

You have Downloaded, yet Another Great Resource to assist you with your Studies ©

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICS

COMMON TEST

MARCH 2022

TIME: 2 hours

.B. This question paper consists of 6 pages, 2 diagram sheets and an information sheet.

Copyright Reserved Please Turn Over

Math March 2022 Common Test

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

- 1. This question paper consists of 8 questions.
- 2. Answer **ALL** questions.
- 3. Clearly show **ALL** calculations, diagrams, graphs, et cetera that you have used in determining your answers.
- 4. Answers only will not necessarily be awarded full marks.
- 5. An approved scientific calculator (non-programmable and non-graphical) may be used, unless stated otherwise.
- 6. If necessary, answers should be rounded off to TWO decima places, unless stated otherwise.
- 7. Diagrams are NOT necessarily drawn to sca
- 8. Number the answers correctly according to the numbering system used in this question paper. Write neatly and legitation

Copyright Reserved Please Turn Over

Math March 2022 Common Test

QUESTION 1

Given the quadratic sequence: 5; x; y; 29; ... and its second constant difference is equal to 4.

Calculate the values of x and y. 1.1 (4)

If x = 9 and y = 17, determine the n^{th} term of the quadratic sequence. 1.2 (4)

Calculate the 50th term of the sequence. (2)

[10]

QUESTION 2

The 2nd term of an arithmetic sequence is 8 and the 7th term is eleven times the value of the first term. Determine the first three terms of the sequence. [7]

QUESTION 3

3.1 Given:

> 3.1.1 Write down the values of e 'rst three terms of the series in terms of p. (1)

> 3.1.2 Determine the values o p for which the series is converging. (4)

The sum of the first terms of a sequence is given by $4-4\left(\frac{1}{2}\right)^n$ 3.2

Calculat hearst three terms. (5)

[10]

Copyright Reserved Please Turn Over March 2022 Common Test

QUESTION 4

4.1 Given $\triangle ABC$ and $\triangle DEF$ with $\widehat{A} = \widehat{D}$, $\widehat{B} = \widehat{E}$ and $\widehat{C} = \widehat{F}$.

Prove the theorem which states that $\frac{AB}{DE} = \frac{AC}{DF}$ (7)

4.2 In the figure, \triangle ABC has HG || AC and ED || BC. ED and HG intersect at K. $\frac{AD}{DC} = \frac{3}{2}$ and BG = 2GC . AB = 15 units.

Determine with reasons the value of:

4.2.2 AH (3)

$$\frac{GK}{KH}$$
 (3)

4.2.4 Area of
$$\Delta$$
HEK Area of Δ HBG (3)

[19]

Copyright Reserved

Please Turn Over

March 2022 Common Test

QUESTION 5

In the figure: PQ is the diameter of the circle. SP is the tangent to the circle at P. QT intersects the circle at W and with T on the line SP. QS intersects the circle at R. $\hat{P}_1 = x$.

5.1 Give a reason why $P\widehat{R}Q = 90^{\circ}$. (1)

5.2 Prove $\hat{S} = x$. (3)

5.3 Prove that SRWT is a cyclic quadrilateral. (3)

5.4 Prove that $\Delta QWR \parallel \Delta QST$. (3)

5.5 If QW = 5 cm, TW = 1 cm, QR = 4 cm and WR = 2 cm, calculate the lengths of:

5.5.1 TS (3) 5.5.2 SR (3) [16]

Copyright Reserved Please Turn Over

QUESTION 6

6.1 Given $\cos 20^{\circ} = p$ and $\sin 14^{\circ} = q$

Without using a calculator, calculate the value of the following in terms of p, q or p and q.

$$6.1.1 \sin 20^{\circ}$$
 (2)

$$6.1.2 \cos 6^{\circ}$$
 (6)

6.2 Simplify into a single trigonometric ratio.

$$\sqrt{\frac{\frac{1}{2}\sin 2x}{\tan(540^\circ + x)\left(\frac{1}{\cos^2 x} - \tan^2 x\right)}}$$
 (6)

[14]

