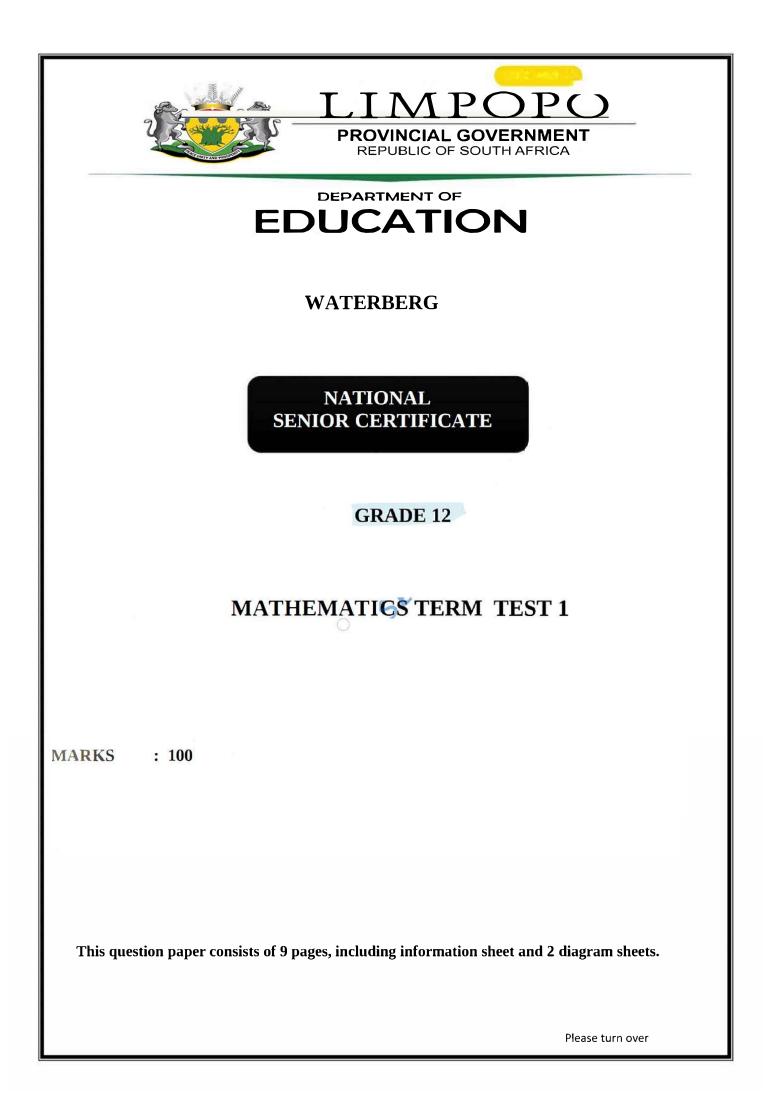



You have Downloaded, yet Another Great Resource to assist you with your Studies ③


Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

- 1. This question paper consists of 7 questions.
- 2. Answer ALL the questions.
- 3. Clearly show ALL calculations, diagrams, graphs, et cetera that you have used in determining your answers.
- 4. Answers only will not necessarily be awarded full marks.
- 5. You may use ONLY approved scientific non-programmable and pongraphical calculator.
- 6. If necessary, round answers off to TWO decimal place unless stated otherwise.
- 7. An information sheet, with formulae, is included a true end of the question paper and TWO diagram sheets.
- 8. Number the answers correctly according to the numbering system used in this question paper.
- 9. Start each QUESTION on a page.
- 10. Write legibly and present your work neatly.

QUESTION 1

1.1	Consider:	9:	19:	33:	51	
T.T.	Jonstaler.	-,	1 - ,	55,	01	

1.1.1. Write th	e next TWO terms of the pattern.	(2)
1.1.2. Determi	ine the nth term of the sequence.	(4)
1.1.3. Prove t	hat all the terms of the quadratic sequence are odd.	(3)
1.2. Given:		

$$\sum_{k=1}^{\infty} 4(0,2)^{k-1}$$

1.2.1. Write down the first THREE terms of the serie	(1)
1.2.2. Calculate sum to infinity of the serie	(3)
1.2.3. Hence calculate the smallest number of the terms of the series whose sum	
will differ by less than 0,0001 mon the sum to infinity of the series.	(5)
1.3. Evaluate the sum of : 3 + ↓ 1 ⁻ ↓ 3 + 15 + 3 + 19 + … + 107.	(5)

