SA's Leading Past Year

Exam Paper Portal

STUD.Y

You have Downloaded, yet Another Great Resource to assist you with your Studies :

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

> SAEAMM RADPERES

basic education

Department:
Basic Education REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

CIVIL TECHNOLOGY
NOVEMBER 2012
MEMORANDUM

MARKS: 200

This memorandum consists of 15 pages.

QUESTION 1: LO3 AS 1, 2, 4, 5, 7, 10

1.1

1.1.1	D	A flat plate with many spikes used in roof-truss construction J
1.1 .2	\mathbf{H}	Longest vertical member that determine the height of the roof truss J
1.1 .3	\mathbf{B}	A length of material used to conceal the gap between the wall and the ceiling J
1.1 .4	\mathbf{G}	Is used to cover the gap between the roof covering at the highest point of the roof V
1.1 .5	C	Slope/angle/fall of the roof J

ONE ' J ' FOR EACH CORRECT ANSWER. Do not penalise the candidate if he/she has written the description.
1.2
1.2.1

Simple supported slab
Note: If a candidate show columns as support, it will also be correct.
1.2.2

1.3

1.4
1.4.1 A Eaves/Fascia/tilting batten/overhang \checkmark
1.4.2 B Rafter/Full truss J
1.4.3 C Ridge/ridge beam \checkmark
1.4.4 D Hip rafter J
1.4.5 E Half truss or common rafter J
1.4.6 $\quad F$ Jack rafter/Short rafter J
1.4.7 G Valley/valley gutter J

1.4.8 Gable roof J

1.4.9 1400 mm or 1350 mm Ј
1.5
1.5.1 Hemp or TFT tape (Teflon tape)/thread tape/yarn J OR ANY OTHER ACCEPTABLE ANSWER (silicone not accepted)
1.5.2 Cover the threaded part of pipes with teflon tape or hemp in a clockwise direction. J
Screw in a straight socket (fitting) to the thread on one pipe using two monkey wrenches. J
Screw in the second pipe (threaded part) into the other side of the straight socket (fitting) using two monkey wrenches.
Tighten properly.
ANY TWO OF THE ABOVE

QUESTION 2: LO3 AS3, 4, 5, 7

2.1
2.1.1 A Floor slab J

B concrete (symbol for concrete) $\sqrt{ }$
C Reinforcing mesh/main bars $\sqrt{ }$
D Shutter board/soffit board $\sqrt{ }$
E Bearer/Joist J
F Prop/post/pole J
G Wedges J
H Sole plate J
2.1.2 Concrete is weak in tensile strength and the most J tension in the floor slab will occur at the bottom due to bending and the reinforcing will serve no purpose when placed on the top. J
2.1.3 G - To assist with the alignment of formwork; J to secure the prop in position;
to ease dismantling
ANY ONE OF THE ABOVE
2.1.4 H - To prevent props from sagging; J
to distribute the load to the load-bearing surface
ANY ONE OF THE ABOVE
2.2
2.2.1 Main bars - to act against the tensile forces. $J J$
2.2.2 Stirrups/Binders $\sqrt{ }$
2.3

CRITERIA	STRIP FOUNDATION	SHORT BORED PILES
Preparation of foundation	Trenches are dug by workers using shovels and picks or mechanical diggers J	Pile holes are drilled into the earth with an auger type bit or drill J
Concrete filling	Concrete is poured by hand using a wheelbarrow or by ready-mix J	Concrete is forced into the hole by gravitational forces \mathbf{V}

$$
\begin{align*}
\text { 2.4.1 } & 1,788 \mathrm{~m}-1,482 \mathrm{~m} \mathrm{~V} \text { or } \quad \begin{array}{l}
1,482 \mathrm{~m}-1,788 \mathrm{~m} \\
= \\
= \\
-0,306 \mathrm{~m}
\end{array}
\end{align*}
$$

$$
\begin{align*}
& \text { 2.4.2 } 1,788 \mathrm{~m}-1,526 \mathrm{~m} \text { or } 1,526 \mathrm{~m}-1,788 \mathrm{~m} \text { J } \\
& =0,262 \mathrm{~m} \text { or }-0,262 \mathrm{~mJ} \tag{2}
\end{align*}
$$

2.4.3 Intermediate sight $\sqrt{ }$
2.4.4 Rise J
2.5.1 and
2.5.2

FIGURE 2.5

ASSESSMENT CRITERIA	MARKS
Brandering	1
Ceiling board	1
Top rail/Timber roof track/ceiling track	1
Nail/Screw	1
Timber strut vertical	1
Cladding	1
Cornice	1
Any three labels	3
Total	$\mathbf{1 0}$

2.5.3 Gypsum board \checkmark

Chipboard/Veneered board J
Supawood/Medium-density fibre board
Hardboard/Masonite
Plywood
Shutter board
SA Pine
ANY TWO OF THE ABOVE OR ANY OTHER ACCEPTABLE
ANSWER
2.6 Check power tool cable for damage. J

