theta=t, 0 \leq t \leq 1$
$1: \theta=r e f \angle+360^{\circ} . k$
or
$2: \theta=180^{\circ}-r e f ~ \angle+360 . k, k \in \mathbb{Z}$
$\sin \theta=t,-1 \leq t \leq 0$
$3^{r d}: \theta=180^{\circ}+\operatorname{ref} \angle+360^{\circ} . k$
or
$4^{\text {th }}: \theta=360^{\circ}-r e f \angle+360 . k, k \in \mathbb{Z}$
$\cos \theta=t, 0 \leq t \leq 1$
$1: \theta=\operatorname{ref} \angle+360^{\circ} . k$
$\tan \theta=t$,
$1: \theta=\operatorname{ref} \angle+180^{\circ} . k, k \in \mathbb{Z}$
or
$4: \theta=360^{\circ}-r e f \angle+360 . k, k \in \mathbb{Z}$
$\cos \theta=t,-1 \leq t \leq 0$
$\tan \theta=t$,
$1: \theta=180^{\circ}-\operatorname{ref} \angle+360^{\circ} . k$
$1: \theta=180^{\circ}-\operatorname{ref} \angle+180^{\circ} . k \quad, k \in \mathbb{Z}$ or
$2: \theta=180^{\circ}+\operatorname{ref} \angle+360 . k, k \in \mathbb{Z}$

TAKE NOTE OF THESE GENERAL TYPES OF EQUATIONS

Determine the general solutions for the following equations by considering the following worked-out examples:
$1 \sin \theta=\frac{1}{2}$
$22 \sin \theta=3 \cos \theta$
$3 \cos \theta=\cos \left(60^{\circ}-\alpha\right)$
$4 \sin \theta=\cos \alpha$
$5.12 \cos \theta=\sin ^{2} \theta-2$
$5.2 \cos ^{2} x+\sin 2 x-1=0$
$5.3 \cos \theta-\sqrt{3} \sin \theta=\sqrt{3}$ and $\theta \in\left[-810^{\circ} ;-540^{\circ}\right]$

1. $\sin \theta=\frac{1}{2}$

$$
\theta=30^{\circ}+360^{\circ} . k
$$

OR

We are used in this type of equation from grade 10. The only thing that is new in grade 11 is general solution which has been already explained in page 14.

NB: when trigonometric functions are not the same but angles the same. Then, divide both sides by $\cos \theta$ to get $\tan \theta$. Do not divide by $\sin \theta$ as you will get $\frac{\cos \theta}{\sin \theta}$.
3. $\cos \theta=\cos \left(60^{\circ}-\alpha\right)$
$\therefore \quad \theta= \pm\left(60^{\circ}-\alpha\right)+360^{\circ} . k, \quad k \in \mathbb{Z}$
4. $\sin \theta=\cos \alpha$

$$
\sin \theta=\sin \left(90^{\circ}-\alpha\right)
$$

$$
\text { ref } \angle \theta=90^{\circ}-\alpha
$$

$$
\theta=90^{\circ}-\alpha+360^{\circ} . k, \quad k \in \mathbb{Z}
$$

$$
O R
$$

$$
\begin{aligned}
\theta & =180^{\circ}-\left(90^{\circ}-\alpha\right)+360 . k \\
& =90^{\circ}+\alpha+360^{\circ} . k
\end{aligned}
$$

Since the functions are the same drop down the angles.

Since angles are not the same, we cannot divide by cosine on both sides to get a tangent, which angle will tangent be taking between the 2? Then introduction of co-functions will be applicable to make the the functions to be the same.
5. NOTE: If an equation does not look like 1-4 type and contains more than 2 terms.

Use identities and factorise.

- Terms more than 2, then 1-4 types not applicable
- $\sin ^{2} \theta$ can be written in the terms of $\cos \theta$ using square identities, e.g., $\sin ^{2} \theta=1-\cos ^{2} \theta$.
- Terms more than 2, then 1-4 types not applicable
- Change of double angle to single angle as $\sin 2 x=2 \sin x \cos x$
- Since we have $\sin x$ and $\cos x$ we need the identity of 1 in terms of $\sin x$ and $\cos x$.
$1=\cos ^{2} x+\sin ^{2} x$
- Simplification will lead to 2 terms, then factorise
- $\sin x=2 \cos x$ functins not the same but ratios the same then divide by $\cos x$ on both sides to get $\tan x$ on the left hand side.
5.3 Solve for θ if $\cos \theta-\sqrt{3} \sin \theta=\sqrt{3}$ and $\theta \in\left[-810^{\circ} ;-540^{\circ}\right]$
$\cos \theta-\sqrt{3} \sin \theta=\sqrt{3}$
$\cos \theta=\sqrt{3}+\sqrt{3} \sin \theta$
$\cos ^{2} \theta=3+6 \sin \theta+3 \sin ^{2} \theta$
$1-\sin ^{2} \theta=3 \sin ^{2} \theta+6 \sin \theta+3$
$4 \sin ^{2} \theta+6 \sin \theta+2=0$
$2 \sin ^{2} \theta+3 \sin \theta+1=0$
$(2 \sin \theta+1)(\sin \theta+1)=0$
$\sin \theta=-\frac{1}{2}$ or $\sin \theta=-1$
$\theta=210^{\circ}+360^{\circ} . k$ or $\theta=270^{\circ}+360^{\circ} . k, k \in \mathbb{Z}$
or
$\theta=330^{\circ}+360^{0} . k$
If $k=-2$ or -3
then
$\therefore \theta=-510^{\circ}$ or -450° or -390° or -750° or -810°
- Terms more than 2, then 1-4 types not applicable
- Take all terms having square root to the same side.
- Then, square both sides of the equation and also show squaring on your calculations
- Write equation in its standard form
- Factorise
- Since the interval is $\theta \in\left[-810^{\circ} ;-540^{\circ}\right]$ for values of θ, k-values must be -3 to -2

TRIGONOMETRIC GRAPHS

Basic trigonometric graphs/functions of sine and cosine have same characteristics except their shapes.

3 basic/mother trigonometric graphs/functions are shown below:
$y=\sin x, 0^{\circ} \leq x \leq 360^{\circ}$

$$
y=\cos x, \quad 0^{\circ} \leq x \leq 360^{\circ}
$$

$y=\tan x, \quad 0^{\circ} \leq x \leq 360^{\circ}$

NB You need to be able to sketch, recognise and interpret graphs of the following:

- $y=a \sin k(x+p)+q$
- $y=a \cos k(x+p)+q$
- $y=a \tan k(x+p)+q$

Observe the effects of a, k, p and q on the basic graphs as shown below

Effects of a

a affects the amplitude of sine and cosine graphs. If $a<0$ the basic graph flips along the x axis,

Effects of \boldsymbol{k}

k indicates the contraction or expansion of the graph.
k affects the period of the graph in the following way:
For sine and cosine graphs, the period becomes $\frac{360^{\circ}}{k}$
The period of the tangent graph is $\frac{180^{\circ}}{k}$.

Effects of p

p shifts the graphs horizontally (4 graphs shifting)

Effects of q

q shifts the graph vertically

BASIC PROPERTIES OF TRIGONOMETRIC GRAPHS

Worked-out Example 1

	Period	Amplitude	Range
$y=\sin x$	360°	$\frac{1}{2}[1-(-1)]=1$	$-1 \leq y \leq 1$ or $y=\cos x$
	360°	$\frac{1}{2}[1-(-1)]=1$	$-1 \leq y \leq 1$ or $y=\tan x$
	180°	tangent doesn't have a min/max $y-1]$ value.	\therefore amplitude not
		available	

Worked-out Example 2
Trigonometric graph
Period Amplitude Range
$y=\frac{1}{2} \sin \theta$ 360^{0}
$-\frac{1}{2} \leq y \leq \frac{1}{2}$ or $y \in\left[-\frac{1}{2} ; \frac{1}{2}\right]$
$y=-3 \sin 2 \theta$
$\frac{360^{\circ}}{2}=180^{\circ}$
$-3 \leq y \leq 3$ or $y \in[-3 ; 3]$
$y=\cos \frac{1}{2} \theta$
$\frac{360^{\circ}}{\frac{1}{2}}=720^{\circ}$
$y=4 \cos \frac{3}{4} \theta \quad \frac{360}{\frac{3}{4}}=480^{\circ}$

Worked-out Example 1

1. Use the sine graph given below to answer the following questions:

1.1 What are the minimum and maximum values of $y=\sin x$?
1.2 What is the domain and range of $y=\sin x$
1.3 Write down the x-intercepts of $y=\sin x$
1.4 What is the amplitude and period of $y=\sin x$?

Solutions

1.1 \quad Minimum value $=-1 \checkmark$ and maximum value $=1 \checkmark$
1.2 Domain : $x \in\left[-360^{\circ} ; 360^{\circ}\right], x \in R \checkmark \checkmark \quad$ Range: $[-1 ; 1] y \in R^{\checkmark} \checkmark$
$1.3 x$-intercepts: $-360^{\circ} ;-180^{\circ} ; 0^{\circ} ; 180^{\circ} ; 360^{\circ} . \checkmark \checkmark$
1.4 Amplitude is1 and period $360^{\circ} . \checkmark \checkmark$

Worked-out Example 2

2. Consider a function $g(x)=-\cos x+1$
2.1 sketch the graph of g for $x \in\left[-360^{\circ} ; 360^{\circ}\right]$
2.2 write down the period and amplitude of g
2.3 write down the range of g

Solutions
2.1

2.2 period: 360° amplitude: 1
2.3 Range: $y \in[0 ; 2]$ OR $0 \leq y \leq 2$

Worked-out Example 3

3.1 Sketch a graph of $y=\tan \left(x+60^{\circ}\right)-1 ; x \in\left[-150^{\circ} ; 180^{\circ}\right]$

Solution
3.1

Worked-out Example 4

4.1 Sketch the graph of $f(x)=\sin 3 x, x \in\left[0^{0} ; 360^{\circ}\right]$

Some thought process:

- This is a sine graph with $k=3$
- The period will be $\frac{360^{\circ}}{3}=120^{\circ}$
- For drawing our graph, we can divide all the x-values on the standard sin graph by 3 . That will mean our standard x-values when using table method: $\left\{0^{\circ} ; 90^{\circ} ; 180^{\circ} ; 270^{\circ} ; 360^{\circ}\right\} x \in\left[0^{\circ} ; 360^{\circ}\right]$ will for the new graph now be: $\left\{0^{0} ; 30^{\circ} ; 60^{\circ} ; 90^{\circ} ; 120^{\circ} ; \ldots\right\} x \in\left[0^{\circ} ; 360^{\circ}\right]$
- Finding table using Casio $f x$ calculator:

Step 1: click on mode
Step 2: select table
Step 3: type sin 3x
Step 4: Start at 0^{0} and end at 360° since $x \in\left[0^{\circ} ; 360^{\circ}\right]$
Step 5: Step by period divide by number of quadrants

Final sketch
4.1

Worked-out Example 5

- The graph has been reflected, \therefore-sine graph, thus $a=-1$
- The graph has shifted 20° to the right, $p=-20^{\circ}$
- Middle y-value is -1
- Amplitude is $\frac{1}{2}[0-(-2)]=1$
- The equation is therefore: $y=-\sin \left(x-20^{\circ}\right)-1$

GRAPHICAL INTERPRETATION

Worked-out Example 1

1. Sketch the graphs of: $y=2 \sin x$ and $y=\cos 2 x$ if $-180^{\circ} \leq x \leq 180^{\circ}$ on the same system of axes.
1.1 For which value(s) of x is $2 \sin x>0$?
1.2 For which value(s) of x is $\frac{1}{2} \cos 2 x-\sin x=0$

Solutions

1.

$1.10^{0}<x<180^{\circ}$
1.2

$$
\begin{aligned}
& \frac{1}{2} \cos 2 x-\sin x=0 \\
& \cos 2 x=2 \sin x \\
& 1-2 \sin ^{2} x=2 \sin x \\
& 2 \sin ^{2} x+2 \sin x-1=0 \\
& \sin x=\frac{-2 \pm \sqrt{(2)^{2}-4(2)(-1)}}{2(2)} \\
& \sin x \neq \frac{-2-\sqrt{12}}{4} \\
& \text { or } \\
& \sin x=\frac{-2+\sqrt{12}}{4} \\
& \text { ref } \angle=21,47^{\circ} \\
& x=21,27^{\circ} \text { or } x=158,73^{\circ}
\end{aligned}
$$

SOLVING 2D AND 3D PROBLEMS

In any triangle:

SINE RULE

- Sine rule is applicable when given two sides and an angle in any triangle, then you can be able to calculate the $2^{\text {nd }}$ angle.

Worked-out Example:

In $\triangle \mathrm{PQR}, \mathrm{PQ}=12 \mathrm{~cm}, \mathrm{QR}=10 \mathrm{~cm}$ and $\hat{\mathrm{R}}=80^{\circ}$. Determine the:
a) size \hat{P}
b) length of $P R$

Solutions
a) $\frac{\sin P}{p}=\frac{\sin R}{r}$

$$
\frac{\sin P}{10}=\frac{\sin 80^{\circ}}{12}
$$

$\sin P=\frac{10 \times \sin 80}{12}$
$\hat{P}=\sin ^{-1}\left(\frac{10 \times \sin 80^{\circ}}{12}\right)$
$\hat{P}=55.15^{0}$
b) For you to be able to get the length of PR you will need to know \hat{Q}. Now you know two angles in $\triangle P Q R$ then you can get the $3^{\text {rd }}$ one by applying sum of angles in a Δ.

$$
\begin{aligned}
& \hat{Q}=44,85^{\circ}[\operatorname{sum} \text { of } \angle \sin a \Delta] \\
& \frac{q}{\sin Q}=\frac{r}{\sin R} \\
& \frac{q}{\sin 44,85^{\circ}}=\frac{12}{\sin 80^{\circ}} \\
& q=\frac{12 \times \sin 44,85^{\circ}}{\sin 80^{\circ}} \\
& =8,59 \mathrm{~cm}
\end{aligned}
$$

- Sine rule is also applicable when given two angles and a side, then you will be able to use it to calculate the other sides as well as the $3^{\text {rd }}$ angle

Worked-out Example 2

In $\triangle \mathrm{ABC}, \hat{\mathrm{A}}=50^{\circ}, \hat{\mathrm{C}}=32^{\circ}$ and $\mathrm{AB}=5 \mathrm{~cm}$. Determine:
a) the value of a length of BC.
b) the size of \hat{B}
c) the value b length of $A C$

a) $\frac{a}{\sin A}=\frac{c}{\sin C}$

$$
\begin{aligned}
\frac{a}{\sin 50^{0}} & =\frac{5}{\sin 32^{0}} \\
a & =7,23
\end{aligned}
$$

b) $\hat{B}=98^{\circ} \quad[\operatorname{sum}$ of $\angle \sin a \Delta]$
c) $\frac{b}{\sin B}=\frac{c}{\sin C}$

$$
\begin{aligned}
\frac{b}{\sin 98^{0}} & =\frac{5}{\sin 32^{0}} \\
b & =9,34
\end{aligned}
$$

Then we know now all the angles and lengths of the sides in this triangle. You cannot use trig ratios solving this triangle, as it is not a right-angled triangle.

COSINE RULE

- Cosine rule is applicable when given length of all the 3 sides of a triangle, you can be able to calculate any angle in the triangle. The $2^{\text {nd }}$ angle can be calculated by applying cosine rule or sine rule it will depend on you.

Worked-out Example 1

In $\triangle \mathrm{DEF}, D E=7 \mathrm{~cm}, F E=9 \mathrm{~cm}$ and $\hat{E}=55^{\circ}$.

Determine the:
a) length of $D F$
b) size of \hat{F}

Solutions

Applying cosine with sides and included angle
a) $\quad D F^{2}=D E^{2}+E F^{2}-2 D E \cdot E F \cdot \cos \hat{E}$

$$
=(7)^{2}+(9)^{2}-2(7)(9) \cos 55^{0}
$$

$$
D F=\sqrt{(7)^{2}+(9)^{2}-2(7)(9) \cos 55^{0}}
$$

$$
=7,60
$$

b) To get the $2^{\text {nd }}$ angle you can apply sine rule as well but for now we are going to apply cosine rule when having all the 3 sides. Since we are looking for \hat{F}, then the side opposite to \hat{F} will be the subject of the formula in this way.

$$
\begin{aligned}
D E^{2} & =E F^{2}+D F^{2}-2 \cdot E F \cdot D F \cos \hat{F} \\
7^{2} & =9^{2}+(7,60)^{2}-2 \cdot 9 \cdot 7,60 \cdot \cos \hat{F} \\
\cos \hat{F} & =\frac{9^{2}+(7,60)^{2}-7^{2}}{(2)(9)(7,60)} \\
\hat{F} & =\cos ^{-1}\left(\frac{9^{2}+(7,60)^{2}-7^{2}}{2(9)(7,60)}\right) \\
\hat{F} & =48,99^{\circ}
\end{aligned}
$$

AREA RULE

- Area rule is applicable when you are given two sides and included angle, then you can calculate the area of the triangle.