[23]

March. 2022

NSC

QUESTION 2

2.1. Simplify:
$$\frac{\cos(-\theta).\tan(180^\circ - \theta).\cos(90^\circ - \theta)}{\sin(180^\circ - \theta).\sin(540^\circ + \theta)}$$
(7)

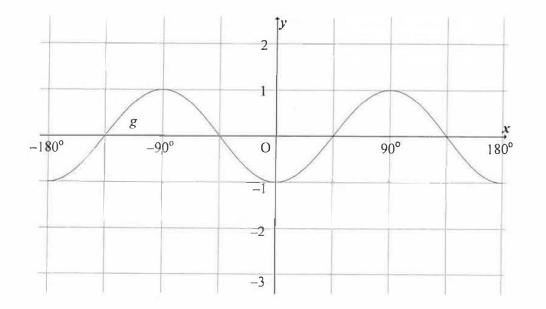
2.2. Given that
$$\cos(A - B) = \cos A \cos B + \sin A \sin B$$
,

Prove that:
$$sin(A + B) = sin A cos B + cos A sin B$$
 (3)

2.3. If $5 \cos A + 3 = 0$ and $A \in [0^{\circ}; 180^{\circ}]$, determine WITHOUT the use of calculator:

2.3.1.	sin A	(3)
2.3.2.	sin 2A	(3)

2.4. Prove that
$$\tan x = \frac{1 - \cos 2x - \sin x}{\sin 2x - \cos x}$$
(5)


[21]

March. 2022

NSC

QUESTION 3

- 3.1. Determine the general solution of : $4 \sin x + 2 \cos 2x = 2$ (6)
- 3.2. The graph of $g(x) = -2 \cos 2x$ for $x \in [-180^\circ; 180^\circ]$ is drawn below.

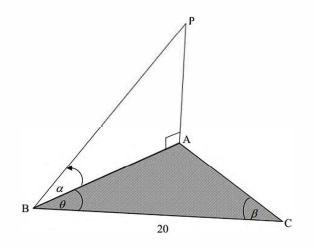
3.2.1. Draw the graph of $f(x) = 2 \sin x - 1$ for $x \in [-180^{\circ}; 180^{\circ}]$ on

the same set of axes with g(x) (3)

3.2.2. For which values of x is g(x) strictly decreasing in the interval

$$x \epsilon [-180^\circ; 0^\circ] \tag{2}$$

3.2.3. For which value(s) of x is $f(x + 30^{\circ}) - g(x + 30^{\circ}) = 0$ for


$$x \epsilon [-180^\circ; 180^\circ] \tag{2}$$

[13]

In the diagram below, A, B and C are in the same horizontal plane. P is a point vertically

above A. The angle of elevation from B to P is \propto .

 $A\hat{C}B = \beta$, $A\hat{B}C = \theta$ and BC = 20 units.

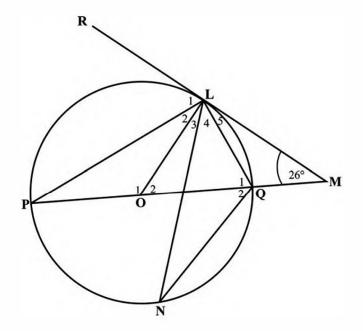
4.1. Write AP in terms of AB and \propto . (2)

4.2. Prove that
$$AP = \frac{20 \sin \beta \tan \alpha}{\sin(\theta + \beta)}$$
 (3)

4.3. Given that AB = AC, determine AP in terms of \propto and β in its simplest form. (3)

[8]

NSC


5.1. Complete the statement below by filling in the missing word(s) so that the statement

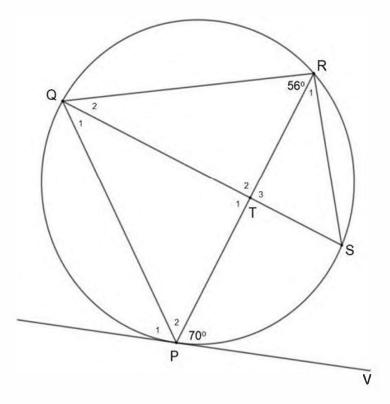
is CORRECT:

An angle subtended by an arc at centre of a circle is ... (1)

5.2. In the diagram, O is the centre of the circle and L is a point on the circumference.

RLM is a tangent at L.

