

You have Downloaded, yet Another Great Resource to assist you with your Studies ©

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

MECHANICAL TECHNOLOGY: FITTING AND MACHINING

..................

NOVEMBER 2021

MARKING GUIDELINES

......................

MARKS: 200

These marking guidelines consist of 24 pages.

QUESTION 1: MULTIPLE-CHOICE QUESTIONS (GENERIC)

1.1	B✓	(1)
1.2	A✓	(1)
1.3	D✓	(1)
1.4	A/C ✓	(1)
1.5	A✓	(1)
1.6	C✓	(1) [6]

QUESTION 2: SAFETY (GENERIC)

2.1 First-aid applications to an open wound:

- Use surgical gloves. ✓
- Do not remove anything that is stuck to the wound. ✓
- Never use sticky plaster on the wound. ✓
- Cover the wound with a clean, lint-free cloth. ✓
- Avoid using any oily substances or lotions on wounds. ✓
- If necessary, cool wounds with cold water. ✓
- Apply pressure to prevent blood loss if necessary. ✓
- Avoid contact with blood from patient. ✓
- If the wound is on your arm, raise the arm above your head to stop the bleeding. ✓

(Any 2 x 1) (2)

2.2 Surface grinder: (Already switched on)

- Never leave the grinder unattended. ✓
- Switch off the machine when leaving. ✓
- Don't try to stop revolving emery wheel with your hand. ✓
- Don't adjust the machine while working. ✓
- Don't open any guard while the machine is on. ✓
- Do not force the grinding wheel on to the work piece. ✓
- Approach the work piece slowly and evenly. ✓
- Don't clean the machine while working. ✓
- Do not put hands near the work piece when grinder is in motion. ✓
- Don't clean or adjust the machine while working.✓
- Check for oil on the floor while working (spilling of cutting fluid on floor while working) ✓
- Check that he grinding wheel is running evenly. ✓

(Any 2 x 1) (2)

2.3 **Gauges calibrated:**

- To ensure accurate readings. ✓
- To prevent overloading. ✓

(Any 1 x 1) (1)

2.4 Finger protectors' hazards on power driven guillotines:

- The finger protector prevents the hazards of getting the fingers cut by the blades. ✓
- To be crushed by the hold-downs. ✓

2.5 Welding or flame cutting operation safety:

- An operator has been instructed on how to use the equipment safely. ✓
- A workplace is effectively partitioned off. ✓
- An operator uses protective equipment. ✓
- Ensure that all equipment is in safe working condition. ✓
- Ensure that here are no flammable materials around the welding area. ✓
- Weld area must be well ventilated. ✓
- Fire extinguisher must be in close proximity. ✓

(Any 2 x 1) (2)

2.6 Workshop layout:

Product layout. ✓ (1) [10]

QUESTION 3: MATERIALS (GENERIC)

3.1 File test:

3.1.1 Difficult ✓ (1)

3.1.2 Easy ✓ (1)

3.1.3 Difficult ✓ (1)

3.2 **Heat treatment:**

A. – Grain growth. ✓

B. – Recrystallisation. ✓

C. – Recovery. ✓

3.3 **Bending test:**

- Bend the test piece through a specific angle or around a mandrel or bar, ✓ having a defined radius, ✓ until a rupture in the metal occurs.✓
- Place the material in a vice and bend it ✓ then observe ✓ the ductility of the material. ✓

(Any 1 x 3) (3)

3.4 Purpose of case hardening:

Creates a hard surface ✓ with a tough core. ✓ (2)

3.5 **Quenching media:**

- Water ✓
- Brine (saltwater) ✓
- Oil ✓
- Soluble oil and water ✓
- Nitrogen air-infused air ✓

(Any 3 x 1) (3) [14]

QUESTION 4: MULTIPLE-CHOICE QUESTIONS (SPECIFIC)

4.1	C✓	(1)
4.2	B✓	(1)
4.3	A✓	(1)
4.4	A✓	(1)
4.5	D✓	(1)
4.6	D✓	(1)
4.7	C✓	(1)
4.8	C✓	(1)
4.9	B/D ✓	(1)
4.10	D✓	(1)
4.11	A✓	(1)
4.12	A✓	(1)
4.13	B✓	(1)
4.14	D✓	(1) [14]