Worked-out Example 1

In $\triangle \mathrm{ABC}, \hat{\mathrm{A}}=50^{\circ}, A C=9,34$ and $\mathrm{AB}=5 \mathrm{~cm}$.
a) Determine the area of $\triangle \mathrm{ABC}$

a) A.of $\triangle A B C=\frac{1}{2} \cdot A C \cdot A B \sin \hat{A}$
$=\frac{1}{2} \times 9,34 \times 5 \times \sin 50^{\circ}$
$=17,89 \mathrm{~cm}^{2}$

3.4 TYPICAL EXAM QUESTIONS

Example 1

QUESTION 1

In the diagram below, BC is a pole anchored by two cables at A and $\mathrm{D} . \mathrm{A}, \mathrm{D}$ and C are in the same horizontal plane. The height of the pole is h and the angle of elevation from A to the top of the pole B , is $\theta . \mathrm{BA}=\mathrm{BD}$ and $\mathrm{BDA}=90^{\circ}-\theta$.

1.1 Express AB in terms of h and a trigonometric ratio of θ.
1.2 Determine the magnitude of ABD in terms of θ.
1.3 Determine the distance between the two anchors in terms of h.

Solutions

1.1

$$
\begin{aligned}
\text { In } \triangle A B C: \sin \theta & =\frac{h}{A B} \\
A B & =\frac{h}{\sin \theta}
\end{aligned}
$$

1.2 In $\triangle A B D: B \hat{A} D=\hat{D}=90^{\circ}-\theta($ sides opp $=\angle s)$
$90^{\circ}-\theta+90^{\circ}-\theta+A \hat{B} D=180^{\circ}(\angle s$ of $\Delta)$

$$
A \hat{B} D=2 \theta
$$

1.3

7.3 $\frac{A D}{\sin 2 \theta}=\frac{A B}{\sin \left(90^{\circ}-\theta\right)}$

$$
A D=\frac{\frac{h}{\sin \theta} \times \sin 2 \theta}{\cos \theta}
$$

$\checkmark B \hat{A} D=\hat{D}=90^{\circ}-\theta \quad \checkmark$ Reason
$\checkmark A \hat{B} D=2 \theta$
$\checkmark \frac{A D}{\sin 2 \theta}=\frac{A B}{\sin \left(90^{\circ}-\theta\right)}$
$\checkmark \cos \theta$
$\checkmark 2 \sin \theta \cos \theta$

$$
A D=\frac{\frac{h}{\sin \theta} \times 2 \sin \theta \cos \theta}{\cos \theta}
$$

$$
A D=2 h
$$

QUESTION 2

2.1 If $x=3 \sin \theta$ and $y=3 \cos \theta$, determine the value of $x^{2}+y^{2}$.
2.2 Simplify to a single term:

$$
\begin{equation*}
\sin \left(540^{\circ}-x\right) \cdot \sin (-x)-\cos \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}+x\right) \tag{6}
\end{equation*}
$$

2.3 In the diagram below, $\mathrm{T}(x ; p)$ is a point in the third quadrant and it is given that $\sin \alpha=\frac{p}{\sqrt{1+p^{2}}}$.

2.3.1 Show that $x=-1$.
2.3.2 Write $\cos \left(180^{\circ}+\alpha\right)$ in terms of p in its simplest form.
2.3.3 Show that $\cos 2 \alpha$ can be written as $\frac{1-p^{2}}{1+p^{2}}$.
2.4 2.4.1 For which value(s) of x will $\frac{2 \tan x-\sin 2 x}{2 \sin ^{2} x}$ be undefined in the interval $0^{\circ} \leq x \leq 180^{\circ}$?
2.4.2 Prove the identity: $\frac{2 \tan x-\sin 2 x}{2 \sin ^{2} x}=\tan x$

QUESTION 3

3.1 $\mathrm{P}(-\sqrt{7} ; 3)$ and $\mathrm{S}(a ; b)$ are points on the Cartesian plane, as shown in the diagram below. $\mathrm{PO} \mathrm{R}=\mathrm{PO} \mathrm{S}=\theta$ and $\mathrm{OS}=6$.

Determine, WITHOUT using a calculator, the value of:
3.1.1 $\tan \theta$
3.1.2 $\sin (-\theta)$
3.1.3 a
3.2 3.2. Simplify $\frac{4 \sin x \cos x}{2 \sin ^{2} x-1}$ to a single trigonometric ratio.
3.2.2 Hence, calculate the value of $\frac{4 \sin 15^{\circ} \cos 15^{\circ}}{2 \sin ^{2} 15^{\circ}-1}$ WITHOUT using a calculator. (Leave your answer in simplest surd form.)

QUESTION 4

4.1 Without using a calculator, determine the following in terms of $\sin 36^{\circ}$:
4.1. $\quad \sin 324^{\circ}$
4.1.2 $\cos 72^{\circ}$
4.2 Prove the identity: $1-\frac{\tan ^{2} \theta}{1+\tan ^{2} \theta}=\cos ^{2} \theta$
4.3 Use QUESTION 6.2 to determine the general solution of:

$$
\begin{equation*}
1-\frac{\tan ^{2} \frac{1}{2} x}{1+\tan ^{2} \frac{1}{2} x}=\frac{1}{4} \tag{6}
\end{equation*}
$$

4.4 Given: $\cos (A-B)=\cos A \cos B+\sin A \sin B$
4.4.1 Use the formula for $\cos (\mathrm{A}-\mathrm{B})$ to derive a formula for $\sin (\mathrm{A}-\mathrm{B})$.
4.4.2 Without using a calculator, show that

$$
\sin \left(x+64^{\circ}\right) \cos \left(x+379^{\circ}\right)+\sin \left(x+19^{\circ}\right) \cos \left(x+244^{\circ}\right)=\frac{1}{\sqrt{2}}
$$

$$
\begin{equation*}
\text { for all values of } x \text {. } \tag{6}
\end{equation*}
$$

QUESTION 5

5.1 If $\cos 2 \theta=-\frac{5}{6}$, where $2 \theta \in\left[180^{\circ} ; 270^{\circ}\right]$, calculate, without using a calculator, the values in simplest form of:
5.1.1 $\sin 2 \theta$
5.1.2 $\sin ^{2} \theta$
5.2 Simplify $\sin \left(180^{\circ}-x\right) \cdot \cos (-x)+\cos \left(90^{\circ}+x\right) \cdot \cos \left(x-180^{\circ}\right)$ to a single trigonometric ratio.
5.3 Determine the value of $\sin 3 x \cdot \cos y+\cos 3 x \cdot \sin y$ if $3 x+y=270^{\circ}$.
5.4 Given: $2 \cos x=3 \tan x$
5.4.1 Show that the equation can be rewritten as $2 \sin ^{2} x+3 \sin x-2=0$.
5.4.2 Determine the general solution of x if $2 \cos x=3 \tan x$.
5.4.3 Hence, determine two values of $y, 144^{\circ} \leq y \leq 216^{\circ}$, that are solutions of $2 \cos 5 y=3 \tan 5 y$.
5.5 Consider: $g(x)=-4 \cos \left(x+30^{\circ}\right)$
5.5.1 Write down the maximum value of $g(x)$.
5.5.2 Determine the range of $g(x)+1$.
5.5.3 The graph of g is shifted 60° to the left and then reflected about the x-axis to form a new graph h. Determine the equation of h in its simplest form.

QUESTION 2

2.1	$\begin{aligned} & x^{2}+y^{2} \\ & =(3 \sin \theta)^{2}+(3 \cos \theta)^{2} \\ & =9 \sin ^{2} \theta+9 \cos ^{2} \theta \\ & =9\left(\sin ^{2} \theta+\cos ^{2} \theta\right) \\ & =9(1) \\ & =9 \end{aligned}$	\checkmark simpl/vereenv $\checkmark \mathrm{CF} / G F=9$ \checkmark answer/antw
2.2	$\begin{aligned} & \sin \left(540^{\circ}-x\right) \cdot \sin (-x)-\cos \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}+x\right) \\ & \sin \left(180^{\circ}-x\right) \cdot \sin (-x)-\cos \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}+x\right) \\ & =(\sin x)(-\sin x)-(-\cos x)(\cos x) \\ & =-\sin ^{2} x+\cos ^{2} x \\ & =\cos 2 x \end{aligned}$	$\begin{aligned} & \checkmark \sin \left(540^{\circ}-x\right)=\sin x \\ & \checkmark \sin (-x)=-\sin x \\ & \checkmark \cos \left(180^{\circ}-x\right)=- \\ & \cos x \\ & \checkmark \sin \left(90^{\circ}+x\right)=\cos x \\ & \checkmark-\sin ^{2} x+\cos ^{2} x \\ & \checkmark \cos 2 x \end{aligned}$

2.3.1		$\begin{aligned} & \checkmark O T=\sqrt{x^{2}+p^{2}} \\ & \checkmark \sin \alpha=\frac{y_{T}}{O T} \end{aligned}$ $\checkmark x^{2}=1$ $\checkmark x^{2}+y^{2}=r^{2}$ \checkmark subst $\checkmark x^{2}=1$
		(3)
2.3.2	$\begin{aligned} & \cos \left(180^{\circ}+\alpha\right) \\ & =-\cos \alpha \\ & =-\left(\frac{-1}{\sqrt{1+p^{2}}}\right) \\ & =\frac{1}{\sqrt{1+p^{2}}} \end{aligned}$	$\checkmark-\cos \alpha$ \checkmark answer/antw
		(2)

QUESTION 3

3.1.	$\tan \theta=-\frac{3}{\sqrt{7}}$	\checkmark answ/antw
3.1 .2	$\begin{aligned} & \sin (-\theta)=-\sin \theta \\ & \mathrm{OP}^{2}=(-\sqrt{7})^{2}+3^{2} \\ & \mathrm{OP}^{2}=16 \\ & \mathrm{OP}=4 \\ & \sin (-\theta)=-\frac{3}{4} \end{aligned}$	\checkmark reduction/ reduksie $\checkmark \mathrm{OP}=4$ \checkmark answ/antw
3.1.	$\begin{aligned} \frac{a}{6} & =\cos 2 \theta \\ a & =6\left(1-2 \sin ^{2} \theta\right) \\ & =6-12\left(\frac{3}{4}\right)^{2} \\ & =\frac{24}{4}-\frac{27}{4} \\ & =-\frac{3}{4} \end{aligned}$ OR/OF	\checkmark trig ratio/verh \checkmark expansion/ uitbreiding $\checkmark \sin \theta=\frac{3}{4}$ \checkmark answ/antw

QUESTION 4

4.1.	$\sin \left(360^{\circ}-36^{\circ}\right)=-\sin 36^{\circ}$		\checkmark answer	(1)
4.1.	$\cos 72^{\circ}=\cos \left(2 \times 36^{\circ}\right)$		\checkmark double angle/dubbelhoek \checkmark answer	
	$=1-2 \sin ^{2} 36^{\circ}$	Answer only: Full marks		
				(2)

4.2	$\begin{align*} & \text { R.T.P.: } \begin{aligned} \text { LHS } & =\frac{1-\frac{\tan ^{2} \theta}{1+\tan ^{2} \theta}=\cos ^{2} \theta-\tan ^{2} \theta}{1+\tan ^{2} \theta} \\ = & \frac{1}{1+\frac{\sin ^{2} \theta}{\cos ^{2} \theta}} \\ = & \frac{1}{\frac{\cos ^{2} \theta+\sin ^{2} \theta}{\cos ^{2} \theta}} \\ = & \frac{1}{\frac{1}{\cos ^{2} \theta}} \\ = & \cos ^{2} \theta \\ = & \text { RHS } \end{aligned} \end{align*}$ OR/OF	\checkmark writing as a single fraction/skryf as enkelbreuk \checkmark quotient identity/ kwosiëntidentiteit \checkmark denominator as a single fraction Noemer as enkelbreuk \checkmark square identity/vierkantidentiteit

4.2	$\begin{aligned} \text { LHS } & =1-\left(\frac{\sin ^{2} \theta}{\cos ^{2} \theta} \div\left(1+\frac{\sin ^{2} \theta}{\cos ^{2} \theta}\right)\right) \\ & =1-\left(\frac{\sin ^{2} \theta}{\cos ^{2} \theta} \times \frac{\cos ^{2} \theta}{\cos ^{2} \theta+\sin ^{2} \theta}\right) \\ & =1-\left(\frac{\sin ^{2} \theta}{\cos ^{2} \theta} \times \frac{\cos ^{2} \theta}{1}\right) \\ & =1-\sin ^{2} \theta \\ & =\cos ^{2} \theta \\ & =\text { RHS } \end{aligned}$	kwosiëntidentiteit \checkmark writing as a single fraction/skryf as enkelbreuk \checkmark square identity/vierkantidentiteit \checkmark simplification/vereenvoudiging

4.3	OR/OF $\begin{align*} & \cos ^{2} \frac{1}{2} x=\frac{1}{4} \tag{6}\\ & \cos \frac{1}{2} x=\frac{1}{2} \text { or }-\frac{1}{2} \\ & \frac{1}{2} x= \pm 60^{\circ}+k .360^{\circ} \quad \text { or } \frac{1}{2} x= \pm 120^{\circ}+k .360^{\circ} \\ & x= \pm 120^{\circ}+k .720^{\circ} \quad \text { or } x= \pm 240^{\circ}+k .720^{\circ} ; k \in Z \end{align*}$	$\checkmark \checkmark \cos ^{2} \frac{1}{2} x=\frac{1}{4}$ $\checkmark 60^{\circ}$ and 300° $\checkmark 120^{\circ}$ and 240° \checkmark write at least one general solution as $\frac{1}{2} x=\angle+k .360^{\circ}$ \checkmark write at least one general solution as $x=\angle+k .720^{\circ} ; k \in \mathrm{Z}$ $\checkmark \checkmark \cos ^{2} \frac{1}{2} x=\frac{1}{4}$ $\checkmark \pm 60^{\circ} \checkmark \pm 120^{\circ}$ \checkmark write at least one general solution as $\frac{1}{2} x=\angle+k .360^{\circ}$ \checkmark write at least one general solution as $x=\angle+k .720^{\circ} k \in \mathrm{Z}$

4.4.1	$\begin{align*} \sin (\mathrm{A}-\mathrm{B}) & =\cos \left[90^{\circ}-(\mathrm{A}-\mathrm{B})\right] \\ & =\cos \left[\left(90^{\circ}-\mathrm{A}\right)-(-\mathrm{B})\right] \\ & =\cos \left(90^{\circ}-\mathrm{A}\right) \cos (-\mathrm{B})+\sin \left(90^{\circ}-\mathrm{A}\right) \sin (-\mathrm{B}) \\ & =\sin \mathrm{A} \cos \mathrm{~B}+\cos \mathrm{A}(-\sin \mathrm{B}) \\ & =\sin \mathrm{A} \cos \mathrm{~B}-\cos \mathrm{A} \sin \mathrm{~B} \tag{4}\\ \mathrm{OR} / \boldsymbol{O F} & \\ \sin (\mathrm{A}-\mathrm{B}) & =\cos \left[90^{\circ}-(\mathrm{A}-\mathrm{B})\right] \\ & =\cos \left[\left(90^{\circ}+\mathrm{B}\right)-\mathrm{A}\right] \\ & =\cos \left(90^{\circ}+\mathrm{B}\right) \cos \mathrm{A}+\sin \left(90^{\circ}+\mathrm{B}\right) \sin \mathrm{A} \\ & =-\sin \mathrm{B} \cos \mathrm{~A}+\cos \mathrm{B} \sin \mathrm{~A} \\ & =\sin \mathrm{A} \cos \mathrm{~B}-\cos \mathrm{A} \sin \mathrm{~B} \end{align*}$	\checkmark co-ratio/ko-verhouding \checkmark writing as a difference of A \& B/ skryf as verskil van A \& B \checkmark expansion/uitbreiding \checkmark all reductions/alle reduksies \checkmark co-ratio/ko-verhouding \checkmark writing as a difference of A \& B/ skryf as verskilvan A \& B \checkmark expansion/uitbreiding \checkmark all reductions/alle reduksies
4.4.2	$\begin{aligned} & \sin \left(x+64^{\circ}\right) \cos \left(x+379^{\circ}\right)+\sin \left(x+19^{\circ}\right) \cos \left(x+244^{\circ}\right) \\ & =\sin \left(x+64^{\circ}\right) \cos \left(x+19^{\circ}\right)+\sin \left(x+19^{\circ}\right)\left[-\cos \left(x+64^{\circ}\right)\right] \\ & =\sin \left(x+64^{\circ}\right) \cos \left(x+19^{\circ}\right)-\cos \left(x+64^{\circ}\right) \sin \left(x+19^{\circ}\right) \\ & =\sin \left[x+64^{\circ}-\left(x+19^{\circ}\right)\right] \\ & =\sin 45^{\circ} \\ & =\frac{1}{\sqrt{2}} \end{aligned}$	$\checkmark \cos \left(x+379^{\circ}\right)=\cos \left(x+19^{\circ}\right)$ $\checkmark \checkmark \cos \left(x+244^{\circ}\right)=-\cos \left(x+64^{\circ}\right)$ $\checkmark \checkmark$ compound formula identity/ saamgestelde identiteit $\checkmark \sin 45^{\circ}$

QUESTION/VRAAG 5

5.1.2	$\begin{aligned} \cos 2 \theta & =1-2 \sin ^{2} \theta \\ 2 \sin ^{2} \theta & =1-\cos 2 \theta \\ \sin ^{2} \theta & =\frac{1-\left(-\frac{5}{6}\right)}{2} \\ & =\frac{11}{6} \times \frac{1}{2} \\ & =\frac{11}{12} \end{aligned}$	$\checkmark \cos 2 \theta=1-2 \sin ^{2} \theta$ \checkmark substitution \checkmark answer