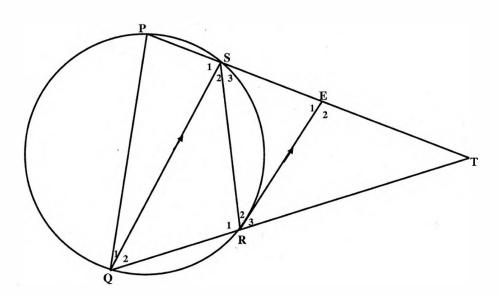
Determine with reasons the sizes of:


5.2.1.	\hat{O}_2	(2)
5.2.2.	\hat{L}_2	(3)
5.2.3.	\hat{L}_5	(2)
5.2.4.	\hat{Q}_1	(2)
5.2.5.	\widehat{N}	(1)

[11]

In the diagram below, P, Q, R and S are points on the circle. QS and PR intersect at point T.

The line from V is a tangent at P.


 $Q\hat{R}P = 56^{\circ}$ and $R\hat{P}V = 70^{\circ}$

6.1. Find the size of <i>RST</i>	(5)
6.2. If $\hat{Q}_1 = 37^\circ$, then explain why QS is not a diameter of the circle.	(4)
6.3. Is QP parallel to RS? Justify your answer appropriately	(2)

[11]

In the diagram, PQRS is a cyclic quadrilateral. PS and QR are produced to meet at T. RE is a tangent to the circle at R, with E on PT and RE $\|QS\|$.

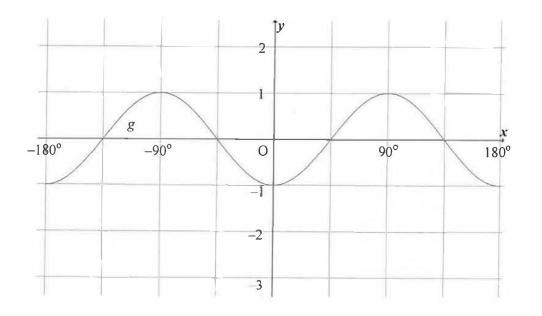
Prove that:

		[13]
7.3.	$\frac{PQ}{PT} = \frac{SE}{ET}$	(5)
7.2.	$\Delta RST \parallel \Delta PQT$	(4)
7.1.	QR = RS	(4)

TOTAL: 100

INFORMATION SHEET: MATHEMATICS

$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$			
A = P(1+ni) A = P(1-ni)	-ni) $A=P$	$(1-i)^n$	$A = P(1+i)^n$
$\sum_{i=1}^{n} 1 = n \qquad \qquad \sum_{i=1}^{n} 1 = n$	$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$	$T_n = a + (n-1)d$	$S_n = \frac{n}{2} (2a + (n-1)d)$
$T_n = ar^{n-1}$	$S_n = \frac{a(r^n - 1)}{r - 1}$); r≠1	$S_{\infty} = \frac{a}{1-r}; -1 < r < 1$
$F = \frac{x\left[(1+i)^n - 1\right]}{i}$	$P = \frac{x[1]}{x}$	$\frac{1-(1+i)^{-n}]}{i} \qquad f'(\lambda)$	$f(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$
$d = (x_2 - x_1)^2 + (x_2 -$	$(y_2 - y_1)^2$	$M\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$	y = mx + c
$y - y_1 = m(x - x)$	$m = \frac{y_2 - y_2}{x_2 - x_2}$	$m = \tan \theta$	$(x-a)^2 + (y-b)^2 = r^2$
In $\triangle ABC$: $\frac{a}{\sin A} =$	$\frac{b}{\sin B} = \frac{c}{\sin C}$	$a^2 = b^2 + c^2 - 2bc$	c.cos A
area ∆AE	$3C = \frac{1}{2}ab.\sin C$		
$\sin(\alpha + \beta) = \sin \alpha.c$	$\cos\beta + \cos\alpha.\sin\beta$	$\sin(lpha - eta) =$	$\sin \alpha . \cos \beta - \cos \alpha . \sin \beta$
$\cos(\alpha+\beta)=\cos\alpha.\alpha$	$\cos\beta - \sin\alpha. \sin\beta$	$\cos(lpha-eta)$	$= \cos \alpha . \cos \beta + \sin \alpha . \sin \beta$
$\cos 2\alpha = \begin{cases} \cos^2 \alpha - \sin^2 \alpha \\ 1 - 2\sin^2 \alpha \\ 2\cos^2 \alpha - \sin^2 \alpha \end{cases}$	sin²α α -1	$\sin 2\alpha = 2s$	in α .cos α
$\overline{x} = \frac{\sum fx}{n}$		$\sigma^2 = \frac{\sum_{i=1}^n (x_i)}{r}$	$\left(-\overline{x}\right)^{2}$