QUESTION 5: TERMINOLOGY (LATHE AND MILLING MACHINE) (SPECIFIC)

5.1 Advantages of compound slide method:

- Tapers with large angles can be cut. ✓
- External and internal tapers can be cut. ✓
- The set-up is simple. ✓

(Any 2 x 1) (2)

5.2 **Taper cutting:**

5.2.1 Length of taper:

$$\tan \frac{\theta}{2} = \frac{D - d}{2 \times \ell}$$

$$2 \times \ell = \frac{D - d}{\tan \frac{\theta}{2}}$$

$$2\ell = \frac{92 - 50}{\tan 4^{\circ}}$$

$$2\ell = \frac{42}{0,069926811}$$

$$\ell = \frac{600,6279909}{2}$$

$$= 300,31 \text{ mm}$$
(5)

5.2.2 Tailstock set-over:

Set - over =
$$\frac{L(D-d)}{2l}$$

= $\frac{425,31(92-50)}{2\times300,31}$ \checkmark
= 29,74 mm \checkmark (3)

5.3 **Key ways:**

5.3.1 **Width:**

Width =
$$\frac{D}{4}$$

Width =
$$\frac{75}{4}$$
 \checkmark

5.3.2 Thickness:

Thickness =
$$\frac{D}{6}$$

Thickness =
$$\frac{75}{6}$$
 \checkmark

(2)

(2)

5.3.3 **Length:**

Length = 1,5 × diameter of shaft
= 1,5 × 75
$$\checkmark$$

= 112,50 mm \checkmark

(2)

5.4 **Disadvantages of down-cut milling:**

- Vibration in the arbor is unavoidable. ✓
- A fine feed must be used. ✓
- When milling material with hard scale, the cutter teeth come directly in contact with the scale, which can damage the cutter. ✓
- The process is time consuming. ✓

[18]

QUESTION 6: TERMINOLOGY (INDEXING) (SPECIFIC)

6.1 **Gear terminology:**

6.1.1 Pitch-circle diameter:

PCD=m×T
$$CP=m\times\pi$$

=1,5×200 \checkmark =1,5× π
=300 mm \checkmark $CP=m\times\pi$
=1,5× π
=4,71mm \checkmark

$$CP=m\times\pi$$

=299,85mm \checkmark (2)

6.1.2 **Dedendum:**

Dedendum=
$$1,157 \times m$$
 Dedendum= $1,25 \times m$
= $1,157 \times 1,5 \checkmark$ OR = $1,25 \times 1,5 \checkmark$
= $1,74 \text{ mm} \checkmark$ = $1,88 \text{ mm} \checkmark$ (2)

6.1.3 **Outside diameter:**

OD = PCD + 2×m OD = m(T + 2)
=
$$300 + 2(1,5)$$
 OR = $1,5(200 + 2)$ \checkmark
= $303 \text{ mm } \checkmark$ = $303 \text{ mm } \checkmark$ (2)

6.1.4 Working depth:

WD =
$$2 \times m$$
 WD = $2 \times a$
= $2 \times 1,5 \checkmark$ OR = $2 \times 1,5 \checkmark$
= $3 \text{ mm } \checkmark$ = $3 \text{ mm } \checkmark$ (2)

6.2 **Dovetails:**

$$W = 210 + 2(DE)$$

 $m = W - 2(AC) - 2(R)$

6.2.1 Maximum width distance of dove tail: (W)

Calculate DE or y:

$$\tan\theta = \frac{DE}{AD}$$

$$DE = \tan\theta \times AD \checkmark$$

$$= \tan 30^{\circ} \times 45 \checkmark$$

$$= 25,98 \text{ mm} \checkmark$$

$$W = 210 + 2(DE) \checkmark$$

vv = 210 + 2(DE) = 210 + 2(25,98) = 210 + 51,96 = 261,96 mm ✓

(6)

6.2.2 Distance between the rollers: (m)

Calculate AC or x:

$$Tan\theta = \frac{BC}{AC}$$

$$AC = \frac{BC}{Tan\theta} \quad \checkmark$$

$$AC = \frac{17}{Tan30^{\circ}} \checkmark$$

m=W-2(AC) -2(R)
$$\checkmark$$

= 261,96-2(29,44) -2(17) \checkmark
= 261,96-58,88-34
= 169,08 mm \checkmark

(6)