5.2	$\begin{aligned} & \sin \left(180^{\circ}-x\right) \cdot \cos (-x)+\cos \left(90^{\circ}+x\right) \cdot \cos \left(x-180^{\circ}\right) \\ & =\sin x \cdot \cos x-\sin x(-\cos x) \\ & =2 \sin x \cdot \cos x \\ & =\sin 2 x \end{aligned}$	$\checkmark \sin x \checkmark \cos x$ $\checkmark-\sin x \checkmark \cos x$ \checkmark simplification \checkmark answer
		(6)
5.3	$\begin{aligned} & \sin 3 x \cdot \cos y+\cos 3 x \cdot \sin y \\ & \sin (3 x+y) \\ & =\sin 270^{\circ} \\ & =-1 \end{aligned}$	\checkmark compound angle \checkmark answer
5.4.1	$\begin{aligned} & 2 \cos x=3 \tan x \\ & 2 \cos x=\frac{3 \sin x}{\cos x} \\ & 2 \cos ^{2} x=3 \sin x \\ & 2\left(1-\sin ^{2} x\right)=3 \sin x \\ & 2-2 \sin ^{2} x=3 \sin x \\ & 2 \sin ^{2} x+3 \sin x-2=0 \end{aligned}$	$\checkmark \tan x=\frac{\sin x}{\cos x}$ \checkmark multiplying by $\cos \theta$ $\checkmark \cos ^{2} x=1-\sin ^{2} x$

5.4.2	$\begin{align*} & 2 \sin ^{2} x+3 \sin x-2=0 \\ & (2 \sin x-1)(\sin x+2)=0 \\ & \sin x=\frac{1}{2} \text { or } \sin x=-2 \text { (no solution) } \\ & x=30^{\circ}+k .360^{\circ} \text { or } x=150^{\circ}+k .360^{\circ} ; k \in Z \tag{5} \end{align*}$	\checkmark factors \checkmark both values of $\sin x$ \checkmark no solution $\checkmark 30^{\circ}+k .360^{\circ}$ $\checkmark 150^{\circ}+k .360^{\circ} ; k \in Z$
5.4.3	$\begin{array}{ccccc} 5 y=30^{\circ}+k .360^{\circ} & \text { or } & 5 y=150^{\circ}+k .360^{\circ} \\ y=6^{\circ}+k .72^{\circ} & \text { or } & y=30^{\circ}+k .72^{\circ} \\ \therefore y=144^{\circ}+6^{\circ} & \text { or } & y=144^{\circ}+30^{\circ} \\ y=150^{\circ} & \text { or } & y=174^{\circ} \end{array}$	$\begin{aligned} & \checkmark y=6^{\circ}+k .72^{\circ} \\ & \checkmark y=30^{\circ}+k .72^{\circ} \\ & \checkmark 150^{\circ} \\ & \checkmark 174^{\circ} \end{aligned}$
	OR/OF	(4)
	$\begin{array}{llr} 144^{\circ} \leq y \leq 216^{\circ} \\ 720^{\circ} \leq 5 y \leq 1080^{\circ} & \\ 5 y=750^{\circ} & \text { or } & 5 y=870^{\circ} \\ y=150^{\circ} & \text { or } & y=174^{\circ} \end{array}$	$\begin{aligned} & \checkmark 5 y=750^{\circ} \\ & \checkmark 5 y=870^{\circ} \\ & \checkmark 150^{\circ} \\ & \checkmark 174^{\circ} \end{aligned}$
		(4)

5.5 .1	$g(x)=-4 \cos \left(x+30^{\circ}\right)$ maximum value $=4$	\checkmark answer
5.5 .2	range of $/$ waardeversameling van $g(x):-4 \leq y \leq 4$ OR/OF $\quad y \in[-4 ; 4]$ \therefore range of/waardeversameling van $g(x)+1:$ $-3 \leq y \leq 5$ OR/OF $\quad y \in[-3 ; 5]$	\checkmark range of $g(x)$

5.5.3	$y=-4 \cos \left(x+30^{\circ}\right)$ shifted to the left/skuif na links: $\begin{aligned} y & =-4 \cos \left(x+30^{\circ}+60^{\circ}\right) \\ & =-4 \cos \left(x+90^{\circ}\right) \\ & =4 \sin x \end{aligned}$ $\therefore h(x)=-4 \sin x$	\checkmark shift of 60° to the left \checkmark reduction \checkmark equation of h
		(3) [33]

WORKSHEETS, QUESTION 6-11

QUESTION 6

Given the equation: $\sin \left(x+60^{\circ}\right)+2 \cos x=0$
6.1 Show that the equation can be rewritten as $\tan x=-4-\sqrt{3}$.
6.2 Determine the solutions of the equation $\sin \left(x+60^{\circ}\right)+2 \cos x=0$ in the interval $-180^{\circ} \leq x \leq 180^{\circ}$.
6.3 In the diagram below, the graph of $f(x)=-2 \cos x$ is drawn for $-120^{\circ} \leq x \leq 240^{\circ}$.

6.3.1 Draw the graph of $g(x)=\sin \left(x+60^{\circ}\right)$ for $-120^{\circ} \leq x \leq 240^{\circ}$ on the grid provided in the ANSWER BOOK.
6.3.2 Determine the values of x in the interval $-120^{\circ} \leq x \leq 240^{\circ}$ for which $\sin \left(x+60^{\circ}\right)+2 \cos x>0$.

QUESTION 7

In the diagram, the graphs of the functions $f(x)=a \sin x$ and $g(x)=\tan b x$ are drawn on the same system of axes for the interval $0^{\circ} \leq x \leq 225^{\circ}$.

7.1 Write down the values of a and b.
7.2 Write down the period of $f(3 x)$.
7.3 Determine the values of x in the interval $90^{\circ} \leq x \leq 225^{\circ}$ for which $f(x) \cdot g(x) \leq 0$.

QUESTION/VRAAG 6

6.1	$\begin{aligned} & \sin \left(x+60^{\circ}\right)+2 \cos x=0 \\ & \sin x \cos 60^{\circ}+\cos x \sin 60^{\circ}+2 \cos x=0 \\ & \frac{1}{2} \sin x+\frac{\sqrt{3}}{2} \cos x+2 \cos x=0 \\ & \frac{1}{2} \sin x=-2 \cos x-\frac{\sqrt{3}}{2} \cos x \\ & \sin x=-4 \cos x-\sqrt{3} \cos x \\ & \sin x=\cos x(-4-\sqrt{3}) \\ & \frac{\sin x}{\cos x}=\frac{\cos x(-4-\sqrt{3})}{\cos x} \\ & \therefore \tan x=-4-\sqrt{3} \end{aligned}$	\checkmark expansion/uitbreiding \checkmark special angle values/ spesiale \angle-waardes \checkmark simpl/vereenv \checkmark $\sin x=\cos x(-4-\sqrt{3})$
6.2	$\begin{aligned} & \tan x=-4-\sqrt{3} \\ & \tan x=-(4+\sqrt{3}) \\ & r e f \angle=80,10^{\circ} \\ & x=-80,1^{\circ} \mathrm{or} / \text { of } 99,9^{\circ} \end{aligned}$	$\begin{aligned} & \checkmark 80,10^{\circ} \\ & \checkmark 99,90^{\circ} \\ & \checkmark-80,1^{\circ} \end{aligned}$

6.3.1		$\begin{aligned} & \checkmark\left(30^{\circ} ; 1\right) \\ & \checkmark\left(-60^{\circ} ; 0\right) \end{aligned}$ \checkmark shape/vorm
6.3.2	$\begin{aligned} & \therefore \sin \left(x+60^{\circ}\right)>-2 \cos x \\ & x \in\left(-80,10^{\circ} ; 99,90^{\circ}\right) \text { OR } / \text { OF }-80,10^{\circ}<x<99,90^{\circ} \end{aligned}$	$\checkmark \checkmark$ critical values/ kritiese waardes \checkmark notation/notasie (3) [13]

QUESTION7

7.1	$\begin{aligned} & a=-1 \\ & b=2 \end{aligned}$		\checkmark answer \checkmark answer
7.2	$\begin{aligned} f(3 x)=-\sin 3 x & \\ \text { Period of } f(3 x) & =\frac{360^{\circ}}{3} \\ & =120^{\circ} \end{aligned}$	Answer only: Full marks	$\checkmark \frac{360^{\circ}}{3}$
7.3	$x \in\left[90^{\circ} ; 135^{\circ}\right) \cup\left\{180^{\circ}\right\}$ OR/OF $90^{\circ} \leq x<135^{\circ} \text { or } x=180^{\circ}$		$\checkmark 90^{\circ}$ and 135° in interval form $\checkmark 180^{\circ}$ as single value \checkmark correct brackets $\checkmark 90^{\circ}$ and 135° in interval form $\checkmark 180^{\circ}$ as single value \checkmark correct inequalities

QUESTION 8

8.1 In the figure, points K, A and F lie in the same horizontal plane and TA represents a vertical tower. $\mathrm{ATK}=x, \mathrm{~K} \hat{\mathrm{AF}}=90^{\circ}+x$ and $\mathrm{KFA}=2 x$ where $0^{\circ}<x<30^{\circ}$. TK $=2$ units.

8.1.1 Express AK in terms of $\sin x$.
8.1.2 Calculate the numerical value of KF .
8.2 In the diagram below, a circle with centre O passes through A, B and C . $\mathrm{BC}=\mathrm{AC}=15$ units. BO and OC are joined. $\mathrm{OB}=10$ units and $\mathrm{BO} \mathrm{C}=x$.

Calculate:
8.2.1 The size of x
8.2.2 The size of ACB
8.2.3 The area of $\triangle \mathrm{ABC}$

QUESTION 9

9.1 In the diagram below, $\triangle \mathrm{PQR}$ is drawn with $\mathrm{PQ}=20-4 x, \mathrm{RQ}=x$ and $\hat{\mathrm{Q}}=60^{\circ}$.

9.1.1 Show that the area of $\triangle \mathrm{PQR}=5 \sqrt{3} x-\sqrt{3} x^{2}$.
9.1.2 Determine the value of x for which the area of $\triangle \mathrm{PQR}$ will be a maximum.
9.1.3 Calculate the length of PR if the area of $\triangle \mathrm{PQR}$ is a maximum.
9.2 In the diagram below, BC is a pole anchored by two cables at A and D. A, D and C are in the same horizontal plane. The height of the pole is h and the angle of elevation from A to the top of the pole, B, is $\beta . \mathrm{ABD}=2 \beta$ and $\mathrm{BA}=\mathrm{BD}$.

Determine the distance AD between the two anchors in terms of h.

QUESTION 10

$A B$ represents a vertical netball pole. Two players are positioned on either side of the netball pole at points D and E such that D, B and E are on the same straight line. A third player is positioned at C . The points $\mathrm{B}, \mathrm{C}, \mathrm{D}$ and E are in the same horizontal plane. The angles of elevation from C to A and from E to A are x and y respectively. The distance from B to E is k.

10.1 Write down the size of $A \hat{B} C$.
10.2 Show that $\mathrm{AC}=\frac{k \cdot \tan y}{\sin x}$
10.3 If it is further given that $\mathrm{DAC}=2 x$ and $\mathrm{AD}=\mathrm{AC}$, show that the distance DC between the players at D and C is $2 k \tan y$.

QUESTION 11

$P Q$ and $A B$ are two vertical towers.
From a point R in the same horizontal plane as Q and B, the angles of elevation to P and A are θ and 2θ respectively.
$\mathrm{A} \hat{\mathrm{Q}} \mathrm{R}=90^{\circ}+\theta, \mathrm{QAR}=\theta$ and $\mathrm{QR}=x$.

11.1 Determine in terms of x and θ :
6.1.1 \quad QP
6.1.2 AR
11.2 Show that $\mathrm{AB}=2 x \cos ^{2} \theta$
11.3 Determine $\frac{\mathrm{AB}}{\mathrm{QP}}$ if $\theta=12^{\circ}$.

QUESTION 8

8.1

8.1.2	In $\triangle \mathrm{AKF}$: $\begin{aligned} & \frac{\mathrm{KF}}{\sin \mathrm{KAF}}=\frac{\mathrm{AK}}{\sin \mathrm{AFK}} \\ & \begin{array}{r} \frac{\mathrm{KF}}{\sin \left(90^{\circ}+x\right)}=\frac{\mathrm{AK}}{\sin 2 x} \\ \mathrm{KF}=\frac{\mathrm{AK} \cdot \sin \left(90^{\circ}+x\right)}{\sin 2 x} \\ \quad=\frac{2 \sin x \cdot \cos x}{2 \sin x \cdot \cos x} \\ =1 \end{array} \end{aligned}$	using sine rule/ gebruik sin-reël \checkmark correct subst into sine rule/korrekte subst in sin-reël $\checkmark \sin \left(90^{\circ}+x\right)=\cos x$ $\checkmark 2 \sin x \cdot \cos x$ $\checkmark 1$

8.1.2	In $\triangle \mathrm{AKF}$: $\begin{aligned} & \frac{\mathrm{KF}}{\sin \mathrm{~K} \hat{\mathrm{AF}}}=\frac{\mathrm{AK}}{\sin \hat{\mathrm{~F} K}} \\ & \begin{aligned} & \frac{\mathrm{KF}}{\sin \left(90^{\circ}+x\right)}=\frac{\mathrm{AK}}{\sin 2 x} \\ & \mathrm{KF}=\frac{\mathrm{AK} \cdot \sin \left(90^{\circ}+x\right)}{\sin 2 x} \\ &=\frac{\mathrm{AT} \cdot \tan x \cdot \cos x}{2 \sin x \cdot \cos x} \\ &=\frac{2 \cos x \cdot \frac{\sin x}{\cos x} \cdot \cos x}{2 \sin x \cdot \cos x} \end{aligned} \end{aligned}$	$\begin{aligned} & \cos x=\frac{\mathrm{AT}}{2} \\ & \therefore \mathrm{AT}=2 \cos x \end{aligned}$	\checkmark using sine rule/ gebruik sin-reël \checkmark correct subst into sine rule/korrekte subst in sin-reël $\checkmark \sin \left(90^{\circ}+x\right)=\cos x$ $\checkmark 2 \sin x \cdot \cos x$

8.2

8.2.1	In $\triangle \mathrm{BOC}$: $\begin{aligned} & \mathrm{BC}^{2}=\mathrm{BO}^{2}+\mathrm{CO}^{2}-2 \cdot \mathrm{BO} \cdot \mathrm{CO} \cdot \cos x \\ & 15^{2}=10^{2}+10^{2}-2(10)(10) \cdot \cos x \\ & 200 \cos x=-25 \\ & \cos x=-0,125 \\ & x=180^{\circ}-82,82^{\circ} \\ & =97,18^{\circ} \end{aligned}$ OR/OF $\begin{aligned} & \text { Draw a line } \mathrm{OD} \perp \mathrm{BC}: \\ & \mathrm{BD}=\mathrm{DC} \quad \text { (line from centre } \perp \text { on chord }) \\ & \begin{array}{l} \mathrm{OBD} \equiv \Delta \mathrm{OCD} \\ \left(90^{\circ} ; \mathrm{h} ; \mathrm{s}\right) \\ \sin \frac{x}{2}=\frac{7,5}{10} \\ \quad \frac{x}{2}=48,59^{\circ} \\ \therefore \quad x=97,18^{\circ} \end{array} \\ & \therefore \quad x \end{aligned}$	using cosine rule/ gebruik cos-reël \checkmark correct subst/ korrekte subst $\checkmark \cos x=-0,125$ $\checkmark 97,18^{\circ}$ \checkmark S/R \checkmark correct ratio/ korrekte verh \checkmark value of/waarde $\begin{array}{r} \operatorname{van} \frac{x}{2} \\ \checkmark 97,18^{\circ} \end{array}$
		(4)

\begin{tabular}{|c|c|c|c|}
\hline 8.2.2 \& \begin{tabular}{l}
\[
\begin{aligned}
\& \mathrm{BAC}=48,59^{\circ} \quad(\angle \text { at centre }=2 \times \angle \text { at circ } / \angle \text { by midpt }=2 \times \angle \text { omt }) \\
\& \mathrm{A} \hat{\mathrm{BC}}=\mathrm{B} \hat{\mathrm{~A} C}=48,59^{\circ} \quad(\angle \text { 's opp equal sides } / \angle \text { e teenoor }=\text { sye }) \\
\& \therefore \mathrm{A} \hat{\mathrm{CB}}=82,82^{\circ} \quad(\text { sum of } \angle \text { s of } \triangle / \text { som van } \angle \text { e van } \triangle)
\end{aligned}
\] \\
OR/OF
\[
\begin{aligned}
\mathrm{A} \hat{\mathrm{CB}} \& =\frac{1}{2} \mathrm{AOB} \quad(\angle \text { at centre }=2 \times \angle \text { at circle }) \\
\& =\frac{1}{2}\left[360^{\circ}-2\left(97,18^{\circ}\right)\right] \\
\& =82,82^{\circ}
\end{aligned}
\] \\
OR/OF
\[
\begin{aligned}
\mathrm{OCB} \& =\frac{1}{2}\left(180^{\circ}-97,18^{\circ}\right) \& \& (\angle \text { 's opp equal sides; sum of } \angle \mathrm{s} \text { of } \triangle) \\
\& =41,41^{\circ} \& \& (\angle \text { e teenoor }=\text { sye; som van } \angle e \text { van } \triangle)
\end{aligned}
\]
\[
\begin{aligned}
\mathrm{ACB} \& =2\left(41,41^{\circ}\right) \\
\& =82,82^{\circ}
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
\(\checkmark\) S \\
\(\checkmark\) S \\
\(\checkmark 82,82^{\circ}\) \\
\(\checkmark\) S \\
\(\checkmark\) S \\
\(\checkmark 82,82^{\circ}\) \\
\(\checkmark S\) \\
\(\checkmark\) S \\
\(\checkmark 82,82^{\circ}\)
\end{tabular} \& (3)