 $P(A) = \frac{n(A)}{n(S)}$ P(A or B) = P(A) + P(B) - P(A and B)

$$\hat{y} = a + bx \qquad \qquad b = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sum (x - \bar{x})^2}$$

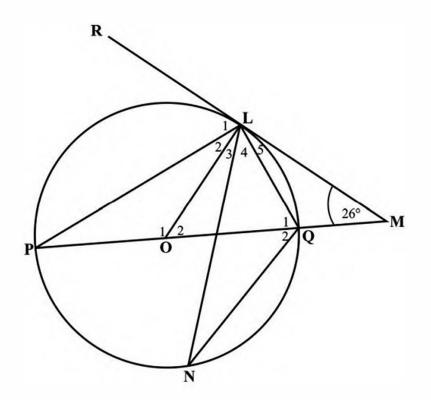
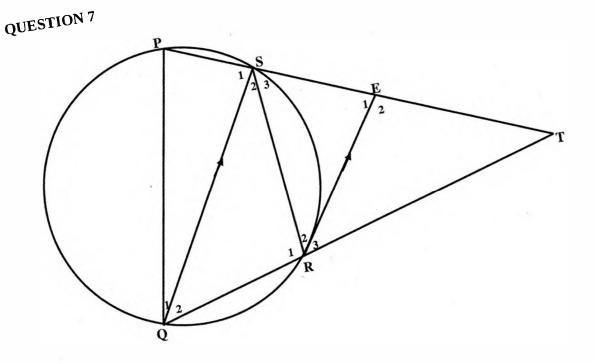

NAME AND SURNAME: _____

DIAGRAM SHEET 1

QUESTION 3.2



QUESTION 5

Please turn over

Please turn over

ANALYSIS GRID March. 2022

Question	TOPIC	Sub		Knowing	3	Perfo F	rming Ro Procedure	outine s	Perfoi F	ming Co Procedure	mplex s	Solv	ving prob	lems
number	number	quest.	Easy	Med	Diff	Easy	Med	Diff	Easy	Med	Diff	Easy	Med	Diff
		1.1.1	2											
		1.1.2	1		4									
	E C L	1.1.3					_		3					
	RI CI	1.2.1	1									<u> </u>		
1	SEQUENCE ND SERIRIE	1.2.2	-				3					-	_	
	QL	1.2.3											5	
	SEQUENCE AND SERIRIES	1.3				<u> </u>		5	-				·	
	4	2.1		7									-	
2				/										
~		2.2				3	2							
		2.3.1 2.3.2		e			3		3					
		2.3.2						-	3	5				
		2.4	-	-						3				-
	ĸ													
	(R)	3.1									6	·		
3	E	3.2.1			3									
J	NO	3.2.2										2		
2 TRIGONOMETRY	Ň	3.2.3											2	
	IGC			Q										
	IR	4.1		2										
		4.2							3					
4		4.3				3								
		5.1	1											
		5.2.1					2							
		5.2.2								3				
_		5.2.3				2								
5	х	5.2.4	1			2								
	TRY	5.2.5	1									-		
	ME	6.1	-				5		-			-		-
	EO	6.2			-							4		
6	EUCLIDEAN GEOME	6.3				2								
-	IAI	0.0				-								
	<u>n</u>													
	C	7.1									4			
7	EU	7.2						4						
<i>'</i>		7.3								5				
TOTALS	6		5	9	7	12	13	9	9	13	10	6	7	
	100			21			34			32			13	