6.3 Milling of spur gear:

6.3.1 **Indexing:**

$$Indexing = \frac{40}{N} = \frac{40}{137}$$

$$=\frac{40}{A}=\frac{40}{140}$$

$$=\frac{4}{14}\times\frac{2}{2}$$

$$=\frac{8}{28}$$
 <

Indexing: 8 holes on a 28 - hole circle ✓

OR

12 holes on a 42 - hole circle ✓

OR

14 holes on a 49-hole circle. ✓

(3)

6.3.2 Change gears: (Markers to note alternative answers and calculations to award full marks if the answer is correct)

$$\frac{Dr}{Dn} = (A - n) \times \frac{40}{A}$$

$$\frac{Dr}{Dn} = (140 - 137) \times \frac{40}{140} \checkmark$$

$$=3\times\frac{40}{140}$$

$$=\frac{120}{140}$$

$$=\frac{12}{14}$$

$$=\frac{12}{14}\times\frac{2}{2}$$

$$\frac{Dr}{Dn} = \frac{24}{28} \checkmark OR \frac{48}{56} \checkmark$$

(5)

[28]

QUESTION 7: TOOLS AND EQUIPMENT (SPECIFIC)

7.1 Functions of a moment and force tester:

- To determine the reaction on either side of a simple loaded beam. ✓
- To illustrate the concept of the triangle of force. ✓

7.2 TWO hardness testers:

- Brinell ✓
- Rockwell ✓
- Vickers ✓

(Any 2 x 1) (2)

7.3 **Precision measuring instrument:**

- Depth micrometer ✓
- Vernier caliper ✓

(Any 1 x 1) (1)

7.4 Identify tester:

Tensile tester ✓ (1)

7.5 There are THREE ways that hardness is measured:

- Resistance to penetration. ✓
- Elastic hardness. ✓
- Resistance to abrasion / scratching / file test.
- Sound test (dropping it on the floor and listen to the sound).

(Any 3 x 1) (3)

7.6 Screw thread height:

$$H = 0.866 \times P$$

= 0.866 × 2 ✓
= 1.73 mm ✓

,73 mm ✓ (2)

7.7 **Measuring instrument:**

Vernier caliper ✓ (1)

7.8 Interchangeable extension:

To measure depths greater than 25 mm. ✓ (1) [13]

(15)

QUESTION 8: FORCES (SPECIFIC)

8.1 **Calculate resultant:**

VERTICAL COMPONENT:

$$\sum$$
 VC = -45sin90 ° - 70sin30 ° + 185sin45 ° \checkmark \checkmark \checkmark \checkmark \sum VC = -45 - 35 + 130,82

$$\sum VC = 50,82N$$

HORIZONTAL COMPONENT:

$$\Sigma$$
 HC = 120cos0 $^{\circ}$ - 70cos30 $^{\circ}$ - 185cos45 $^{\circ}$

$$\sqrt{}$$
 $\sqrt{}$ $\sqrt{}$

$$\Sigma$$
HC = -71,44N \checkmark

OR

VC/y = Fsine		HC/x = Fcose	
-45sin90° OR 45sin270°	-45 N ✓	120cos0°	120 N ✓
-70sin30° OR 70sin210°	-35 N ✓	-70cos30° OR 70cos210°	-60,62 N ✓
185sin45° OR 185sin135°	130,82 N √	-185cos45° OR 185cos135°	-130,82 N ✓
Y =	50,82 N ✓	X =	-71,44 N ✓

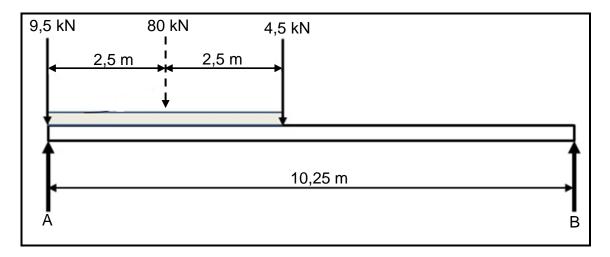
$$R^{2} = VC^{2} + HC^{2} \checkmark \qquad \tan\theta = \frac{VC}{HC} \checkmark$$

$$\sqrt{R^{\frac{1}{2}}} = \sqrt{(50.82)^{2} + (-71.44)^{2}} \checkmark \qquad \theta = \tan^{-1}(\frac{50.82}{71.44}) \checkmark$$

$$\sqrt{R^{2}} = \sqrt{7686.37} \qquad \theta = \tan^{-1}(0.711)$$

$$\theta = 35.43^{\circ} \checkmark$$

$$R = 87.67 \text{ N } \checkmark$$


$$R = 87.67 \text{ N } 35.43^{\circ} \text{ N of W } \checkmark$$

$$OR$$

$$R = 87.67 \text{ N } 54.57^{\circ} \text{ W of N } \checkmark$$

$$-71.44N$$

8.2 **Moments:**

8.2.1 **Point load for UDL:**

(2)