QUESTION 7

7.1.1 Prove the following identity:

$$\cos 4x = 8\cos^4 x - 8\cos^2 x + 1 \tag{4}$$

7.1.2 Hence, determine, without the use of a calculator, the general solution of

$$16\cos^4 x - 16\cos^2 x + 2 = 1 \tag{5}$$

- 7.1.3 Write down the minimum value of the expression $16\cos^4 x 16\cos^2 x + 2$. (2)
- 7.2 Calculate, without the use of a calculator, the value of:

$$\frac{2\sin^2 22.5^\circ - 1}{4\sin 22.5^\circ \cos 22.5^\circ} \tag{5}$$

[16]

QUESTION 8

- 8.1 Sketch the graphs of $f(x) = \sin(2x)$ and $g(x) = 2\cos x$ for the domain $x \in [-90^\circ; 180^\circ]$. (Use the axes provided) (6)
- 8.2 Use your graphs to determine the solution $\frac{g(x)}{f(x)} \ge 1$. (2)

[8]

Math March 2022 Common Test

INFORMATION SHEET: MATHEMATICS INLIGTING BLADSY

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$A = P(1 + ni)$$
 $A = P(1 - ni)$ $A = P(1 - i)^n$

$$A = P(1 - ni)$$

$$A = P(1-i)^{n}$$

$$A = P(1+i)^{n}$$

$$T_n = a + (n-1)d$$

$$T_n = a + (n-1)d$$
 $S_n = \frac{n}{2}(2a + (n-1)d)$

$$T_n = ar^{n-}$$

$$S_n = \frac{a(r^n - 1)}{r - 1}$$

$$S_n = \frac{a(r^n - 1)}{r - 1}$$
; $r \ne 1$ $S_{\infty} = \frac{a}{1 - r}$; $-1 < r < 1$

$$F = \frac{x[(1+i)^n - 1]}{i}$$

$$P = \frac{x[1-(1+i)^{-n}]}{i}$$

$$P = \frac{x[1-(1+i)^{-n}]}{i}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \qquad M\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$$

$$M\left(\frac{X_1 + X_2}{2}; \frac{Y_1 + Y_2}{2}\right)$$

$$y - y_1 = m(x - x_1)$$
 $m = \frac{y_2 - y_1}{x_2 - x_1}$ $m = \tan \theta$

$$m = \tan \theta$$

$$(x-a)^2 + (y-b)^2 = r^2$$

y = mx + c

In
$$\triangle ABC$$
: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ $a^2 = b^2 + c^2 - 2bc \cdot \cos A$ area $\triangle ABC = \frac{1}{2}ab \cdot \sin C$

$$a^2 = b^2 + c^2 - 2bc.\cos A$$

area
$$\triangle ABC = \frac{1}{2}$$
 ab. sin C

$$\sin(\alpha + \beta) = \sin \alpha . \cos \beta + \cos \alpha . \sin \beta$$

$$\sum_{i=1}^{n} (a + p) = \sin a \cdot \cos p + \cos a \cdot \sin p$$

$$\sin(\alpha - \beta) = \sin \alpha . \cos \beta - \cos \alpha . \sin \beta$$

$$\cos(\alpha + \beta) = \cos \alpha \cdot \cos \beta - \sin \alpha \cdot \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\cos 2\alpha = \begin{cases} \cos^2 \alpha - \sin^2 \alpha \\ 1 - 2\sin^2 \alpha \\ 2\cos^2 \alpha - 1 \end{cases}$$

$$\sin 2\alpha = 2\sin \alpha.\cos \alpha$$

$$\bar{x} = \frac{\sum_{n} f.x}{n}$$

$$P(A) = \frac{n(A)}{n(S)}$$

$$\sigma^2 = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n}$$

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

$$\hat{y} = a + bx$$

$$b = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sum (x - \overline{x})^2}$$

NAME: _____

GRADE: _____

DIAGRAM SHEET QUESTION 4.1

QUESTION 4.2

QUESTION 5

Copyright Reserved

Please Turn Over

	NAME:						GRADE:			
	QUESTION 8									
		Ti di		2 †y		No.				
		10 10 10 10 10 10 10 10 10 10 10 10 10 1		1						
	-90	-60	-30	0	30	60	90	120	150	X 180
TEAR-OFF PAGE				-1						
TE,			## ### ### ### ### ### #### ##########							

Copyright Reserved