Ensure that the power tool cable lies outside the working area. $\sqrt{ }$
See that the power supply is properly earthed.
Don't work near water with power tool
Moving part, Must be kept away from the body.
Switch off power supply and disconnect the power tool when making adjustments.
Hold power tool securely and firmly when using it.
Remove all jewellery and loose clothing.
Use safety goggles to protect your eyes.
Report any defects immediately.
ANY TWO OF THE ABOVE OR ANY OTHER ACCEPTABLE ANSWER
2.7 Square shape $\sqrt{ }$

QUESTION 3: LO 3 AS 5, 8

3.1
3.1.1
B J
3.1.2 A J
3.1.3 C J
3.1.4 C J
(1)
3.1.5 B J
3.2

ADVANTAGES	DISADVANTAGES
Easily accessible J	Contamination from surface Cheap J Watler supply is reliable J Although relatively reliable, it can dry up. J Children can fall into the primitively dug well. Obtaining water from a cranked windlass can be slow

ANY OTHER ACCEPTABLE ANSWER
3.3 3.3.1 A Rodding eye / cover J

B Pipe (110 mm) J
C Junction (45°) J

3.3.2 Direction D J

3.3.3 It is for cleaning purposes so that the cleaning rods can enter the sewer line $\sqrt{ }$
For easy access to the main sewer pipe.

ANY ONE OF THE ABOVE

3.3.4 Gives access to the drain pipes J

Prevents foul gasses from the sewerage system entering the atmosphere
Prevents rain water, dirt, dust entering the sewer line
For safety purposes

> ANY ONE OF THE ABOVE OR ANY OTHER ACCEPTABLE ANSWER
3.3.5 Cheaper than installing a manhole J

Smaller and look neater than a manhole \checkmark

ANY OTHER ACCEPTABLE ANSWER

3.4

FIGURE 3.4
3.5 Septic tank $\sqrt{ }$ - Bacterial action dissolve sewage and excess fluids soak into the ground by means of a french drain J
Conservancy tank V - Sewage stored in a tank and pumped out when nearing full capacity $\sqrt{ }$ Pit toilet

ANY OTHER ACCEPTABLE ANSWER

QUESTION 4: LO3 AS 2, 3, 7, 8

4.1
4.1.1 FALSE J
4.1.2 TRUE J
4.1.3 TRUE J
4.1.4 FALSE J
4.1.5 TRUE J
4.1.6 TRUE J
4.2
4.2.1 Submersion of wood - Absorbs more preservatives \checkmark

ANY OTHER ACCEPTABLE ANSWER
(1)
4.2.2 Full cell process - Preservative process is faster V

ANY OTHER ACCEPTABLE ANSWER
4.3

A	B	C	D
1/	6,0 m J	\checkmark	Area of wall before deductions
\checkmark	$2,7 \mathrm{~m}$ J	16,2 m²	$6000 \mathrm{~mm} \times 2700 \mathrm{~mm}$
1/	1,2 m J	\checkmark	Area of window 1
\checkmark	1,5 m	1,8 m ${ }^{2}$	$1200 \mathrm{~mm} \times 1500 \mathrm{~mm}$
1/	1,2 m J	\checkmark	Area of window 2
\checkmark	0,6 m	0,72 m ${ }^{2}$	$1200 \mathrm{~mm} \times 600 \mathrm{~mm}$
			Total area of wall, excluding windows
			16,2 m ${ }^{2}-1,8 \mathrm{~m}^{2}-0,72 \mathrm{~m}^{2}$
			$=13,68 \mathrm{~m}^{2} \mathrm{~J}$
	\checkmark		Number of bricks
1/J	13,68 m ${ }^{2}$		110 bricks for $1 \mathrm{~m}^{2}$ of 220 mm wall
	110 J	1504,8 J	1505 bricks will be required
			5\% wastage and breakages
			1505 bricks $\times 5 \%$
			75 or 76 bricks
			Total number of bricks
			1505 bricks +75 bricks $\sqrt{ }$ or $1505+76$
			$=1580$ bricks $\checkmark=1581$ bricks
			or $1505 \times 1,05$
			= 1580,25
			= 1580 bricks or 1581 bricks

(3)
(1)
(4)
(2)

4.4 4.4.1 Breaking J

4.4.2 Angle iron J
4.4.3 Copper J
(1)
4.4.4 Galvanising J
4.4.5 Corrosive J

QUESTION 5: LO3 AS 5, 6

5.1.1 8 N J
5.1.2 20 NJ
5.1.3 0 N J
5.1.4 $3 \mathrm{~m} \sqrt{ } \sqrt{ }$
5.1.5 Upward forces = downward forces
$22,5 \mathrm{~N}+15,5 \mathrm{~N}=10 \mathrm{~N}+8 \mathrm{~N}+20 \mathrm{~N}$ $38 \mathrm{~N}=38 \mathrm{~N}$
5.1.6 $2 \mathrm{~mm}=1 \mathrm{NJ}$
5.1.7 $\quad \mathrm{SFa}=22,5 \mathrm{~N}$ J
5.1.8

$$
\begin{align*}
& \checkmark \quad J \tag{1}\\
\text { SFb } & =22,5 \mathrm{~N}-10 \mathrm{~N} \tag{2}\\
& =12,5 \mathrm{~N} \quad \text { (Candidates must show steps) }
\end{align*}
$$