8.2.2 Take moments about B:

A
$$\times 10,25$$
)= $(4,5 \times 5,25)+(80 \times 7,75)+(9,5 \times 10,25)$

$$10,25A = 23,625 + 620 + 97,375$$

$$A = \frac{741}{10,25} \quad \checkmark$$

$$A = 72,29 \text{ kN } \checkmark$$
 (3)

8.2.3 Take moments about A:

B
$$\times 10,25$$
 = $(9,5 \times 0)$ + $(80 \times 2,5)$ + $(4,5 \times 5)$

$$10,25B = 0 + 200 + 22,5$$

$$B = \frac{222,5}{10,25} \quad \checkmark$$

$$B = 21,71 \text{kN} \qquad (3)$$

8.3.1 The stress in the material in MPa:

$$\sigma = \frac{F}{A}$$

$$\sigma = \frac{90 \times 10^3}{6.17 \times 10^{-3}} \checkmark$$

 $\sigma = 14586709,89 \text{ Pa}$

$$\sigma = 14,59 \text{ MPa } \checkmark$$

(2)

8.3.2 The diameter of the mild steel shaft:

$$\sigma = \frac{F}{A}$$

$$A = \frac{\pi d^2}{4}$$

$$A = \frac{F}{\sigma}$$

$$A\times 4=\pi d^2$$

OR

$$\frac{\pi d^2}{4} = \frac{90 \times 10^3}{14.59 \times 10^6} \checkmark$$

$$d^2 = \frac{A \times 4}{\pi} \checkmark$$

$$\pi d^2 = \frac{90 \times 10^3 \times 4}{14.59 \times 10^6}$$

$$d\,=\,\sqrt{\frac{A\,\times\,4}{\pi}}$$

$$\pi d^2 = 0.0247$$

$$d = \sqrt{\frac{\left(6,17\times10^{-3}\right)\times4}{\pi}} \quad \checkmark$$

$$\sqrt{d^2} = \sqrt{\frac{0,0247}{\pi}}$$

$$d = \sqrt{0,007855887}$$
 \checkmark

$$d = \sqrt{7.85 \times 10^{-3}}$$

$$d = 0.088633441 \text{ m} \checkmark$$

$$d = 88,63 \text{ mm}$$
 \checkmark

(5)

8.3.3 **Original length:**

$$\epsilon = \frac{\Delta L}{OL}$$

$$OL = \frac{\Delta L}{\epsilon} \checkmark$$

$$OL = \frac{0.012}{1.64 \times 10^{-3}} \checkmark$$

(3)

[33]

QUESTION 9: MAINTENANCE (SPECIFIC)

9.1 **Preventative maintenance:**

- Planned or scheduled maintenance. ✓
- Condition-based maintenance. ✓

9.2 Preventative maintenance of gear drive systems:

- Checking and replenishment of lubrication levels. ✓
- Ensuring that gears are properly secured to shafts. ✓
- Cleaning and replacement oil filters. ✓
- Reporting excessive noise, wear, vibration and overheating for expert attention. ✓

(Any 3 x 1) (3)

9.3 **Purpose of jockey pulley:**

- The jockey pulley helps setting the tension on the system. ✓
- To increase the angle of contact in an open belt drive. ✓

(Any 1 x 1) (1)

9.4 **Properties of materials:**

9.4.1 **Teflon:**

- Water resistant. ✓
- Resistant to grease. ✓
- Resistant to heat. ✓
- Resistant to corrosion. ✓
- Can withstand high temperatures. ✓
- Need no lubricants. ✓
- Electrical insulator ✓
- Thermoplastic /Easy to be reshaped / recycled.✓

(Any 2 x 1) (2)