(3)

\hline \& \& \& (3)

\hline
\end{tabular}

8.2.3	Area/Oppervlakte $\triangle \mathrm{ABC}$ $=\frac{1}{2}(\mathrm{BC})(\mathrm{AC}) \sin \mathrm{ACB}$ $=\frac{1}{2}(15)(15)\left(\sin 82,82^{\circ}\right)$ \checkmark correct subst into area rule/korrekte subst in opp-reël $=111,62 \mathrm{~cm}^{2}$ $\checkmark 111,62 \mathrm{~cm}^{2}$	
		(2)

QESTION 9

9.1.1	$\text { Area of/Oppervlakte van } \begin{aligned} \triangle \mathrm{PQR} & =\frac{1}{2} \mathrm{PQ} \cdot \mathrm{QR} \cdot \sin \hat{\mathrm{Q}} \\ \text { 1.1.1 } & =\frac{1}{2} x(20-4 x)\left(\sin 60^{\circ}\right) \\ 1.1 .2 & \\ \text { 1.1. } & =10 x-2 x^{2}\left(\frac{\sqrt{3}}{2}\right) \\ & =5 \sqrt{3} x-\sqrt{3} x^{2} \end{aligned}$	\checkmark subst into area rule/ subst in opp-reël \checkmark subst \& simpl/ subst en vereenv
9.1.2	For maximum area/Vir maksimum opp: $\begin{aligned} (\text { Area } \triangle \mathrm{PQR})^{\prime} & =0 \\ 5 \sqrt{3}-2 \sqrt{3} x & =0 \\ 2 \sqrt{3} x & =5 \sqrt{3} \\ \therefore x_{\max } & =\frac{5}{2} \text { or } 2 \frac{1}{2} \text { or } / \text { of } 2,5 \end{aligned}$	$\begin{aligned} & \checkmark(\text { Area } \triangle \mathrm{PQR})^{\prime}=0 \\ & \checkmark 5 \sqrt{3}-2 \sqrt{3} x \end{aligned}$ \checkmark answ/antw
	OR/OF $\begin{aligned} x_{\max } & =-\frac{b}{2 a} \\ & =-\frac{5 \sqrt{3}}{2(-\sqrt{3})}=\frac{5}{2} \text { or } 2 \frac{1}{2} \text { or } 2,5 \end{aligned}$ OR/OF	\checkmark formula/e \checkmark subst \checkmark answ/antw (3)

$$
9.2 \text { In } \triangle \mathrm{ABC}: \sin \beta=\frac{h}{\mathrm{AB}}, \quad \begin{aligned}
& \therefore \mathrm{AB}=\frac{h}{\sin \beta} \\
& \text { In } \triangle \mathrm{ABD}: \mathrm{AB}=\mathrm{BD} \text { and } / e n \mathrm{ADB}=90^{\circ}-\beta \quad\left[\angle \mathrm{s} \mathrm{of} / v \Delta=180^{\circ}\right] \\
& \frac{\sin 2 \beta}{\mathrm{AD}}= \frac{\sin \left(90^{\circ}-\beta\right)}{\mathrm{AB}} \\
& \mathrm{AD}=\frac{\mathrm{AB} \cdot \sin 2 \beta}{\sin \left(90^{\circ}-\beta\right)} \\
&= \frac{h}{\sin \beta} \times \frac{2 \sin \beta \cdot \cos \beta}{\cos \beta} \\
&= 2 h
\end{aligned}
$$

$\checkmark \mathrm{AB}$ ito h and $/$ en β
$\mathrm{A} \hat{\mathrm{DB}}=90^{\circ}-\beta$
\checkmark correct subst into
cosine rule/subst
korrek in cos-reël
$\checkmark \mathrm{AD}$ as subject/
onderwerp
\checkmark expansion/uitbrei
$\checkmark \sin \left(90^{\circ}-\beta\right)$
$=\cos \beta$
\checkmark answer ito h

OR/OF

9.2	$\begin{aligned} & \text { In } \triangle \mathrm{ABC}: \sin \beta=\frac{h}{\mathrm{AB}} \\ & \quad \therefore \mathrm{AB}=\frac{h}{\sin \beta} \\ & \text { In } \triangle \mathrm{ABD}: \mathrm{AB}=\mathrm{BD} \\ & \mathrm{AD}^{2}=\mathrm{AB}^{2}+\mathrm{AB}^{2}-2 \mathrm{AB} \cdot \mathrm{AB} \cdot \cos 2 \beta \\ & =\left(\frac{h}{\sin \beta}\right)^{2}+\left(\frac{h}{\sin \beta}\right)^{2}-2\left(\frac{h}{\sin \beta}\right)^{2} \cdot \cos 2 \beta \\ & =\left(\frac{h}{\sin \beta}\right)^{2}+\left(\frac{h}{\sin \beta}\right)^{2}-2\left(\frac{h}{\sin \beta}\right)^{2}\left(1-2 \sin ^{2} \beta\right) \\ & = \\ & =\left(\frac{h}{\sin \beta}\right)^{2}+\left(\frac{h}{\sin \beta}\right)^{2}-2\left(\frac{h}{\sin \beta}\right)^{2}+4 h^{2} \\ & =4 h^{2} \\ & \therefore \mathrm{AD}= \end{aligned}$ OR/OF Split isosceles triangle ABQ into two congruent triangles AEB and DEB . Then $\triangle \mathrm{ABC} \equiv \triangle \mathrm{BAE}(\mathrm{AB}=\mathrm{AC}, \mathrm{ABE}=\mathrm{BAC}=\beta, h)$ $\begin{aligned} & \therefore \mathrm{AE}=\mathrm{ED}=\mathrm{BC}=h \\ & \therefore \mathrm{AD}=2 h \end{aligned}$	$\checkmark \mathrm{AB}$ ito h and $/$ en β \checkmark correct subst into cosine rule/subst korrek in cos-reël \checkmark expansion/uitbrei \checkmark multiplication/ vermenigv \checkmark simpl/vereenv \checkmark answer ito h
		[15]

QUESTION 10

$$
\begin{aligned}
& 10.3 \quad \mathrm{~A} \hat{\mathrm{D}} \mathrm{C}=\mathrm{AC} \mathrm{D}=\frac{180^{\circ}-2 x}{2}=90^{\circ}-x \\
& \frac{\mathrm{DC}}{\sin 2 x}=\frac{\mathrm{AC}}{\sin \left(90^{\circ}-x\right)} \\
& \frac{\mathrm{DC}}{2 \sin x \cos x}=\frac{\mathrm{AC}}{\cos x} \\
& \begin{aligned}
\mathrm{DC} & =\frac{\mathrm{AC}(2 \sin x \cos x)}{\cos x} \\
& =\frac{k \tan y}{\sin x} \cdot \frac{2 \sin x \cos x}{\cos x} \\
& =2 k \tan y
\end{aligned} \\
& \text { OR/OF } \\
& \mathrm{DC}^{2}=\mathrm{AD}^{2}+\mathrm{AC}^{2}-2 \mathrm{AD} \cdot \mathrm{AC} \cos 2 x \\
& =\mathrm{AC}^{2}+\mathrm{AC}^{2}-2 \mathrm{AC}^{2} \cos 2 x \\
& =2 \mathrm{AC}^{2}(1-\cos 2 x) \\
& =2 \mathrm{AC}^{2}\left(1-1+\sin ^{2} x\right) \\
& =4 \mathrm{AC}^{2} \sin ^{2} x \\
& \mathrm{DC}=2 \mathrm{AC} \cdot \sin x \\
& =2\left(\frac{k \cdot \tan y}{\sin x}\right) \cdot \sin x \\
& =2 k \cdot \tan y
\end{aligned}
$$

OR/OF

$$
\begin{aligned}
\mathrm{DC}^{2} & =\mathrm{AD}^{2}+\mathrm{AC}^{2}-2 \mathrm{AD} \cdot \mathrm{AC} \cos 2 x \\
& =2\left(\frac{k \tan y}{\sin x}\right)^{2}-2\left(\frac{k \tan y}{\sin x}\right)^{2} \cos 2 x \\
& =\frac{2 k^{2} \tan ^{2} y}{\sin ^{2} x}-\frac{2 k^{2} \tan ^{2} y}{\sin ^{2} x}\left(1-2 \sin ^{2} x\right) \\
& =\frac{2 k^{2} \tan ^{2} y}{\sin ^{2} x}-\frac{2 k^{2} \tan ^{2} y}{\sin ^{2} x}+4 k^{2} \tan ^{2} y \\
\mathrm{DC} & =\sqrt{4 k^{2} \tan ^{2} y} \\
& =2 k \tan y
\end{aligned}
$$

$\checkmark 90^{\circ}-x$
\checkmark subst into sine rule
$\checkmark 2 \sin x \cos x$
$\checkmark \cos x$
\checkmark substitution
\checkmark substitution into cos rule
\checkmark factorisation
$\checkmark 1-2 \sin ^{2} x$
\checkmark DC ito AC and $\sin x$
\checkmark substitution
\checkmark correct cos rule
\checkmark substitution
$\checkmark 1-2 \sin ^{2} x$
\checkmark squaring and multiplication
$\checkmark \sqrt{4 k^{2} \tan ^{2} y}$

QUESTION 11

11.1.1	$\begin{aligned} & \tan \theta=\frac{\mathrm{PQ}}{\mathrm{QR}}=\frac{\mathrm{PQ}}{x} \\ & \therefore \mathrm{PQ}=x \tan \theta \end{aligned}$ Answer only: full marks OR/OF $\begin{aligned} & \frac{\mathrm{QR}}{\sin \mathrm{P}}=\frac{\mathrm{PQ}}{\sin \mathrm{PR} \mathrm{Q}} \\ & \therefore P Q=\frac{x \cdot \sin \theta}{\sin \left(90^{\circ}-\theta\right)} \end{aligned}$	\checkmark trig ratio \checkmark answer (2) \checkmark trig ratio \checkmark answer (2)
11.1.2	$\begin{aligned} & \frac{\mathrm{AR}}{\sin \mathrm{~A} \hat{\mathrm{Q}}}=\frac{\mathrm{QR}}{\sin \hat{\mathrm{~A} R}} \\ & \mathrm{AR}=\frac{x \sin \left(90^{\circ}+\theta\right)}{\sin \theta} \end{aligned} \text { Answer only: full marks }$	\checkmark use of sine rule \checkmark substitution into sine rule correctly

11.2	$\begin{aligned} \sin 2 \theta & =\frac{\mathrm{AB}}{\mathrm{AR}} \\ \mathrm{AB} & =\mathrm{AR} \sin 2 \theta \\ & =\frac{x \sin \left(90^{\circ}+\theta\right) \cdot \sin 2 \theta}{\sin \theta} \\ = & \frac{x \cos \theta \cdot \sin 2 \theta}{\sin \theta} \\ = & \frac{x \cos \theta \cdot 2 \sin \theta \cos \theta}{\sin \theta} \\ = & 2 x \cos ^{2} \theta \end{aligned}$	\checkmark substitution into trig ratio and AB as subject substitution of AR \checkmark co-ratio $\checkmark \sin 2 \theta=2 \sin \theta \cos \theta$
11.3	$\begin{align*} \frac{\mathrm{AB}}{\mathrm{QP}} & =\frac{2 x \cos ^{2} 12^{\circ}}{x \tan 12^{\circ}} \\ & =9 \tag{2} \end{align*}$	substitution CA from 6.1.1) \checkmark answer [10]

2. EUCLIDEAN GEOMETRY

2.1	WORK COVERED	
	- All theorems on straight lines, triangles and parallel lines - Theorem of Pythagoras - Similarity and Congruency - Midpoint theorem - Properties of quadrilaterals - Circle Geometry. - Proportionality theorems - Similar triangles - Theorem of Pythagoras (proof by similar triangles)	
2.2	OVERVIEW OF TOPICS GRADE 10 > Revise basic results established in earlier grades regarding lines, angles and triangles, especially the similarity and congruence of triangles. Investigate line segments joining the midpoints of two sides of a triangle. > Define the following special quadrilaterals: the kite, parallelogram, rectangle, rhombus, square and trapezium. Investigate and make conjectures about the properties of the sides, angles, diagonals and areas. GRADE 11 Investigate and prove theorems of the geometry of circles assuming results from earlier grades, together with one other result concerning tangents and radii of circles. Solve circle geometry problems, providing reasons for statements when required. > Prove riders.	GRADE 12 Revise earlier (Grade 911) work on similar polygons. Prove (accepting results established in earlier grades): - that a line drawn parallel to one side of a triangle divides the other two sides proportionally (and the Mid-point theorem as a special case of this theorem); - that equiangular triangles are similar; - that triangles with sides in proportion are similar; - the Pythagorean Theoren by similar triangles and riders

According to the National Diagnostic Reports, the previous learners had challenges

to:

- Make assumptions on cyclic quadrilaterals as equal, right angles where there is none, angles as equal, lines as parallel, etc.
- When proving cyclic quad or that a line is a tangent they use that as a reason in their proof.
- State incomplete or incorrect reasons for statements
- Identify correct sides that are in proportion
- State proportions without reasons
- Write proof of a theorem without making the necessary construction
- Differentiate when to use similarity or congruency when solving riders
- Understand properties of quadrilaterals and also the connections between shapes, eg (1) all squares are rectangles (2) all squares are rhombi (3) etc.
- Solve problems that integrates topics e.g. Trigonometry and Euclidean Geometry and Analytical Geometry
- Prove cyclic quad or // lines or tangents

SUGGESTIONS TO ADDRESS THE CHALLENGES:

- Scrutinise the given information and the diagram for clues about which theorems could be used in answering the question.
- Differentiate between proving a theorem and applying a theorem
- Use the list of reasons provided in the Examination Guidelines.
- Identify the correct sides that are in proportion
- All statements must be accompanied by reasons. It is essential that the parallel lines be mentioned when stating that corresponding angles are equal, alternate angles are equal, the sum of the co-interior angles is 180° or when stating the proportional intercept theorem.
- Note that construction is necessary when proving theorems
- Understand the difference between the concepts "similarity" and "congruency"
- Revise properties of quadrilaterals done in earlier grades
- Practise more exercises where the converses of the theorems are used in solving questions
- Practice solving problems that integrate topics e.g. Trigonometry and Euclidean Geometry

Revision of earlier (Grade 9-10) Geometry

Note:

- You must be able to identify, visualise theorems, axioms to apply in every situation.
- When presented with a diagram they should be able to write the theorem in words.

Straight Lines

The sum of angles around a Adjacent angles on a straight Vertically opposite angles
point is 360°

In the diagram, $\hat{B}_{1}+\hat{B}_{2}=180^{\circ}$
are equal.

$\hat{O}_{1}=\hat{O}_{3}$ and $\hat{O}_{2}=\hat{O}_{4}$ 360°

Parallel Lines

Corresponding angles are equal (F-shape).

If $A B / / C D$, then the corresponding angles are equal.

Alternate angles are equal (z or N -shape)

If $A B / / C D$, then alternate angles are equal.

Co-interior angles are supplementary (U-shape)

If $A B / / C D$, then co-interior angles are supplementary.

Triangles

The interior angles of a triangle are supplementary ${ }_{A}$

$\hat{A}+\hat{B}+\hat{C}=180^{\circ}$
In an equilateral triangle all sides are equal and all angles are equal to 60°

$\hat{A}=\hat{B}=\hat{C}=60^{\circ}$, and $A B=B C=A C$

TheTineecintexioglasgbe istiegiagleatithe sum suppfethæimttemyor opposite angles

$\hat{C}=\hat{A}+\hat{B}=\hat{C}_{2}$
In an equilateral triangle all sides are equal
Angles opposite equal sides are equal and all angles are equal to 60°

Sides opposite equal angles are equal

$\hat{A}=\hat{B} A=A B=A C$, then $\hat{B}=60^{0}$, and $A \bar{B}=A C$
Conversely, if $\hat{\tilde{B}}=\hat{C}$, then $A B=A C$

The e the int

Congruency

Congruency of triangles (four conditions)

Condition 1

Two triangles are congruent if three sides of one triangle are equal in length to the three sides of the other triangle. (SSS)

Condition 2

Two triangles are congruent if two sides and the included angle are equal to two sides and the included angle of the other triangle. (SAS)

Condition 3

Two triangles are congruent if two angles and one side of a triangle are equal to two angles and a corresponding side of the other triangle. (AAS)

Condition 4

Two right-angled triangles are congruent if the hypotenuse and a side of the one triangle is equal to the hypotenuse and a side of the other triangle. (RHS)

The Midpoint Theorem

If $A D=D B$ and $A E=E C$, then $D E / / B C$ and $D E=\frac{1}{2} B C$

If $A D=D B$ and $D E / / B C$, then $A E=E C$ and $D E=\frac{1}{2} B C$

Properties of Quadrilaterals: (Properties of quadrilaterals and their application are important in solving Euclidean Geometry problems).