5.1.9 $\mathrm{SFd}=22,5 \mathrm{~N}-10 \mathrm{~N}-8 \mathrm{~N}-20 \mathrm{NJJ} \quad$ or $12,5-8-20$

$$
=-15,5 \mathrm{~N} \quad=-15,5 \mathrm{~N}
$$

5.1.10 $S F e=22,5 N-10 N-8 N-20 N+15,5 N J J \quad$ or $-15,5 N+15,5$

$$
\begin{equation*}
=0 \mathrm{~N} \quad=0 \mathrm{~N} \tag{2}
\end{equation*}
$$

5.1.11 Yes J

5.2

5.2.1	Area of figure A1	$\begin{aligned} & =1 / 2 b \times h \\ & =1 / 2 \times 60 \times 60 \\ & =30 \times 60 \\ & =1800 \mathrm{~mm}^{2} \end{aligned}$
	Area of figure A2	$\begin{aligned} & =1 \times b \\ & =60 \times 60 \\ & =3600 \mathrm{~mm}^{2} \end{aligned}$
	Total Area	$\begin{aligned} & =1800 \mathrm{~mm}^{2}+3600 \mathrm{~mm}^{2} \\ & =5400 \mathrm{~mm}^{2} \end{aligned}$
	Position of centroid from $A B$	$=\frac{(\mathrm{A} 1 \times \mathrm{d})+(\mathrm{A} 2 \times \mathrm{d})}{\text { Total area }}$
		$\begin{array}{ccc} \sqrt{ } \sqrt{ } \sqrt{ } \sqrt{ } \sqrt{ } \sqrt{ } \sqrt{2} \\ = & (1800 \times 80)+(3600 \times 30) \mathrm{mm}^{3} \end{array}$
		$\begin{aligned} & =\frac{144000+108000 \mathrm{~mm}^{2} \mathrm{~J}}{} \frac{\mathrm{3} ~ \sqrt{ }}{5400 \mathrm{~mm}^{2}} \\ & =\frac{252000 \mathrm{~mm}^{3}}{} \end{aligned}$
		$\begin{aligned} & 5400 \mathrm{~mm}^{2} \\ = & 46,67 \mathrm{Jmm} \end{aligned}$

OR

Take moments about A on Y-axis

$$
\begin{aligned}
& \text { JJ } \quad \sqrt{ }{ }^{2} \text { J } \quad \text { J } \\
& 5400 \mathrm{~mm}^{2} \times \mathrm{X}=(1800 \times 80)+(3600 \times 30) \mathrm{mm}^{3} \\
& 5400 \mathrm{~mm}^{2} \mathrm{x} X=144000+108000 \mathrm{~mm}^{3} \\
& X=\frac{252000 \mathrm{~mm}^{3}}{5400 \mathrm{~mm}^{2}} \\
& =46,67 \mathrm{~J} \mathrm{~mm} \mathrm{~J}
\end{aligned}
$$

OR

Part	AREA (A)	X	AREA OF X Ax
Triangle	$1800 \mathrm{~mm}^{2} \mathrm{JJ}$	$\frac{\mathrm{h}}{3}=\frac{60}{3}=20+60=80 \mathrm{JJ}$	$144000 \mathrm{~mm}^{3}$
Square	$3600 \mathrm{~mm}^{2} \mathrm{JJ}$	$\frac{\mathrm{S}}{2}=\frac{60}{2}=30 \quad$ J	$108000 \mathrm{~mm}^{3}$
Σ	$5400 \mathrm{~mm}^{2} \mathrm{~J}$		$252000 \mathrm{~mm}^{3} \mathrm{~J}$

$$
\begin{align*}
& \frac{\sum A X}{\sum A} \\
= & \frac{252000 \mathrm{~mm}^{3}}{5400 \mathrm{~mm}^{2}} \tag{12}\\
= & 46,67 \mathrm{~mm}
\end{align*}
$$

5.2.2 $30 \sqrt{ } \mathrm{~mm}$ J

QUESTION 6: LO3 AS4, 5, 7, 8

ANSWER SHEET 6.1

QUESTION 6.1

Tie beam

ANSWER SHEET 6.2

QUESTION 6.2

Door 1 can be a double door, sliding door or a roll up door
FLOOR PLAN $\sqrt{ }$
SCALE 1 : 100 J
NOT TO SCALE

