SA's Leading Past Year

Exam Paper Portal

STUD.Y

You have Downloaded, yet Another Great Resource to assist you with your Studies :

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

> SAEAMM RADPERES

DATE: 11 MARCH 2022
MARKS: 50

DURATION: 1 HOUR

This question paper consists of $\mathbf{0 9}$ pages including formula and diagram sheet.

INSTRUCTIONS

1. Read and answer all questions carefully.
2. It is in your own interest to write legibly and to present your work neatly.
3. All necessary working which you have used in determining your answers must be clearly shown.
4. Approved non-programmable calculators may be used except where otherwise stated. Where necessary give answers correct to $\mathbf{2}$ decimal places unless otherwise stated.
5. Ensure that your calculator is in DEGREE mode.
6. Diagrams have not necessarily been drawn to scale.

7. Use spaces provided on the question paper to answer Question 4 and 5.

Question 1

1.1. Given : $0 ; 5 ; 16 ; 33$ are the first four terms of the quadratic sequence.
1.1.1. Show that the $n^{\text {th }}$ term is given by, $T_{n}=3 n^{2}-4 n+1$.
1.1.2. Determine which term in the sequence is equal to 5896 ?

Question 2

2.1 The first three terms of an arithmetic sequence are $2 p-3 ; p+5 ; 2 p+7$.
2.1.1. Determine the value(s) of p..
2.1.2. Calculate the sum of the first 120 terms.
2.2 The following pattern is true for above arithmetic sequence:
$T_{1}+T_{4}=T_{2}+T_{3}$
$T_{5}+T_{8}=T_{6}+T_{7}$
$T_{9}+T_{12}=T_{10}+T_{11}$
$\therefore T_{k}+T_{k+3}=T_{x}+T_{y}$
2.2.1. Write the value of x and y in terms of k.
2.2.2. Hence, calculate the value of $T_{x}+T_{y}$ in terms of k in simplest form.

Question 3

3.1. Consider the following geometric sequence:
$\sin 30^{\circ} ; \cos 30^{\circ} ; \frac{3}{2} ; \ldots \frac{81 \sqrt{3}}{2}$
Determine the number of terms in the sequence.
3.2. Rectangles of width $\mathbf{2} \mathrm{cm}$ are drawn from the edge of a sheet of paper that is $\mathbf{4 0} \mathrm{cm}$ long such that there is a $\mathbf{2} \mathrm{cm}$ gap between on rectangle and the next. The length of the first rectangle is $\mathbf{2 7} \mathrm{cm}$ and the length of each successive rectangle is 85% of the length of the previous rectangle until there are rectangles drawn along the entire length of PS. Each rectangle is coloured dark grey.

3.3.1. Calculate the length of $12^{\text {th }}$ rectangle.
3.3.3. Calculate the percentage of paper is coloured dark grey.

Question 4

4.1. In the figure below below, O is the centre of the circle with P, Q and R on the
circumference. SR is the tangent to circle centre O at R .

	Prove that $\hat{P R S=\hat{Q}}$$(5)$	

Page 4 of 9
4.2 In the figure below, E is the centre of the circle and $D E$ is perpendicular to $A B . A C$ and $D E$ intersect at F and $D F=D C$.

4.2.1.	Prove that $B E F C$ is a cyclic quadrilateral.	
		(3)
4.2.2.	Prove that $D C$ is a tangent at C	
		(3)

Page 5 of 9

Question 5

In the diagram, circle $A B S R$ is drawn. Chords $R A$ and $S B$ produced to meet at $P . P A=R S$ and $Q T / / A B$.

5.1.	Prove that $\triangle P S R / / / \triangle P A B$	(3)

Page 6 of 9

5.2.	$P S \times B A=S R^{2}$	(3)
5.3.	If $R S=10 \mathrm{~cm}$ and $\frac{P T}{T B}=\frac{2}{3}$ calculate the length of $P Q$.	(3)
5.4.	$\text { Calculate } \frac{\text { area of } \triangle P A B}{\text { area of } \triangle P T Q}$	

Page 7 of 9

INFORMATION SHEET: MATHEMATICS

$$
\begin{aligned}
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \quad A=P(1+n i) \quad A=P(1-n i) \quad A=P(1-i)^{n} \\
& A=P(1+i)^{n} \sum_{i=1}^{n} 1=n \quad \sum_{i=1}^{n} i=\frac{n(n+1)}{2} \quad T_{n}=a+(n-1) d \\
& \mathrm{~S}_{n}=\frac{n}{2}(2 a+(n-1) d) T_{n}=a r^{n-1} S_{n}=\frac{a\left(r^{n}-1\right)}{r-1} ; \quad r \neq 1 \quad S_{\infty}=\frac{a}{1-r} ;-1<r<1 \\
& F=\frac{x\left[(1+i)^{n}-1\right]}{i} \quad P=\frac{x\left[1-(1+i)^{-n}\right]}{i} f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \quad \mathrm{M}\left(\frac{x_{1}+x_{2}}{2} ; \frac{y_{1}+y_{2}}{2}\right) \\
& y=m x+c \quad y-y_{1}=m\left(x-x_{1}\right) \quad m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad m=\tan \theta \\
& (x-a)^{2}+(y-b)^{2}=r^{2} \operatorname{In} \triangle A B C: \quad \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \quad a^{2}=b^{2}+c^{2}-2 b c \cdot \cos A \\
& \text { area } \triangle A B C=\frac{1}{2} a b . \sin C \\
& \sin (\alpha+\beta)=\sin \alpha \cdot \cos \beta+\cos \alpha \cdot \sin \beta \quad \sin (\alpha-\beta)=\sin \alpha \cdot \cos \beta-\cos \alpha \cdot \sin \beta \\
& \cos (\alpha+\beta)=\cos \alpha \cdot \cos \beta-\sin \alpha \cdot \sin \beta \quad \cos (\alpha-\beta)=\cos \alpha \cdot \cos \beta+\sin \alpha \cdot \sin \beta \\
& \cos 2 \alpha=\left\{\begin{array}{l}
\cos ^{2} \alpha-\sin ^{2} \alpha \\
1-2 \sin ^{2} \alpha \\
2 \cos ^{2} \alpha-1
\end{array} \quad \sin 2 \alpha=2 \sin \alpha \cdot \cos \alpha\right. \\
& \bar{x}=\frac{\sum f x}{n} \\
& P(A)=\frac{n(A)}{n(S)} \\
& \hat{y}=a+b x \\
& \sigma^{2}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n} \\
& P(A \text { or } B)=P(A)+P(B)-P(A \text { and } B) \\
& b=\frac{\sum(x-\bar{x})(y-\bar{y})}{\sum(x-\bar{x})^{2}}
\end{aligned}
$$