Parallelogram (Parm)

- Opposite sides are parallel and equal in length
- Opposite angles are equal
- Diagonals bisect each other
- Area $=$ base \times perpendicular height

Rhombus

Square

Rectangles

- All sides are equal in length
- Opposite sides are parallel
- Opposite angles are equal
- Diagonals bisect each other at 90°
- Diagonals bisect the corner angles
- Area $=\frac{1}{2}$ (diagonal $1 \times$ diagonal 2$)$
- All sides are equal in length
- Opposite sides are parallel
- Corner angles equal 90°
- Diagonals are equal and bisect each other at 90°
- Diagonals bisect the corner angles
- Area $=$ side x side
- Opposite sides are parallel and equal in length
- Corner angles equal 90°
- Diagonals are equal and bisect each other
- Area $=$ base x height

- Two pairs of adjacent sides are equal
- A single pair of opposite angles are equal
- Diagonals intersect each other at 90°
- One diagonal bisects the corner angle
- Shorter diagonal is bisected by the longer diagonal
- Area $=\frac{1}{2}($ diagonal $1 \times$ diagonal 2$)$

Trapezium

- At least one pair of opposite sides are parallel
- Area $=\frac{1}{2}($ sum of $2 / /$ sides $) x$ height

Area of Triangle

(a) The height or altitude of a triangle is always relative to the chosen base.

In all cases, the area of the triangles can be calculated by using the formula
Area of $\triangle A B C=\frac{1}{2}($ base $) \times($ height $)$
(b) Two triangles which share a common vertex have a common height.

(c) Triangles with equal or common bases lying between parallel lines have the same area

GRADE 11-12 EUCLIDEAN GEOMETRY

NOTE: Grade 11 Geometry is very important as it is examinable in full with the Grade 12 Geometry. The nine circle geometry theorems must be understood and mastered in order to achieve success in solving riders.

KEY CONCEPTS

Proofs of the following theorems are examinable:
> The line drawn from the centre of a circle perpendicular to a chord bisects the chord;
> The line drawn from the centre of a circle to the meet point of the chord is perpendicular to the chord;
> The angle subtended by an arc at the centre of a circle is double the size of the angle subtended by the same arc at the circle (on the same side of the chord as the centre);
> The opposite angles of a cyclic quadrilateral are supplementary;
> The angle between the tangent to a circle and the chord drawn from the point of contact is equal to the angle in the alternate segment;
> A line drawn parallel to one side of a triangle divides the other two sides proportionally;
> Equiangular triangles are similar

The line drawn from the centre of a circle perpendicular to a chord bisects the chord

GIVEN: Circle \mathbf{O} and $O M \perp A B$
R.T.P. : AM = MB

Construction: Draw radii OA and OB

Proof:

In $\triangle \mathrm{OAM}$ and $\triangle \mathrm{OBM}$,
$\mathrm{OA}=\mathrm{OB} \ldots \quad($ Radii $)$

$\mathrm{OM}=\mathrm{OM} \ldots$. . Common)
$\hat{\mathrm{OMA}}=\hat{\mathrm{OMB}} \ldots\left(\right.$ Each $\left.=90^{\circ}\right)$
$\therefore \triangle \mathrm{OAM} \equiv \Delta \mathrm{OBM} . . \quad$ (RHS)
$\therefore \mathrm{AM}=\mathrm{MB} \quad \ldots$ (From congruency)

NOTE: Conversely, a line segment drawn from the centre of a circle to the midpoint of a chord, is perpendicular to the chord

Example:

Given: Circle with centre O and chord $A B . O C \perp A B$, cutting $A B$ at D,
with C on the circumference. $O B=13$ units and
$A B=24$ units. Calculate the length of CD.

$\mathrm{AD}=\mathrm{DB} \ldots$ (Line from centre \perp chord)
But $A B=24$ units \ldots. (Given)
$\therefore \mathrm{DB}=12$ units
In \triangle ODB,
$O B^{2}=O D^{2}+D B^{2} \quad \ldots$ (Pythagoras)
$13^{2}=O D^{2}+12^{2}$
$O D^{2}=13^{2}-12^{2}$
$O D=\sqrt{169-144}$
$=5$ units
But OB = OC = 13 units \ldots (Radii)
And $C D=O C-O D=13-5$
$=8$ units

The angle subtended by an arc at the centre of a circle is double the size of the angle subtended by the same arc at the circle (on the same side of the chord as the centre)

FORMAL PROOF:
Given : Circle with centre O and $\operatorname{arc} A B$ subtending $A \hat{O} B$ at the centre and $A \hat{C} B$ at the circle
R.T.P : $\mathrm{AO} \mathrm{B}=2 \times \mathrm{A} \hat{\mathrm{C}} \mathrm{B}$

Construction : Draw CO and produce

Proof:
$\hat{O}_{1}=\hat{C}_{1}+\hat{A} \ldots\left(\right.$ Ext \angle^{s} of $\Delta=$ sum of int. opp $\left.\angle s\right)$
But $\hat{C}_{1}=\hat{A} \ldots \ldots(\angle s \mathrm{opp}=$ sides OA and OC radii)
$\therefore \hat{O}_{1}=2 \hat{C}_{1}$
similarly $\hat{O}_{2}=2 \hat{C}_{2}$
In Diagram 1 \& 2: $\hat{O}_{1}+\hat{O}_{2}=2\left(\hat{C}_{1}+\hat{C}_{2}\right)$
$\therefore A \hat{O} B=2 \times A \hat{C} B$
In Diagram 3: $\therefore \hat{O}_{2}-\hat{O}_{1}=2\left(\hat{C}_{2}-\hat{C}_{1}\right)$
$\therefore A \hat{O} B=2 \times A \hat{C} B$

The inscribed angle subtended by the diameter of a circle at the circumference is a right angle. (\angle in a semi-circle).

In the diagram alongside, PT is a diameter of the circle with centre $\mathrm{O} . \mathrm{M}$ and S are points on the circle on either side of PT. MP, MT, MS and OS are drawn. $\hat{M}=37^{\circ}$.

Calculate, with reasons, the size of:
a) \hat{M}_{1}
b) \hat{O}_{1}

SOLUTION:

a) $\hat{P M T}=90^{\circ} \quad \ldots(\angle s$ in a semi - circle $)$

$$
\hat{M}_{1}=90^{\circ}-37^{\circ}
$$

$$
\hat{M}_{1}=53^{\circ}
$$

b) $\hat{O}_{1}=2\left(53^{\circ}\right)=106^{\circ} \ldots(\angle$ at centre $=2 \times \angle$ at circumference $)$

NOTES:

a). If, for any circle with centre M, point B moves in an
 anticlockwise direction, it reaches a point where arc $A B$ becomes a diameter of the circle. In that case, arc $A B$ subtends $\angle A M B$ at the centre and $\angle A C B$ at the circumference. Using the above theorem and the fact that $\angle \mathrm{AMB}$ is a straight angle, it can be deduced that $\angle \mathrm{ACB}=90^{\circ}$.
b). Equal chords subtend equal angles at the centre and at the circumference.

Example:

In the accompanying diagram, PR and PQ are equal chords of the circle with centre $M . Q S \perp P R$ at $S . P S=x$ units and $M R$ is drawn.
a). Express, with reasons, QS in terms of x.
b). If $x=\sqrt{12}$ units and $M S=1$ unit, calculate the length of the radius of the circle.
c). Calculate, giving reasons, the size of $\angle P$.

SOLUTION:
 SOLUTION:

a). $\mathrm{PS}=\mathrm{SR}=x$
$\ldots \ldots . . \quad$ (Line from centre \perp chord)
$\therefore \mathrm{PR}=\mathrm{PQ}=2 x \quad \ldots \ldots \ldots$. (Equal chords, given)
In $\triangle \mathrm{PQS}$,
$P Q^{2}=Q S^{2}+P S^{2}$ \qquad (Pythagoras)

$$
\begin{aligned}
Q S^{2} & =(2 x)^{2}-x^{2} \\
& =3 x^{2}
\end{aligned}
$$

QS $=\sqrt{3} x$ units

$$
\begin{aligned}
& \text { b). Radius }=\mathrm{QS}-\mathrm{SM} \\
& =\sqrt{3} x-1 \\
& =\sqrt{3} \sqrt{12}-1 \\
& =6-1 \\
& =5 \text { units }
\end{aligned}
$$

c). $\tan P=\frac{Q S}{P S}=\frac{6}{2 \sqrt{3}}$

$$
=\frac{3}{\sqrt{3}}
$$

$$
=\sqrt{3}
$$

$\therefore \hat{P}=60^{\circ}$

The opposite angles of a cyclic quadrilateral are supplementary
Note that all 4 vertices of a quadrilateral must lie on the same circle for the quadrilateral to be cyclic.

Given any circle with centre O, passing through the vertices of cyclic quadrilateral $A B C D$ R.T.P.: $\hat{\mathrm{A}}+\hat{\mathrm{C}}=180^{\circ}$ and $\hat{\mathrm{B}}+\hat{\mathrm{D}}=180^{\circ}$

Construction : Draw BO and OD
Proof:
$\hat{\mathrm{O}}_{2}=2 \hat{\mathrm{~A}}(\angle$ at the centre $=2 \times \angle$ at circle $)$
$\hat{\mathrm{O}}_{1}=2 \hat{\mathrm{C}} \quad(\angle$ at the centre $=2 \times \angle$ at circle $)$

$$
\hat{\mathrm{O}}_{1}+\hat{\mathrm{O}}_{2}=2(\hat{\mathrm{~A}}+\hat{\mathrm{C}})
$$

but

$$
\hat{\mathrm{O}}_{1}+\hat{\mathrm{O}}_{2}=360^{\circ}(\angle ' \mathrm{~s} \text { around a point })
$$

hence $\quad \hat{\mathrm{A}}+\hat{\mathrm{C}}=180^{\circ}$
also $\quad \hat{\mathrm{B}}+\hat{\mathrm{D}}=180^{\circ}($ sum of int \angle 's of quad)

Example

D, E, F, G and H are points on the circumference of a circle.
$\hat{G}_{1}=x+20^{\circ}$ and $\hat{H}=2 x+10^{\circ}$ DE || FG.

a) Determine the size of DEGG in terms of x
b) Calculate the size of DĤG

SOLUTION

a) $D \stackrel{\Lambda}{E} G=180-(2 x+10)$ (opposite angles of a cyclic quadrilateral)

$$
\begin{aligned}
& 180-2 x-10 \\
& =170-2 x
\end{aligned}
$$

b) $\left.\stackrel{\wedge}{G}_{1}=\stackrel{\Lambda}{E}_{(\text {alt }<\mathrm{s}} D E / / F G\right)$
$x+20=170-2 x$
$3 x=150$
$x=50^{\circ}$
$\therefore D \hat{H} G=70^{\circ}$

Angle between a tangent and a chord is equal to the angle in the alternate segment.

GIVEN: $M \hat{K} L$ OR \hat{K}_{1} with chord KL and tangent MK
RTP: $M \hat{K} L=\hat{N}$

Construction: Draw diameter KOD and join DL Proof: $\hat{K}_{1}+\hat{K}_{2}=90^{\circ} \quad \ldots . . \tan \perp \mathrm{rad}$ $\hat{K}_{1}=90^{\circ}-\hat{K}_{2}$ $D \hat{L} K=90^{\circ} \ldots . \angle s$ at semi-circle $\hat{K}_{2}+\hat{D}=90^{\circ} \ldots$ sum of $\angle s$ in a Δ $\hat{D}=90^{\circ}-\hat{K}_{2}$ $\hat{D}=\hat{K}_{1} \ldots \ldots$. Both $=90^{\circ}-\hat{K}_{2}$ But $\hat{D}=\hat{N} \ldots \angle s$ in same segment $\therefore \hat{K}_{1}=\hat{N} \quad \text {.....both }=\hat{D}$	Construction: Join OL and OK Proof: $\begin{aligned} & \hat{K}_{1}+\hat{K}_{2}=90^{\circ} \ldots \tan \perp \mathrm{rad} \\ & \hat{K}_{1}=90^{\circ}-\hat{K}_{2} \end{aligned}$ $\hat{O}_{1}+\hat{K}_{2}+\hat{L}_{1}=180^{\circ} \ldots$ sum of $\angle s$ in a Δ $\hat{K}_{2}+\hat{L}_{1}=180^{\circ}-\hat{O}_{1}$ $\hat{O}_{1}=2 \hat{N} \ldots \angle$ at centre $=2 \angle$ at circumf. $\hat{K}_{2}+\hat{L}_{1}=180^{\circ}-2 \hat{N}$ But $\hat{K}_{2}=\hat{L}_{1} \ldots \angle s$ opp $=$ sides $\hat{K}_{2}=90^{\circ}-\hat{N}$ $\hat{N}=90^{\circ}-\hat{K}_{2} ; \quad \therefore \hat{K}_{1}=\hat{N}$	Construction: Join OK and extend to D on the circumference. Join ND. $\hat{K}_{1}+\hat{K}_{2}=90^{\circ} \ldots$ $\tan \perp \mathrm{rad}$ $\hat{N}_{1}+\hat{N}_{2}=90^{\circ} \ldots \angle s \angle \text { in }$ the semi-circle $\begin{aligned} & \hat{K}_{1}+\hat{K}_{2}=\hat{N}_{1}+\hat{N}_{2} \ldots \text { both } \\ & =90^{\circ} \end{aligned}$ But $\hat{N}_{2}=\hat{K}_{2} \ldots \angle s$ in same segment $\therefore \hat{K}_{1}=\hat{N}_{1}$

PROPORTIONALITY

- It is important to stress to learners that proportion gives no indication of actual length. It only indicates the ratio between lengths.
- Make sure that you know the meaning of ratios. For example, the ratio $\frac{\mathrm{AB}}{\mathrm{BC}}=\frac{2}{3}$ does not necessarily mean that the length of $A B$ is 2 and the length of $B C$ is 3 .

The line drawn parallel to one side of a triangle divides the other two sides proportionally

Given : $\Delta \mathrm{ABC}, \mathrm{D}$ lies on AB and E lies on AC . And $\mathrm{DE} / / \mathrm{BC}$.
R.T.P.: $\frac{A D}{D B}=\frac{A E}{E C} \mathrm{~A}$

$\frac{\text { Area } \triangle A D E}{\text { Area } \triangle B D E}=\frac{\frac{1}{2} A D \times h}{\frac{1}{2} D B \times h}=\frac{A D}{D B}$ (same height)
$\frac{\text { Area } \triangle A D E}{\text { Area } \triangle C E D}=\frac{\frac{1}{2} A E \times k}{\frac{1}{2} E C \times k}=\frac{A E}{E C}($ same height $)$
Make sure the height used corresponds with the correct base as indicated in the construction
But Area $\triangle B D E=$ Area $\triangle C E D$ (same base and between // lines)
$\therefore \frac{\text { Area } \triangle A D E}{\text { Area } \triangle B D E}=\frac{\text { Area } \triangle A D E}{\text { Area } \triangle C E D}$

$$
\therefore \frac{A D}{D B}=\frac{A E}{E C}
$$

SIMILARITY THEOREM:

- Know the conditions under which two triangles are similar
- Note that to prove that sides are in proportion, similarity of triangles is proved and not congruency
- When proving that the two triangles are similar, make sure that the equal angles correspond: i.e. if given that $\triangle \mathrm{ABC} / / / \triangle \mathrm{BDA}$ then you cannot say that $\triangle \mathrm{ABC} / / / \Delta \mathrm{ABD}$
- To prove triangles are similar, we need to show that two angles (AAA) are equal OR three
sides in proportion (SSS).
- The examples on similar triangles illustrate a highly systematic and effective strategy which has been used in the teaching of triangle geometry.

Equiangular triangles are similar

GIVEN: Equiangular triangles

R.T.P. are similar

In $\triangle A X Y$ and $\triangle D E F$
$A X=D E \quad$ (construction)
$A Y=D F \quad$ (construction)
$\hat{\mathrm{A}}=\hat{\mathrm{D}} \quad$ (given)
$\therefore \triangle A X Y \equiv \triangle D E F \quad(S A S)$
$A \hat{X} Y=\hat{E}$ but $\hat{E}=\hat{B} \quad$ (given)
$\therefore A \hat{X} Y=\hat{B}$
$\Rightarrow X Y / / B C$ (corresponding $\angle s=$)
$\frac{A B}{A X}=\frac{A C}{A Y} \quad($ line $/ /$ one side of $\Delta)$
but $\mathrm{AX}=\mathrm{DE}$ and $\mathrm{AY}=\mathrm{DF}$ (construction)
$\therefore \frac{A B}{D E}=\frac{A C}{D F}$

Similarly by marking off equal lengths on $\mathbf{B A}$ and $\mathbf{B C}$, it can be shown that: $\frac{A B}{D E}=\frac{B C}{E F}$
$\therefore \frac{A B}{D E}=\frac{A C}{D F}=\frac{B C}{E F}$

THEOREMS AND THEIR CONVERSES

(Conv. Opp. Sides parm)
If opposite sides of a quadrilateral are equal, then the quadrilateral is a parallelogram

(diags. parm)
If given a parallelogram, then the diagonals bisect each other

(opp. L's parm)

(Conv. diags. parm)
If diagonals of a quadrilateral bisect each other, then the quadrilateral is a parallelogram

Conv. opp. \angle 's cyclic quad

(conv. ext, \angle 's cyclic quad.)