9.4.2 **Nylon:**

- Tough. ✓
- Hard-wearing. ✓
- Cheap. ✓
- Needs no or little maintenance. ✓
- Can withstand high temperatures. ✓
- Need no or little lubricants. ✓
- Is light. ✓
- Can absorb shock. ✓
- Resistant to chemicals. ✓
- Non-toxic. ✓
- Thermoplastic /Easy to be reshaped.✓
- Has high load-bearing strength ✓

(Any 2×1) (2)

9.4.3 **Vesconite**:

- Wear resistant. ✓
- Low friction. ✓
- Operate with little or no lubrication. ✓
- Easy to machine. ✓
- Load carry higher than white metal. ✓
- Cost effective material. ✓
- Gives long life span. ✓
- Performs well, in unhygienic, dirty and un-lubricated environments. ✓
- Low maintenance. ✓
- Low or no water absorption ✓
- High chemical resistance ✓
- Versatile ✓
- Can handle high temperatures ✓
- Thermoplastic /Easy to be reshaped ✓

(Any 2 x 1) (2)

9.5 **Use of material:**

9.5.1 Polyvinyl chloride (PVC): (Due to the large number of alternatives, marker discretion must be used - discuss with IM).

- Electrical cable isolation.
- Electrical pipes. ✓
- Water pipes. ✓
- Artificial leather. ✓
- Cling wrap. ✓
- Credit / bank / phone cards.
- Window frames. ✓
- Fences. ✓
- Furniture. ✓

(Any 1 x 1) (1)

9.5.2 Glass fibre: (Due to the large number of alternatives, marker discretion must be used - discuss with IM).

- Boats.✓
- Motor vehicles bodies. ✓
- Transparent roof sheeting. ✓
- Petrol tanks. ✓
- Swimming pools. ✓
- Furniture. ✓
- Fruit and salad bowls. ✓
- Ornaments. ✓
- Fishing equipment. ✓

(Any 1 x 1) (1)

9.6 Difference between thermoplastic and thermo-hardened composites:

Thermoplastic can be re-heated \checkmark and reshaped again \checkmark where a thermohardened plastic cannot be re-heated, \checkmark to be softened, shaped \checkmark and moulded again.

(4)

[18]

QUESTION 10: JOINING METHODS (SPECIFIC)

10.1 Screw thread:

- Square thread ✓
- Acme thread ✓
- V-screw thread ✓
- Trapezium thread / Buttress thread ✓

(Any 3 x 1) (3)

10.2 **Square Thread:**

10.2.1 Pitch diameter:

Pitch=
$$\frac{\text{Lead}}{\text{Number of starts}}$$
$$=\frac{36}{2} \quad \checkmark$$
$$=18 \text{ mm} \quad \checkmark$$

$$PD = OD - \frac{P}{2}$$

$$= 80 - \frac{18}{2} \checkmark$$

$$= 71 \text{ mm} \checkmark$$
(4)

10.2.2 Helix angle of the thread:

$$Tan\theta = \frac{Lead}{\pi \times PD}$$

$$Tan\theta = \frac{36}{\pi \times 71} \checkmark$$

$$\theta = tan^{-1}(0,161396562) \checkmark$$

$$= 9,17^{\circ} \checkmark$$
(4)

10.2.3 **Leading angle:**

Leading angle =
$$90^{\circ}$$
 - (helix angle + clearance angle)
= 90° - $(9,17^{\circ} + 3^{\circ})$ \checkmark
= $77,83^{\circ}$ \checkmark (2)

10.2.4 **Following angle:**

Following angle =
$$90^{\circ}$$
 + (helix angle - clearance)
= 90° + $(9,17^{\circ}$ - $3^{\circ})$ \checkmark
= $96,17^{\circ}$ \checkmark (2)

10.3 **Multiple screw threads:**

- \bullet They provide more bearing surface than single start screw thread / does not strip easily. \checkmark
- To provide faster linear movement. ✓
- They are more efficient as they lose less power to friction compared to single start screw threads. ✓

(3) **[18]**

(4)

QUESTION 11: SYSTEMS AND CONTROL (DRIVE SYSTEMS) (SPECIFIC)

11.1 Hydraulics:

11.1.1 The fluid pressure:

$$P = \frac{F}{A}$$

$$A \text{ (Plunger)} = \frac{\pi d^2}{4}$$

$$P = \frac{25 \times 10^3}{9,62 \times 10^{-4}} \checkmark$$

$$A = \frac{\pi (0,035)^2}{4}$$

$$P = 25984480,5 \text{ Pa}$$

$$A = 9,62 \times 10^{-4} \text{ m}^2$$

$$P = 25,98 \text{ MPa} \checkmark$$

11.1.2 **Force at ram:**

$$\frac{F}{A} = \frac{f}{a}$$

$$A (Ram) = \frac{\pi D^2}{4}$$

$$A = \frac{\pi (0,120)^2}{4} \checkmark$$

$$A = 11,31 \times 10^{-3} \text{ m}^2 \checkmark$$

$$F = \frac{(25 \times 10^3) \times (11,31 \times 10^{-3})}{9,62 \times 10^{-4}} \checkmark$$

$$F = 293918,92 \text{ N} \checkmark$$

$$OR$$

$$F = 293,92 \text{ kN} \checkmark$$

$$\frac{F}{D^2} = \frac{f}{d^2}$$

$$\frac{F}{120^2} = \frac{25}{35^2}$$

$$F = \frac{25 \times 120^2}{35^2} \checkmark$$

11.2 Functions hydraulic reservoir:

- A fluid storage tank. ✓
- Promotes air separation from the fluid. ✓
- Support for the pump and electric motor. ✓
- Promotes heat dispersion. ✓
- Acts as a base plate for mounting control equipment.
- Permits contaminants to settle at the bottom in order to be drained. ✓

(Any 1 x 1) (1)

11.3 Efficiency of pneumatic systems:

- Pneumatic tools are environmentally friendly. ✓
- Last long. ✓
- It is robust (powerful / less force required) ✓
- Easy to use. ✓
- It is compact. ✓
- Easy to maintain as there are so few working parts. ✓

(Any 2 x 1) (2)

11.4 Applications for pneumatic systems: (Due to the large number of alternatives, marker discretion must be used - discuss with IM).

- Drills. ✓
- Brake systems. ✓
- Jackhammers ✓
- Nail guns ✓
- Missiles ✓
- Doors ✓
- Spray guns ✓
- Air blow guns ✓
- Air socket wrench ✓
- Grinders ✓

(Any 2 x 1) (2)

11.5 **Belt drives:**

11.5.1 Rotation frequency:

$$N_1 \times D_1 = N_2 \times D_2$$

$$N_2 = \frac{N_1 \times D_1}{D_2}$$

$$N_2 = \frac{7,2 \times 0,6}{0,8}$$

$$N_2 = 5,4 \text{ r/sec} \checkmark$$
(3)

11.5.2 **Power transmitted:**

Ratio =
$$\frac{T_1}{T_2}$$
 $P = \frac{(T_{-1} - T_2)\pi DN}{60}$ $T_2 = \frac{T_1}{Ratio}$ $P = (300 - 120)\pi \times 0.8 \times 5.4$ \checkmark $T_2 = \frac{300}{2.5}$ $P = 2442.90 \text{ Watt}$ $T_2 = 120 \text{ N}$ \checkmark $P = 2.44 \text{ kW}$ \checkmark \checkmark (4)

11.6 **Gear drives:**

11.6.1 Rotation frequency:

$$\frac{N_{input}}{N_{output}} = \frac{Product of teeth on driven gears}{Product of teeth on driver gears}$$

$$\begin{split} N_{D)OUTPUT} &= \frac{T_A \times T_C \times N_A}{T_B \times T_D} \checkmark \\ N_{D)OUTPUT} &= \frac{30 \times 20 \times 2300}{40 \times 60} \checkmark \end{split}$$

$$N_{D)OUTPUT} = 575 \text{ r/min} \checkmark$$
 (4)

11.6.2 **Gear ratio:**

 $Gear\ ratio = \frac{Product\ of\ teeth\ on\ driven\ gears}{Product\ of\ teeth\ on\ driver\ gears}$

Gear ratio =
$$\frac{40 \times 60}{30 \times 20}$$
 \checkmark

Gear ratio = 4:1 ✓

OR

Speed ratio =
$$\frac{N_A}{N_D}$$

$$= \frac{2300}{575} \checkmark$$

$$= 4:1 \checkmark$$

(3) **[28]**

TOTAL: 200