

You have Downloaded, yet Another Great Resource to assist you with your Studies ©

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

GRADE 12

MARCH TEST 1

This question paper consists of 7 pages, 3 diagram sheets and 1 information sheet.

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

- 1. This question paper consists of 7 questions.
- 2. Clearly show ALL calculations, diagrams, graphs, etc. that you have used to determine your answers.
- 3. Answers only will NOT necessarily be awarded full marks.
- 4. If necessary, round off answers to TWO decimal places, unless stated otherwise.
- 5. Diagrams are NOT necessarily drawn to scale.
- 6. You may use an approved scientific calculator (non-programmable and non-graphical), unless stated otherwise.
- 7. The answer sheets for question 5, 6 and 7 are included in the question paper.
- 8. An information sheet with formulae is included at the end of the question paper.
- 9. Write neatly and legibly.

1.1 Solve for x:

1.1.1
$$x(x+6) = 0$$
 (2)

1.1.2
$$3x^2 + 8x = -2$$
 (correct tot TWO decimal places) (4)

1.1.3
$$x^2 - 64 \le 0$$
 (3)

1.1.4
$$\sqrt{x+5+1} = x$$
 (5)

1.2 Solve simultaneously for x and y in the following equations:

$$6x + 5xy - 5y = 8 \tag{6}$$

x + y = 2

[20]

QUESTION 2

- 2.1 Consider the quadratic number pattern: -20; -9; 0;
 - 2.1.1 Determine the nth term.
 - 2.1.2 Determine the position and the value of the term with the highest value.

QUESTION 3

- 3.1 Given the following arithmer sequence: 13;8;3;...
 - 3.1.1 Determine the value of the 50th term.
 - 3.1.2 Calculate the sum of the first fifty terms.

3.2 Prove that:
$$a + a + d + a + 2d + ...$$
 (to n terms) = $\frac{n}{2} [2a + (n-1)d]$

- 3.3 Consider the geometric series: $3 + m + \frac{m^2}{3} + \frac{m^2}{9} + \dots$
 - 3.3.1 For which value(s) of m will the series converge? (3)

3.3.2 It is given that:
$$3+m+\frac{m^2}{3}+\frac{m^3}{9}+...=\frac{27}{7}$$

3.4 Determine the value of n if:

$$\sum_{r=1}^{n} 5.2^{1-r} = \frac{630}{64} \tag{6}$$

[21]

Copyright reserved

DO NOT USE A CALCULATOR FOR THIS QUESTION.

4.1 Given:
$$\tan \theta = \frac{3}{4}$$
; where $\theta \in [0^{\circ}; 90^{\circ}]$

With the use of a sketch and without the use of a calculator, calculate:

$$4.1.1 \quad \sin\theta \tag{3}$$

4.1.2
$$\cos^2(90^\circ - \theta) - 1$$
 (2)

4.1.3
$$1-\sin 2\theta$$
 (3)

4.2 Simplify completely:

$$\frac{\sin^2(90^\circ + \alpha) + \sin(180^\circ + \alpha)\sin(-\alpha)}{\sin 180^\circ - \tan 135^\circ}$$
 (5)

4.3 Prove the following identity:

$$\sin 2\theta + \cos(2\theta - 90^\circ) = 4\sin\theta\cos\theta \tag{3}$$

4.4 Solve for x if:

$$20^{\sin x} + 20^{\sin x + 1} = 420 \text{ for } -360^{\circ} \le x \le 360^{\circ}$$
 (5)

[21]

5.1 In the diagram below ABCD is a cyclic quadrilateral. RBP is a tangent to the circle with centre O. $B_4 = 30^{\circ}$ and $B_6 = 70^{\circ}$.

Determine with reasons the size of each of the following angles:

$$5.1.1 \quad O_1$$
 (2)

$$5.1.2 \quad \widehat{A}$$
 (2)

[8]

In the following diagram AD = 45, BD = 60, GC = 60 and FG = 20. $ABC = 30^\circ$.

Determine the size of

6.1 BF (4)

6.2 DE (3)

6.3 Calculate the area of $\triangle ABC$ (4)

[11]

In the diagram, DGFC is a cyclic quadrilateral and AB is a tangent to the circle at B. Chords DB and BC are drawn. DG produced and CF produced meet in E and DC is produced to A. EA \parallel GF

7.1 Give a reason why $B_1 = D_1$ (1)
7.2 Prove \triangle ABC||| \triangle ADB (3)
7.3 Prove $E_2 = D_2$ (4)
7.4 Prove $AE = \sqrt{AD \times AC}$ (4)

TOTAL: 100

ANSWER SHEET

P

LEARNER NAME:	GRADE 12:

R

 STATEMENT
 REASON

 5.1
 (2)

 5.2
 (2)

 5.3
 (2)

 5.4
 (2)

 5.4
 (2)

 [8]

LEARNER NAME:	GRADE 12:
	UNADE IZ

	STATEMENT	REASON	
6.1			
			(4)
			(4)
6.2			
			(3)
		7	
6.3			
			(4)
			F443
			[11]

QUESTION 7	ANSWER SHEET
------------	--------------

LEARNER NAME: GRADE 12:.....

	STATEMENT	REASON	
7.1			
			(1)
7.2			
			(3)
7.3			
			(4)
7.4			
'			
			(4)
			(4)
			[12]

INFORMATION SHEET

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$A = P(1 + ni)$$

$$A = P(1-ni)$$

$$A = P(1-i)$$

$$A = P(1-ni)$$
 $A = P(1-i)^n$ $A = P(1+i)^n$

$$T_n = a + (n-1)d$$

$$S_n = \frac{n}{2} [2a + (n-1)d]$$

$$T_n = ar^{n-1}$$

$$S_n = \frac{a(r^n - 1)}{r - 1} \quad ; r \neq$$

$$S_n = \frac{a(r^n - 1)}{r}$$
; $r \ne 1$ $S_\infty = \frac{a}{1 - r}$; $-1 < r < 1$

$$F = \frac{x[(1+i)^n - 1]}{i}$$

$$P = \frac{x \left[1 - \left(1 + i\right)^{-n}\right]}{x}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \qquad M\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$$

$$y = mx + c$$

$$y - y_1 = m(x - x_1)$$

$$y - y_1 = m(x - x_1)$$
 $m = \frac{y_2 - y_1}{x_2 - x_1}$ $m = \tan \theta$

$$m = \tan \theta$$

$$(x-a)^2 + (y-b)^2 = r^2$$

In
$$\triangle ABC$$
: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$

$$a^2 = b^2 + c^2 - 2bc.\cos A$$

area
$$\triangle ABC = \frac{1}{2} ab. sin C$$

$$\sin(\alpha + \beta) = \sin \alpha . \cos \beta + \cos \alpha . \sin \beta$$

$$\sin(\alpha - \beta) = \sin \alpha . \cos \beta - \cos \alpha . \sin \beta$$

$$\cos(\alpha + \beta) = \cos \alpha . \cos \beta - \sin \alpha . \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha . \cos \beta + \sin \alpha . \sin \beta$$

$$\cos 2\alpha = \begin{cases} \cos^2 \alpha - \sin^2 \alpha \\ 1 - 2\sin^2 \alpha \\ 2\cos^2 \alpha - 1 \end{cases}$$

$$\sin 2\alpha = 2\sin \alpha.\cos \alpha$$

$$\bar{x} = \frac{\sum x}{n}$$

$$\sigma^2 = \frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{\sigma^2}$$

$$P(A) = \frac{n(A)}{n(S)}$$

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

$$\hat{y} = a + bx$$

$$b = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sum (x - \overline{x})^2}$$