NOTE: success in answering Euclidean Geometry comes from regular practice, starting off with the easy and progressing to the difficult.

Important points about solving riders in Geometry

1 Read the problem carefully for understanding. You may need to underline important points and make sure you understand each term in the given and conclusion. Highlight key word like centre, diameter, tangent, because they are linked to theorems you would need to solve riders.
2 Draw the sketch if it is not already drawn. The sketch need not be accurately drawn but must as close as possible to what is given i.e. lines and angles which are equal must look equal or must appear parallel etc. Also indicate further observations based on previous theorems.
3 Indicate on the figure drawn or given all the equal lines and angles, lines which are parallel, drawing in circles, measures of angles given if not already indicated in the question. Put in the diagram answers that you get as you work along the question; you may need to use them as you work along the question. It might be more helpful to have a variety of colour pens or highlighters for this purpose.

4 Usually you can see the conclusion before you actually start your formal proof of a rider. Always write the reason for each important statement you make, quoting in brief the theorem or another result as you proceed.

5 When proving similar triangles, the triangles are already similar, you just need to provide reasons for similarity. It helps to highlight the two triangles so that it will be easy to see why corresponding angles are equal. Do not forget to indicate the reason for similarity that is AAA or $\angle \angle \angle$.
6 Answers must be worked out sequentially, there's always a way out.
7 Sometimes you may need to work backwards, asking yourself what I need to show to prove this conclusion (required to be proved) and then see if you can prove that as you reverse. NB, do not use answer/ what is supposed to prove in the proof.
9 WRITE GEOMETRY REASONS CORRECTLY. Refer to acceptable reasons as reflected in the Examination Guidelines.

2.1 PRACTICE EXERCISES

- Diagrams are not drawn to scale
- Refrain from making assumptions. (For example, if a line looks like a tangent, but no tangent is mentioned in the description statement, the three theorems associated with a tangent cannot be applied. Sometimes the examiner may want you to prove that it is a tangent)

QUESTION 1

Are the following pairs of triangles similar? Give a reason for your answer.
(a)

QUESTION 2

In the accompanying figure, $A O B$ is a diameter of the circle AECB with centre O . $O E / / B C$ and $O E$ meets $A C$ at D. B and E are joined.

2.1 Prove that $A D=D C$
2.2 Prove that EB bisects $A \hat{B} C$
2.3. If $E \hat{B} C=x$, express $B \hat{A} C$ in terms of x.

QUESTION 3

In the diagram alongside, $B C$ and $C A E$ are tangents to circle $D A B$ and $B D=B A$.

3.1 Prove that

3.1.1 $\quad \hat{D}_{2}=\hat{A}_{2}+\hat{A}_{3}$

3.1.2 DA // BC
3.2 Hence, deduce that $\frac{E D}{A B}=\frac{E A}{A C}$
3.3 Calculate the length of $A B$, if it is further given that $E C: E A=5: 2$ and $E D=18$ units.
3.4 Prove that Δ EDA $|\mid \Delta \mathrm{EAB}$.

QUESTION 4

In the diagram, $B C=17$ units, where $B C$ is a diameter of the circle. The length of the chord BD is 8 units.

The tangent at B meets $C D$ produced at A.

4.1 Calculate, with reasons, the length of DC
4.2 E is a point on $B C$ such that $B E: E C=3: 1$. $E F$ is parallel to $B D$ with F on $D C$.
4.2.1 Calculate, with reasons, the length of CF
4.2.2 Prove that $\triangle B A C / / / \triangle F E C$
4.2.3 Calculate the length of $A C$

QUESTION 5

In $\triangle A D C, \mathrm{E}$ is a point on AD and B is a point on AC such that $\mathrm{EB} / / \mathrm{DC}$.
F is a point on $A D$ such that $F B / / E C$.
It is also given that $A B=2 B C$

5.1 Determine the value of Al
5.2 Calculate the length of $E D$ if $A F=8 \mathrm{~cm}$

QUESTION 6

In the accompanying figure, PQRS is a cyclic quadrilateral with $R S=Q R$. A straight line (not given as a tangent) through R, parallel to QS, meets PS produced at T.
P and R are joined.

$$
\text { If } \hat{R}_{3}=x
$$

6.1 Prove giving reasons that RT is a tangent to the circle at R
6.2 Prove that $\hat{R}_{1}=\hat{T}$
6.3 Prove that $\triangle \mathrm{RST} / / / \Delta \mathrm{PQR}$
6.4 If $P Q=4 \mathrm{~cm}$ and $\mathrm{ST}=9 \mathrm{~cm}$, Calculate the length of QR

QUESTION 7

In the figure PY is a diameter of the circle and X is on YP produced. XT is a tangent the circle at T and $X B$ is perpendicular to YT produced.

7.1 Prove that BX // TP
7.2 Prove that $\frac{X B}{Y B}=\frac{X T}{Y X}$

QUESTION 8 (WC 2016 Trial)

In the diagram, O is the centre of the circle. $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ and E are points on the circumference of the circle. Chords $B E$ and $C D$ produced meet at $F . \hat{C}=100^{\circ}, \hat{F}=35^{\circ}$ and $A \hat{E} B=55^{\circ}$.

8.1 Calculate, giving reasons, each of the following angles:

8.1.1 \hat{A}

8.1.2 \hat{E}_{1}
8.1.3 \hat{D}_{1}
8.2 Prove, giving reasons, that $A B \| C F$.

QUESTION 9 (GDE, 2017 Trial)

In the diagram below, O is the centre of the circle. C is the midpoint of chord BD . Point A lies within the circle such that $\mathrm{BA} \perp A O D$.

9.1 Show that DA.OD $=O D^{2}+O D \cdot O A$.
9.2 Prove that $2 D C^{2}=O D^{2}+O D . O A$

QUESTION 10

In the diagram, PR is a diameter of the circle with centre O . ST is a tangent to the circle at T and meets RP produced at $\mathrm{S} . \mathrm{SP} \mathrm{T}=x$ and $\hat{\mathrm{S}}=y$.

Determine, with reasons, y in terms of x.

QUESTION 11 (GDE, 2018 TRIAL)

In the diagram below, O is the centre of the circle. $A B C D$ is a cyclic quadrilateral. $B A$ and
$C D$ are produced to intersect at E such that $A B=A E=A C$.

11.1 Determine each of the following angles in terms of x :
11.1.1 \hat{B}_{2}
11.1.2 \hat{E}
11.1.3 C_{2}
11.2 If $\hat{E}=\hat{C}_{2}=x$, prove that ED is a diameter of circle AED.

QUESTION 12 (WC, Sept. 2015)

12.1 Complete the following statement:

If two triangles are equiangular, then the corresponding sides are ...
12.2 In the diagram, DGFC is a cyclic quadrilateral and $A B$ is a tangent to the circle at B. Chords DB and BC are drawn. DG and CF produced meet at E and $D C$ is produced to A. EA || GF.

12.2.1 Give a reason why $\hat{B}_{1}=\hat{D}_{1}$.
12.2.2 Prove that $\triangle A B C / / / \triangle A D B$.
12.2.3 Prove that $\hat{E}_{2}=\hat{D}_{2}$.
12.2.4 Prove that $A E^{2}=A D \times A C$.
12.2.5 Hence, deduce that $A E=A B$.

QUESTION 13 (GDE, 2016 Trial)

In the diagram below NE is a common tangent to the two circles. NCK and NGM are double
chords. Chord LM of the larger circle is a tangent to the smaller circle at point C. KL, KM and

CG are drawn.

Prove that:
13.1 $\frac{K C}{K N}=\frac{M G}{M N}$
13.2 KMGC s a cyclic quadrilateral if $\mathrm{CN}=\mathrm{NG}$.
$13.3 \Delta M C G / / / \triangle M N C$.
$13.4 \frac{M C^{2}}{M N^{2}}=\frac{K C}{K N}$

QUESTION 14 (WC, 2016 Trial)

In the diagram, P, S, G, B and D are points on the circumference of the circle such that $\mathrm{PS}\|\mathrm{DG}\| \mathrm{AC} . \mathrm{ABC}$ is a tangent to the circle at $\mathrm{B} . G \hat{B} C=x$.

14.1 Give a reason why $\hat{G}_{1}=x$.
14.2 Prove that:
14.2.1 $\mathrm{BE}=\frac{B P \cdot B F}{B S}$
14.2.2 $\quad \triangle B G P / / / \triangle B E G$
14.2.3 $\frac{B G^{2}}{B P^{2}}=\frac{B F}{B S}$

QUESTION 15 (WC, 2016 Trial)

In the diagram, $\triangle \mathrm{ABC}$ with points D and F on BC and E a point on AC such that $\mathrm{EF} \| \mathrm{AD}$ and $\mathrm{DE} \| \mathrm{BA}$. Further it is given that $\frac{\mathrm{AE}}{\mathrm{EC}}=\frac{5}{4}$ and $\mathrm{DF}=20 \mathrm{~cm}$.

15.1

Calculate, giving reasons, the length of:
15.1.1
FC
15.1.2
BD
(3)
(4)

Determine the following ratio: $\frac{\text { Area } \triangle E C F}{\text { Area } \triangle A B C}$
(4)
[11]

QUESTION 16 (DBE, Nov. 2017)

In the diagram, BC is a diameter of the circle. The tangent at point D on the circle meets $C B$ produced at $A . C D$ is produced to E such that $E A \perp A C$. BD is drawn.
Let $\hat{\mathrm{C}}=x$.

16.1 Give a reason why:
16.1.1 $\hat{D}_{3}=90^{\circ}$
16.1.2 ABDE is a cyclic quadrilateral.
16.1.3 $\quad \hat{D}_{2}=x$
16.2 Prove that:
16.2.1 $A D=A E$
16.2.2 $\triangle A D B / / / \triangle A C D$
16.3 It is further given that $B C=2 A B=2 r$.
16.3.1 Prove that $A D^{2}=3 r^{2}$.
16.3.2 Hence, prove that $\triangle A D E$ is equilateral.

QUESTION 17 (GDE, 2018 Trial)

In $\triangle \mathrm{DXZ}$ below, $\mathrm{AC} \| \mathrm{XZ}$ and $\mathrm{BP} \| \mathrm{DZ}$. DY is drawn to intersect AC at B .

17.1 Prove that $\frac{B C}{Y Z}=\frac{D A}{D X}$

PRACTICE EXERCISE SOLUTIONS

QUESTION 1

1.1 YES, $\frac{L N}{A B}=\frac{L M}{A C}=\frac{M N}{B C}=\frac{1}{2}$
1.2 NO

QUESTION 2

2.1

$$
\begin{aligned}
& \hat{C}=90^{\circ} \ldots . .(\angle \text { at semi-circle }) \\
& O \hat{D} A=90^{\circ} \ldots .(\text { corr. } \angle \mathrm{s}=(\mathrm{OE} / / \mathrm{BC})) \\
& \mathrm{AD}=\mathrm{DC} \ldots . . \text { (line segment from centre } \perp \text { to } \\
& \text { chord }
\end{aligned}
$$

2.2

$E \hat{B} C=B \hat{E} O \ldots \ldots$ (alt. OE // BC)
but $E \hat{B} O=B \hat{E} O \ldots \ldots(\angle \mathrm{~s}$ opp $=$ sidesradii $(O E=O B)$)
$\therefore E \hat{B} C=E \hat{B} O$
$\therefore \quad E B$ bisects $A \hat{B} C$
2.3

$$
\begin{aligned}
& A \hat{O} E=2 A \hat{B} E \ldots \ldots \text { (at centre }=2 \times \text { at } \\
& \text { circumf.) }
\end{aligned}
$$

but $A \hat{B} E=E \hat{B} C=x_{\ldots} .(E B$ bisects $A \hat{B} C)$

$$
A \hat{O} E=2 x
$$

In $\triangle A B C, B \hat{A} C+90^{\circ}+2 x=180^{\circ}$

$$
B \hat{A} C=90^{\circ}-2 x
$$

QUESTIONS 3

3.1.1
$\hat{A}_{3}=\hat{B}_{1} \quad$ (tan chord)
$\hat{D}_{2}=\hat{A}_{2}+\hat{B}_{1} \quad($ exterior \angle of a $\Delta)$
$\therefore \hat{D}_{2}=\hat{A}_{2}+\hat{A}_{3}$
3.1.2
$\hat{B}_{2}=\hat{D}_{1}$
(tan chord)
$\hat{D}_{1}=\hat{A}_{2}$
(\angle^{s} opposite
= sides)
$\therefore \hat{B}_{2}=\hat{A}_{2}$
$\therefore \mathrm{DA} / / \mathrm{BC} \quad$ (alternate $\angle^{s}=$)
$3.2 \frac{E D}{D B}=\frac{E A}{A C}$
But DB $=A B$
(given)
3.3 EC:EA $=5: 2$
$\frac{E C}{E A}=\frac{5}{2}$
$\frac{E A+A C}{E A}=\frac{5}{2}$
$1+\frac{A C}{E A}=\frac{5}{2}$
$\frac{A C}{E A}=\frac{3}{2}$
$\frac{E A}{A C}=\frac{2}{3}$
$\hat{D}_{2}=\hat{A}_{2}+\hat{A}_{3} \quad$ (proved)
$\hat{A}_{3}=\hat{B}_{1} \quad$ (tan chord)
$\hat{E}=\hat{E}$
(common)
$\therefore \triangle \mathrm{EDA}||\mid \triangle \mathrm{EAB} \quad(\angle \angle \angle)$

QUESTION 4

$$
B \hat{D} C=90^{\circ} \ldots . .(\angle \text { in semi }- \text { circle })
$$

4.1 $B C^{2}=D C^{2}+D B^{2}$ (Pythagoras theorem) $D C^{2}=17^{2}-8^{2}$
$D C=15$
4.2.1

$$
\begin{aligned}
& \frac{C F}{C D}=\frac{C E}{C B}(\text { line // one side of } \Delta) \\
& \frac{C F}{15}=\frac{1}{4} \\
& 4 C F=15 \\
& \therefore C F=3,75
\end{aligned}
$$

$$
\begin{aligned}
& 4.2 .2 \\
& A \hat{B} C=90^{\circ} \ldots . .(\tan \perp \text { rad }) \\
& B \hat{D} C=90^{\circ} \ldots . .(\angle \text { in semi-circle }) \\
& E \hat{F} C=B \hat{D} C=90^{\circ} \ldots . .(\text { Corr } \angle s, E F / / B D) \\
& \text { In } \triangle B A C \text { and } \triangle F E C \\
& \hat{C}=\hat{C} \ldots \ldots \quad(\text { common }) \\
& A \hat{B} C=E \hat{F} C=90^{\circ} \quad(\text { proven above }) \\
& B \hat{A} C=F \hat{E} C\left(3^{r d} \angle \text { of } \triangle\right) \\
& \therefore \Delta B A C / / / \triangle F E C \ldots(A A A)
\end{aligned}
$$

QUESTION 5

$5.1 \frac{A F}{F E}=\frac{2}{1}$
$F E=\frac{A F}{2}=\frac{8}{2}=4 \mathrm{~cm}$

4.2.3

$E C=\frac{1}{4} \times 17=4,25$
$\frac{A C}{E C}=\frac{B C}{F C}(\triangle B A C / / / \Delta F E C)$
$\frac{A C}{4,25}=\frac{17}{3,75}$

$$
A C=19,27
$$

5.2

$$
\begin{aligned}
A E & =12 \mathrm{~cm} \\
\frac{E D}{A E} & =\frac{1}{2} \quad[B E / / D C ; \text { prop theorem }] \\
\frac{E D}{12} & =\frac{1}{2} \\
E D & =6 \mathrm{~cm}
\end{aligned}
$$

QUESTION 7

$$
\hat{T}_{3}=90^{\circ}[\angle s \text { in semi circle }]
$$

$$
\text { 7.1 } X \hat{B} Y=90^{\circ} \text { [given] }
$$

$$
\therefore \hat{T}_{3}=X \hat{B} Y\left[\text { both }=90^{\circ}\right]
$$

$$
B X / / T P[\text { corresp } \angle s=]
$$

In $\triangle X B T$ and $\triangle X B Y$
$X \hat{B} T=X \hat{B} Y$ [common $\angle]$
$\hat{X}_{2}=\hat{T}_{2}[$ alt $\angle s ; B X / / T P]$
$7.2 \hat{T}_{2}=\hat{Y} \quad[\tan$ chord theorem $]$
$\hat{X}_{2}=\hat{Y} \quad\left[\right.$ both $\left.=\hat{T}_{2}\right]$
$\hat{T}_{1}=B \hat{X} Y\left[3^{r d} \angle\right.$ of the $\left.\Delta\right]$
$\therefore \triangle X B T / / / \triangle X B Y[\angle \angle \angle]$

$$
\frac{X B}{Y B}=\frac{X T}{Y X}[/ / / \Delta s]
$$

QUESTION 8

8.1.1 $\mathrm{BA} \mathrm{E}=90^{\circ}$
\angle semi circle
$\checkmark S \checkmark R$
8.1.2 $\hat{E}_{1}=80^{\circ} \quad$ opp anglescyclic quad
$\checkmark S \checkmark R$
8.1.3 $\hat{D}_{1}=45^{\circ} \quad$ ext \angle of $\triangle \mathrm{FED}$
$\checkmark S \checkmark R$
8.2

$$
\begin{array}{llc}
\hat{B}_{1}=35^{\circ} & \text { Interior } \angle \text { of } \Delta & \checkmark \mathrm{S} \checkmark \mathrm{R} \tag{4}\\
\hat{F}=35^{\circ} & \text { given } & \checkmark \mathrm{S} \\
\therefore A B \| C F & \text { Altternate } \angle s= & \checkmark \mathrm{R}
\end{array}
$$

QUESTION 9

9.1 $D O . O D=O D(O D+O A)$

$$
\checkmark O D(O D+O A)
$$

$$
\begin{equation*}
=O D^{2}+O D \cdot O A \tag{1}
\end{equation*}
$$

9.2 In $\triangle \mathrm{DAB}$ and $\triangle \mathrm{DCO}$

$$
\begin{array}{lll}
\begin{array}{l}
\hat{\mathrm{D}}=\hat{\mathrm{D}} \\
\hat{\mathrm{C}}_{2}=90^{\circ} \\
\hat{\mathrm{C}}_{2}=\hat{\mathrm{A}}
\end{array} & \begin{array}{l}
\text { (common) } \\
\text { (line from centre to midpt of a chord/Midpt thm) }
\end{array} & \checkmark \mathrm{S} \quad \hat{\mathrm{D}}=\hat{\mathrm{D}} \\
\hat{\mathrm{~B}}=\hat{\mathrm{C}}_{2}=90^{\circ} \checkmark \mathrm{R} \\
\therefore \Delta \mathrm{DAB} \| \mid \Delta \mathrm{DCO} \quad\left(3^{r d} \angle \text { of } a \Delta\right) & \\
\therefore \frac{\mathrm{DA}}{\mathrm{DC}}=\frac{\mathrm{AB}}{\mathrm{CO}}=\frac{\mathrm{DB}}{\mathrm{DO}} & \checkmark \mathrm{~S} \quad \hat{\mathrm{C}}_{2}=\hat{\mathrm{A}} \\
\mathrm{DA} \cdot \mathrm{DO}=\mathrm{DC} \cdot \mathrm{DB} & \checkmark \mathrm{~S} \quad \hat{\mathrm{~B}}=\hat{\mathrm{O}}_{3} \\
\mathrm{OD}^{2}+\mathrm{OD} \cdot \mathrm{OA}=\mathrm{DC} \cdot 2 \mathrm{DC} & \checkmark \frac{\mathrm{DA}}{\mathrm{DC}}=\frac{\mathrm{AB}}{\mathrm{CO}}=\frac{\mathrm{DB}}{\mathrm{DO}} \\
\mathrm{OD}^{2}+\mathrm{OD} \cdot \mathrm{OA}=2 \mathrm{DC}{ }^{2} & \checkmark \\
\mathrm{OD}^{2}+\mathrm{OD} \cdot \mathrm{OA}=2 \mathrm{DC}^{2}
\end{array}
$$

QUESTION 10

PT̂R $=90^{\circ}$
(\angle in semi-circle)
\checkmark S/R

10

$$
\begin{array}{lll}
x=90^{\circ}+\hat{\mathrm{R}} & (\text { ext } \angle \text { of } \Delta) & \checkmark \mathrm{S} / \mathrm{R} \\
\therefore \hat{\mathrm{R}}=x-90^{\circ} & & \\
\mathrm{STYP}=x-90^{\circ} & (\tan \text { chord theorem) } & \checkmark \mathrm{S} \checkmark \mathrm{R} \\
x+x-90^{\circ}+y=180^{\circ} & (\operatorname{sumof} \angle \sin \Delta) & \checkmark \mathrm{S} \\
\therefore y=270^{\circ}-2 x & & \checkmark \text { answer }
\end{array}
$$

QUESTION 11

11.1.1 In $\triangle O B C$
$\hat{\mathrm{B}}_{2}=\hat{\mathrm{C}}_{3}$
(\angle sopposite $=$ radii)
$\hat{\mathrm{B}}_{2}=90^{\circ}-2 x$
$(\operatorname{sumof} \angle \operatorname{sofa} \Delta)$
$\checkmark S \vee R$
$\checkmark \hat{\mathrm{B}}_{2}=90^{\circ}-2 x$

> (2)
11.1.2 $\hat{\mathrm{A}}_{3}=2 x$
$\checkmark S \vee R$
(\angle at centre $=2 \times \angle$ at circumference)
$\hat{\mathrm{A}}_{3}=\hat{\mathrm{C}}_{1}+\hat{\mathrm{E}}$
(ext $\angle \mathrm{of} \Delta$)
\checkmark

But $\mathrm{AB}=\mathrm{AC}=\mathrm{AE} \quad$ (given)
$\hat{\mathrm{C}}_{1}=\hat{\mathrm{E}} \quad(\angle$ sopposite $=$ sides $)$
$\therefore \hat{\mathrm{E}}=x$
$\checkmark \hat{E}=x$
(5)
11.1.3 $\quad \hat{\mathrm{B}}_{1}+\hat{\mathrm{B}}_{2}=\hat{C}_{2}+\hat{\mathrm{C}}_{3} \quad(\angle$ sopposite $=$ sides $)$
$\hat{\mathrm{B}}_{1}=\hat{C}_{2}=180^{\circ}-\left(2 x+90^{\circ}-2 x+90^{\circ}-2 x\right)$
(sumof \angle 'sof a Δ)
$\therefore \hat{\mathrm{C}}_{2}=x$
11.2
$\hat{\mathrm{A}}_{1}=\hat{\mathrm{C}}$ (ext. $\angle \mathrm{s}$ of a cyclic quadrilateral) $\quad \checkmark S \checkmark R$
$\hat{\mathrm{A}}_{1}=90^{\circ}-2 x+x+x$
$\hat{\mathrm{A}}_{1}=90^{\circ}$
$E D$ is a diameter of circle $\quad\left(\right.$ linesubtends $90^{\circ} \angle$)/
$\checkmark \hat{\mathrm{A}}_{1}=90^{\circ}$
$\checkmark R$
(4)

QUESTION 12

12.1 tangent-chord theorem
12.1.2 In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{ADB}$:
$\hat{\mathrm{A}}_{1}=\hat{\mathrm{A}}_{1}$
(common)
(provedin 10.2.1)
$\therefore \triangle \mathrm{ABC} \| \mid \triangle \mathrm{ADB} \quad(\angle \angle \angle)$
$\checkmark R$
OR
$\hat{\mathrm{A}}_{1}=\hat{\mathrm{A}}_{1} \quad$ (common)
$\hat{\mathrm{B}}_{1}=\hat{\mathrm{D}}_{1} \quad$ (provedin 10.2.1)
$\mathrm{B} \hat{\mathrm{CA}}=\hat{\mathrm{B}}_{2}$
$\left(\angle\right.$ sof a $\left.\triangle=180^{\circ}\right)$
$\therefore \triangle \mathrm{ABC}|\mid \triangle \mathrm{ADB}$
12.1.3 $\quad \hat{E}_{2}=\hat{F}_{1}$
(alternate $\angle \mathrm{s} ; \mathrm{EA} \| \mathrm{GF}$)
$\checkmark S \checkmark R$
$\checkmark S \checkmark R$
(4)
12.1.4 In $\triangle \mathrm{AEC}$ and $\triangle \mathrm{ADE}$:

$$
\begin{aligned}
& \hat{\mathrm{A}}_{2}=\hat{\mathrm{A}}_{2} \quad \text { (common) } \\
& \hat{\mathrm{E}}_{2}=\hat{\mathrm{D}}_{2} \quad \text { (provedin10.2.3) } \\
& \therefore \triangle \mathrm{AEC} \| \mid \triangle \mathrm{ADE} \quad(\angle \angle \angle) \\
& \therefore \frac{\mathrm{AE}}{\mathrm{AD}}=\frac{\mathrm{AC}}{\mathrm{AE}} \\
& \therefore \mathrm{AE}^{2}=\mathrm{AD} \times \mathrm{AC} \\
& \text { OR } \\
& \text { In } \triangle \mathrm{AEC} \text { and } \triangle \mathrm{ADE} \text { : } \\
& \hat{\mathrm{A}}_{2}=\hat{\mathrm{A}}_{2} \\
& \text { (common) } \\
& \hat{\mathrm{E}}_{2}=\hat{\mathrm{D}}_{2} \\
& \text { (provedin 10.2.3) } \\
& \checkmark S \\
& \mathrm{AC} \mathrm{E}=\hat{\mathrm{G}}_{1} \\
& \text { (} \angle \text { sof a } \triangle=180^{\circ} \text { OR ext } \angle \text { of cyclicquadDGFE) } \\
& \therefore \triangle \mathrm{AEC} \| \mid \triangle \mathrm{ADE} \\
& \therefore \frac{\mathrm{AE}}{\mathrm{AD}}=\frac{\mathrm{AC}}{\mathrm{AE}} \\
& \therefore \mathrm{AE}^{2}=\mathrm{AD} \times \mathrm{AC}
\end{aligned}
$$

12.1.5 $\quad \frac{\mathrm{AB}}{\mathrm{AD}}=\frac{\mathrm{AC}}{\mathrm{AB}}$
$(\triangle \mathrm{ABC} \| \mid \Delta \mathrm{ADB})$

$$
\begin{aligned}
\mathrm{AB}^{2} & =\mathrm{AD} \times \mathrm{AC} \\
& =\mathrm{AE}^{2} \quad(\text { from } 10.2 .4)
\end{aligned}
$$

$\therefore \mathrm{AB}=\mathrm{AE}$
$\checkmark S$
\checkmark S

QUESTION 13

$13.1 \quad \hat{\mathrm{~N}}_{1}=\hat{\mathrm{C}}_{4}$
(tan chord theorem) $\quad \checkmark S / R$
$\hat{\mathrm{N}}_{1}=\hat{\mathrm{K}}_{2}$ (tan chord theorem)
$\therefore \hat{\mathrm{C}}_{4}=\hat{\mathrm{K}}_{2}$
$\mathrm{CG} \| \mathrm{KM} \quad(\operatorname{corresp} \angle \mathrm{s}=)$
$\frac{\mathrm{KC}}{\mathrm{KN}}=\frac{\mathrm{MG}}{\mathrm{MN}} \quad$ (line \| to one sideof $\Delta \mathrm{OR}$ prop theorem) $\begin{aligned} & \checkmark \mathrm{S} / \mathrm{R} \\ & \checkmark \mathrm{R}\end{aligned}$
(4)
13.2 $\quad \hat{\mathrm{C}}_{4}=\hat{\mathrm{K}}_{2} \quad$ (proved)
$\hat{\mathrm{C}}_{4}=\hat{\mathrm{G}}_{2} \quad(\angle$ sopposite $=$ sides $)$ $\checkmark \hat{\mathrm{C}}_{4}=\hat{\mathrm{G}}_{2} \checkmark \mathrm{R}$
$\therefore \hat{\mathrm{G}}_{2}=\hat{\mathrm{K}}_{2}$
\therefore KMGCis a cyclicquad $\quad($ ext $\angle=\operatorname{int} \operatorname{opp} \angle)$
13.3 In $\triangle \mathrm{MCG}$ and $\triangle \mathrm{MNC}$:
$\hat{\mathrm{M}}_{2}=\hat{\mathrm{M}}_{2}$
(common)
$\checkmark S$
$\hat{\mathrm{C}}_{3}=\hat{\mathrm{N}}_{2}$
(tan chord theorem)
\checkmark S/R
$\hat{\mathrm{G}}_{1}=\hat{\mathrm{C}}_{3}+\hat{\mathrm{C}}_{4} \quad($ sumof $\angle \sin \Delta)$
$\therefore \Delta \mathrm{MCG}\|\| \mathrm{MNC}(\angle \angle \angle)$

$$
13.4 \begin{array}{rlr}
\frac{\mathrm{MC}}{\mathrm{MG}} & =\frac{\mathrm{MN}}{\mathrm{MC}} & \left(\Delta^{s}\| \|\right) \\
\mathrm{MC}^{2} & =\mathrm{MG} \cdot \mathrm{MN} & \checkmark \mathrm{~S} / \mathrm{R} \\
\frac{\mathrm{MC}^{2}}{\mathrm{MN}^{2}} & =\frac{\mathrm{MG} \cdot \mathrm{MN}}{\mathrm{MN}^{2}} & \\
& =\frac{\mathrm{MG}}{\mathrm{MN}} & \checkmark \mathrm{~S} \\
\frac{\mathrm{KC}}{\mathrm{KN}} & =\frac{\mathrm{MG}}{\mathrm{MN}} & \text { (proved) } \\
\frac{\mathrm{MC}^{2}}{\mathrm{MN}^{2}} & =\frac{\mathrm{KC}}{\mathrm{KN}} & \checkmark \mathrm{~S} \\
\hline
\end{array}
$$

[19]

QUESTION 14

14.1 alt $\angle \mathrm{s}, \mathrm{YT} \| \mathrm{RQ}$
$\checkmark R$
14.2.1 $\quad \frac{\mathrm{BP}}{\mathrm{BE}}=\frac{\mathrm{BS}}{\mathrm{BF}}$
(Prop theorem,EF || PS)

$$
\begin{equation*}
\mathrm{BE}^{2}=\frac{\mathrm{BP} \cdot \mathrm{BF}}{\mathrm{BS}} \tag{2}
\end{equation*}
$$

14.1.2 In Δ BGP and $\Delta \mathrm{BEG}$:
$\begin{array}{ll}\text { 1) } \hat{\mathrm{G}}_{1}=\hat{\mathrm{P}}_{1} & \text { (tan chord theorem) } \\ \text { 2) } \hat{\mathrm{B}}=\hat{\mathrm{B}} & \text { (common) }\end{array}$
2) $\hat{\mathrm{B}}=\hat{\mathrm{B}} \quad$ (common)
$\therefore \Delta \mathrm{BGP} \| \mid \Delta \mathrm{BEG} \quad(\angle \angle \angle)$
$\checkmark S \checkmark R$
\checkmark S/R

OR

\checkmark S/R
In \triangle BGPand \triangle BEG:

1) $\hat{\mathrm{G}}_{1}=\hat{\mathrm{P}}_{1} \quad$ (tan chord theorem)
2) $\hat{B}=\hat{B}$ (common)
3) $\mathrm{B} \hat{\mathrm{GP}}=\mathrm{BEG} \quad($ sumof $\angle \sin \Delta)$
$\checkmark S \checkmark R$
\checkmark S/R
$\therefore \Delta \mathrm{BGP} \| \mid \Delta \mathrm{BEG}$
\checkmark S
(4)
14.1.3 $\quad \frac{\mathrm{BG}}{\mathrm{BE}}=\frac{\mathrm{BP}}{\mathrm{BG}}$
Δ BGP $||\mid \Delta$ BEG
$\therefore \mathrm{BG}^{2}=\mathrm{BP} . \mathrm{BE}$
$\checkmark S$
$\mathrm{BG}^{2}=\mathrm{BP} \cdot \frac{\mathrm{BP} \cdot \mathrm{BF}}{\mathrm{BS}}$
$\checkmark S$
$\mathrm{BG}^{2}=\frac{\mathrm{BP}^{2} \cdot \mathrm{BF}}{\mathrm{BS}}$
$\therefore \frac{\mathrm{BG}^{2}}{\mathrm{BP}^{2}}=\frac{\mathrm{BF}}{\mathrm{BS}}$
(4)
[10]

QUESTION 15

$$
\begin{array}{ll}
\text { 15.1.1 } & \frac{\mathrm{FC}}{20}=\frac{4}{5} \\
\therefore \mathrm{FC}=16
\end{array}
$$

$\checkmark S \checkmark R$
\checkmark answer
(3)
$\begin{array}{ll}\text { 15.1.2 } & \frac{36}{\mathrm{DB}}=\frac{4}{5} \\ \therefore \mathrm{DB} & =45\end{array}$

$$
\therefore \mathrm{DB}=45
$$

15.2

$$
\begin{array}{ll}
\frac{\text { Area of } \Delta \mathrm{ECF}}{\text { Area of } \triangle \mathrm{ABC}}=\frac{\frac{1}{2} \cdot 4 k \cdot 8 \cdot \sin C}{\frac{1}{2} \cdot 9 k \cdot 81 \cdot \sin C} & \checkmark \frac{1}{2} \cdot 4 k \cdot 8 \cdot \sin C \\
\frac{\text { Area of } \triangle \mathrm{ECF}}{\text { Area of } \triangle \mathrm{ABC}}=\frac{32}{81} & \checkmark \frac{1}{2} \cdot 9 k \cdot 40 \cdot 5 \cdot \sin C \\
& \checkmark \checkmark \text { answer }
\end{array}
$$

QUESTION 16

16.1.1 Angles in a semi-circle
16.1.2 Exterior \angle of a quad $=$ oppinterior \angle OR

Opp \angle s of a quad supplementary
$\checkmark R$
(1)
16.2.1 $\ln \triangle \mathrm{AEC}$

$$
\begin{array}{ll}
\hat{\mathrm{E}}=180^{\circ}-\left(90^{\circ}+\mathrm{x}\right) & (\text { sumof } \angle \sin \Delta) \\
\hat{\mathrm{E}}=90^{\circ}-x & \\
\hat{\mathrm{D}}_{1}=180^{\circ}-\left(90^{\circ}+\mathrm{x}\right) & (\angle \text { s on a straight line }) \\
\hat{\mathrm{D}}_{1}=90^{\circ}-x & \\
\therefore \mathrm{AD}=\mathrm{AE} & (\text { sides opp }=\angle \mathrm{s})
\end{array}
$$

$\checkmark S$
$\checkmark R$
(3)
16.2.2 In Δ ADBand $\triangle \mathrm{ACD}$
$\checkmark S$
$\hat{\mathrm{A}}_{2}=\hat{\mathrm{A}}_{2} \quad$ (common)

$\hat{\mathrm{D}}_{2}=\mathrm{C} \quad$ (proven)	$\checkmark \mathrm{S}$
S	

$\hat{\mathrm{B}}_{2}=\hat{\mathrm{D}}_{2}+\hat{\mathrm{D}}_{3} \quad(\operatorname{sumof} \angle \sin \Delta)$
$\therefore \Delta \mathrm{ADB}\|\| \mathrm{ACD}$

OR

In \triangle ADBand $\triangle \mathrm{ACD}$
$\hat{\mathrm{A}}_{2}=\hat{\mathrm{A}}_{2}$
(common)
$\hat{\mathrm{D}}_{2}=\mathrm{C}$
(proven)
\checkmark R
$\therefore \triangle \mathrm{ADB}\|\| \mathrm{ACD} \quad(\angle \angle \angle)$

$$
\text { 16.3.1 } \begin{align*}
\frac{\mathrm{AD}}{\mathrm{AC}} & =\frac{\mathrm{AB}}{\mathrm{AD}} \quad(\|| | \Delta \mathrm{s}) \\
\mathrm{AD}^{2} & =\mathrm{AC} \cdot \mathrm{AB} \\
& =3 r . r \\
& =3 r^{2}
\end{align*}
$$

$$
=3 r^{2}
$$

16.3.2 $\quad \mathrm{AD}=\mathrm{AE}=\sqrt{3} r \quad($ from11.2.2(a) $) \& 11.2 .3(a)$
$\mathrm{AB}=r$ and $\mathrm{BC}=2 r \therefore \mathrm{AC}=3 r$
\checkmark AC ito r
In $\triangle \mathrm{ACE}$:

$$
\begin{aligned}
& \tan \hat{\mathrm{E}}=\frac{\mathrm{AC}}{\mathrm{AE}} \\
& \\
& =\frac{3 r}{\sqrt{3} r}=\sqrt{3} \\
& \therefore \hat{\mathrm{E}}=60^{\circ} \\
& \therefore \hat{\mathrm{D}}_{1}=60^{\circ} \\
& \therefore \hat{\mathrm{A}}_{1}=60^{\circ} \quad(\text { from } 1.2 .2(a)) \\
& \therefore \quad\left(\angle \mathrm{s} \text { of } \Delta=180^{\circ}\right)
\end{aligned}
$$

$\therefore \Delta \mathrm{ADE}$ is a cyclic quad

OR

$\frac{\mathrm{AD}}{\mathrm{AC}}=\frac{\mathrm{DB}}{\mathrm{CD}}$
$\frac{\sqrt{3} r}{3 r}=\frac{\mathrm{DB}}{\mathrm{CD}}$
$\tan x=\frac{1}{\sqrt{3}}$
\therefore In $\triangle \mathrm{BDC}: x=30^{\circ}$

$$
\checkmark \tan x=\frac{1}{\sqrt{3}}
$$

$\therefore \hat{\mathrm{E}}=60^{\circ}$
$\therefore \hat{\mathrm{A}}_{1}=60^{\circ} \quad\left(\angle \mathrm{s}\right.$ of $\left.\Delta=180^{\circ}\right)$

$$
\checkmark \frac{\sqrt{3} r}{3 r}=\frac{\mathrm{DB}}{\mathrm{CD}}
$$

$$
\checkmark x=30^{\circ}
$$

$\therefore \hat{\mathrm{D}}_{1}=60^{\circ} \quad($ from 1.2.2(a))
$\therefore \triangle \mathrm{ADE}$ is a cyclic quad

OR
$\frac{\mathrm{AD}}{\mathrm{AC}}=\frac{\mathrm{DB}}{\mathrm{CD}} \quad(\| \| \Delta s)$
$\frac{\sqrt{3} r}{3 r}=\frac{\mathrm{DB}}{\mathrm{CD}} \therefore \mathrm{BD}=\frac{\mathrm{CD}}{\sqrt{3}}$
$\mathrm{DC}^{2}=\mathrm{BC}^{2}-\mathrm{DB}^{2}$
$\mathrm{DC}^{2}=4 r^{2}-\frac{\mathrm{CD}^{2}}{3}$
$3 \mathrm{DC}^{2}=12 r^{2}-\mathrm{CD}^{2}$
$4 \mathrm{DC}^{2}=12 r^{2}$
DC $=\sqrt{3} r$
$\mathrm{EC}^{2}=\mathrm{EA}^{2}+\mathrm{AC}^{2}$

$$
=3 r^{2}+9 r^{2}
$$

$$
\checkmark \mathrm{BD}=\frac{\mathrm{CD}}{\sqrt{3}}
$$

ex
$\mathrm{EC}=2 \sqrt{3} r$
$\therefore \mathrm{ED}=\mathrm{EC}-\mathrm{DC}$ $=\sqrt{3} r$

$$
\checkmark \mathrm{DC}=\sqrt{3} r
$$

$$
\checkmark \mathrm{EC}=2 \sqrt{3} r
$$

$\therefore \mathrm{ED}=\mathrm{EA}=\mathrm{AD}$
\therefore ADE is equilateral

$$
\checkmark \mathrm{ED}=\mathrm{EA}=\mathrm{AD}
$$

ACCEPTABLE REASONS: EUCLIDEAN GEOMETRY

In order to have some kind of uniformity, the use of the following shortened versions of the theorem statements is encouraged.

Acceptable reasons: Euclidean Geometry (English)

THEOREM STATEMENT	ACCEPTABLE REASON(S)		
LINES			
The adjacent angles on a straight line are supplementary.	$\angle \mathrm{s}$ on a str line		
If the adjacent angles are supplementary, the outer arms of these angles form a straight line.	adj $\angle \mathrm{s}$ supp		
The adjacent angles in a revolution add up to 360°.	$\angle \mathrm{s}$ round a pt $\mathrm{OR} \angle \mathrm{s}$ in a rev		
Vertically opposite angles are equal.	vert opp $\angle \mathrm{s}=$		
If $A B \\| C D$, then the alternate angles are equal.	alt $\angle \mathrm{s} ; \mathrm{AB} \\| \mathrm{CD}$		
If $A B\|\mid C D$, then the corresponding angles are equal.	corresp $\angle \mathrm{s} ; \mathrm{AB} \\| \mathrm{CD}$		
If $A B\|\mid C D$, then the co-interior angles are supplementary.	co-int $\angle \mathrm{s} ; \mathrm{AB} \\| \mathrm{CD}$		
If the alternate angles between two lines are equal, then the lines are parallel.	alt $\angle \mathrm{s}=$		
If the corresponding angles between two lines are equal, then the lines are parallel.	corresp $\angle \mathrm{s}=$		
If the co-interior angles between two lines are supplementary, then the lines are parallel.	coint \angle s supp		
TRIANGLES			
The interior angles of a triangle are supplementary.	\angle sum in \triangle OR sum of $\angle \mathrm{s}$ in Δ OR Int $\angle \mathrm{s} \Delta$		
The exterior angle of a triangle is equal to the sum of the interior opposite angles.	ext \angle of Δ		
The angles opposite the equal sides in an isosceles triangle are equal.	<s opp equal sides		
The sides opposite the equal angles in an isosceles triangle are equal.	sides opp equal \angle s		
In a right-angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.	Pythagoras OR Theorem of Pythagoras		
If the square of the longest side in a triangle is equal to the sum of the squares of the other two sides then the triangle is right-angled.	Converse Pythagoras OR Converse Theorem of Pythagoras		
If three sides of one triangle are respectively equal to three sides of another triangle, the triangles are congruent.	SSS		
If two sides and an included angle of one triangle are respectively equal to two sides and an included angle of another triangle, the triangles are congruent.	SAS OR S $\angle \mathrm{S}$		

If two angles and one side of one triangle are respectively equal to two angles and the corresponding side in another triangle, the triangles are congruent.

If in two right-angled triangles, the hypotenuse and one side of one triangle are respectively equal to the hypotenuse and one side of the other, the triangles are congruent

The line segment joining the midpoints of two sides of a triangle is parallel to the third side and equal to half the length of the third side

The line drawn from the midpoint of one side of a triangle, parallel to another side, bisects the third side.
A line drawn parallel to one side of a triangle divides the other two sides proportionally.

If a line divides two sides of a triangle in the same proportion, then the line is parallel to the third side.
If two triangles are equiangular, then the corresponding sides are in proportion (and consequently the triangles are similar).
If the corresponding sides of two triangles are proportional, then the triangles are equiangular (and consequently the triangles are similar).
If triangles (or parallelograms) are on the same base (or on bases of equal length) and between the same parallel lines, then the triangles (or parallelograms) have equal areas.

AAS OR $\angle \angle S$

RHS OR $90^{\circ} \mathbf{H S}$

Midpt Theorem

line through midpt || to $\mathbf{2}^{\text {nd }}$ side

line || one side of Δ

OR prop theorem; name || lines
line divides two sides of Δ in prop
||| $\Delta \mathrm{s}$ OR equiangular $\Delta \mathrm{s}$

Sides of Δ in prop
same base; same height OR equal bases; equal height

CIRCLES

The tangent to a circle is perpendicular to the radius/diameter of the circle at the point of contact.

If a line is drawn perpendicular to a radius/diameter at the point where the radius/diameter meets the circle, then the line is a tangent to the circle.

The line drawn from the centre of a circle to the midpoint of a chord is perpendicular to the chord.

The line drawn from the centre of a circle perpendicular to a chord bisects the chord.

The perpendicular bisector of a chord passes through the centre of the circle;
The angle subtended by an arc at the centre of a circle is double the size of the angle subtended by the same arc at the circle (on the same side of the chord as the centre)

The angle subtended by the diameter at the circumference of the circle is 90°.

If the angle subtended by a chord at the circumference of the circle is 90°. then the chord is a diameter.

$\tan \perp$

radius tan
line \perp radius $O R$ converse tan \perp radius

OR converse tan \perp

diameter
line from centre to midpt of chord
line from centre \perp to chord

perp bisector of chord

\angle at centre $=2 \times \angle$ at circumference

\angle s in semi- circle OR diameter subtends right angle

chord subtends $90^{\circ} \mathrm{OR}$
converse $\angle \mathrm{s}$ in semi -circle

Angles subtended by a chord of the circle, on the same side of the chord, are equal

If a line segment joining two points subtends equal angles at two points on the same side of the line segment, then the four points are concyclic.
Equal chords subtend equal angles at the circumference of the Equal chords subtend equal angles at the centre of the circle.

Equal chords in equal circles subtend equal angles at the circumference of the circles.

Equal chords in equal circles subtend equal angles at the centre of the circles.

The opposite angles of a cyclic quadrilateral are supplementary
If the opposite angles of a quadrilateral are supplementary then the quadrilateral is cyclic.

The exterior angle of a cyclic quadrilateral is equal to the interior opposite angle.
If the exterior angle of a quadrilateral is equal to the interior opposite angle of the quadrilateral, then the quadrilateral is cyclic.

Two tangents drawn to a circle from the same point outside the circle are equal in length
The angle between the tangent to a circle and the chord drawn from the point of contact is equal to the angle in the alternate segment.

If a line is drawn through the end-point of a chord, making with the chord an angle equal to an angle in the alternate segment, then the line is a tangent to the circle.
$\angle \mathrm{s}$ in the same seg.
line subtends equal $\angle \mathrm{s}$ OR converse $\angle \mathrm{s}$ in the same seg.
equal chords; equal \angle s
equal chords; equal \angle s
equal circles; equal chords; equal $\angle s$
equal circles; equal chords; equal
$\angle s$
opp $\angle \mathrm{s}$ of cyclic quad
opp \angle s quad supp OR converse opp \angle s of cyclic quad ext \angle of cyclic quad
ext $\angle=$ int $\operatorname{opp} \angle \mathrm{OR}$ converse ext \angle of cyclic quad Tans from common pt OR Tans from same pt tan chord theorem converse tan chord theorem OR \angle between line and chord

QUADRILATERALS

The interior angles of a quadrilateral add up to 360.
The opposite sides of a parallelogram are parallel.
If the opposite sides of a quadrilateral are parallel, then the quadrilateral is a parallelogram.
The opposite sides of a parallelogram are equal in length. If the opposite sides of a quadrilateral are equal, then the quadrilateral is a parallelogram.
The opposite angles of a parallelogram are equal.
If the opposite angles of a quadrilateral are equal then the quadrilateral is a parallelogram.
The diagonals of a parallelogram bisect each other.
If the diagonals of a quadrilateral bisect each other, then the quadrilateral is a parallelogram.

If one pair of opposite sides of a quadrilateral are equal and parallel, then the quadrilateral is a parallelogram.
The diagonals of a parallelogram bisect its area.
The diagonals of a rhombus bisect at right angles.
sum of $\angle \mathrm{s}$ in quad
opp sides of $\| \mathrm{m}$
opp sides of quad are ||
opp sides of $\| \mathrm{m}$
opp sides of quad are $=$
OR converse opp sides of a parm
opp $\angle \mathrm{s}$ of $\| \mathrm{m}$
opp $\angle \mathrm{s}$ of quad are $=\mathbf{O R}$
converse opp angles of a parm
diag of $\| \mathrm{m}$
diags of quad bisect each other
OR converse diags of a parm
pair of opp sides $=$ and $\|$
diag bisect area of $\| \mathrm{m}$
diags of rhombus

The diagonals of a rhombus bisect the interior angles.	diags of rhombus
All four sides of a rhombus are equal in length.	sides of rhombus
All four sides of a square are equal in length.	sides of square
The diagonals of a rectangle are equal in length.	diags of rect
The diagonals of a kite intersect at right-angles.	diags of kite
A diagonal of a kite bisects the other diagonal.	diag of kite
A diagonal of a kite bisects the opposite angles	diag of kite

TERMINOLOGY

Term	Explanation Geometry based on the postulates of Euclid. Euclidean geometry deals with space and shape using a system of logical deductions
Euclidean Geometry	A statement that has been proved based on previously established statements
theorem	A statement formed by interchanging what is given in a theorem and what is to be proved
A problem of more than usual difficulty added to another on an examination	
paper	
Straight line from the centre to the circumference of a circle or sphere. It is	
half of the circle's diameter	

Complementary angles	Angles that add up to 90°.
Supplementary angles	Angles that add up to 180°.
Vertically opposite angles	Non-adjacent opposite angles formed by intersecting lines.
Intersecting lines	Lines that cross each other.
Perpendicular lines	Lines that intersect each other at a right angle.
parallel lines	Lines the same distance apart at all points. Two or more lines are parallel if they have the same slope (gradient).
transversal	A line that cuts across a set of lines (usually parallel).
Corresponding angles	Angles that sit in the same position on each of the parallel lines in the position where the transversal crosses each line.
alternate angles	Angles that lie on different parallel lines and on opposite sides of the transversal.
co-interior angles	Angles that lie on different parallel lines and on the same side of the transversal.
congruent	The same. Identical.
similar	Looks the same. Equal angles and sides in proportion.
proportion	A part, share, or number considered in comparative relation to a whole. The equality of two ratios. An equation that can be solved.
ratio	The comparison of sizes of two quantities of the same unit. An expression.
area	The space taken up by a two-dimensional polygon.
tangent	Line that intersects with a circle at only one point (the point of tangency)
Point of tangency	The point of intersection between a circle and its tangent line
exterior angle	The angle between any side of a shape, and a line extended from the next side
subtend	The angle made by a line or arc
polygon	A closed 2D shape in which all the sides are made up of line segments. A polygon is given a name depending on the number of sides it has. A circle is not a polygon as although it is a closed 2D shape it is not made up of line segments
Radii (plural of radius)	This is common when triangles are drawn inside circles look out for lines drawn from the centre. Remember that all radii are equal in length in a circle

Acknowledgement

The Department of Basic Education (DBE) gratefully acknowledges the following officials for giving up their valuable time and families and for contributing their knowledge and expertise to develop this resource booklet for the children of our country, under very stringent conditions of COVID-19:

Writers: Mrs Nontobeko Gabelana, Mr Tshokolo Mphahama, Ms Thandi Mgwenya, Mrs Nomathamsanqa Princess Joy Khala, Mr Eric Makgubje Maserumule, Mr Avhafarei Edward Thavhanyedza and Mrs Thavha Hilda Mudau.

DBE Subject Specialist: Mr Leonard Gumani Mudau

The development of the Study Guide was managed and coordinated by Ms Cheryl Weston and Dr Sandy Malapile.

ISBN : 978-1-4315-3507-1

basic education
Department:

