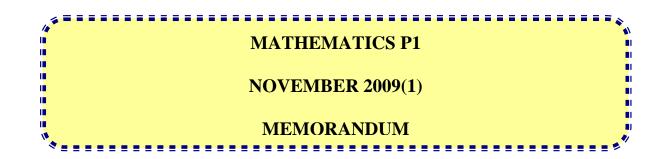


You have Downloaded, yet Another Great Resource to assist you with your Studies ③

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za



education

Department: Education **REPUBLIC OF SOUTH AFRICA**

NATIONAL SENIOR CERTIFICATE

GRADE 12

Marks: 150

This memorandum consists of 25 pages.

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

QUESTION 1

1.1.1	x(x-1) = 30 $x^{2} - x = 30$ $x^{2} - x - 30 = 0$ (x-6)(x+5) = 0 x = 6 or x = -5 OR	If implied as equation : No penalty If there is no equals sign or the equation is not = 0: No penalty If $x = 6$ is answer by inspection : 1 / 3 Both correct answers no calculation : 1 / 3	 ✓ simplification (multiplying out brackets) ✓ factors ✓ both answers (3)
	$x(x-1) = 30$ $x^{2} - x = 30$ $x^{2} - x - 30 = 0$		✓ simplification (multiplying out brackets)
	$x = \frac{-(-1) \pm \sqrt{(-1)}}{2}$ $= \frac{1 \pm \sqrt{121}}{2}$	$\frac{1)^2 - 4(1)(-30)}{(1)}$	✓ substitution into formula
	$=\frac{1\pm 11}{2}$ x = 6 or x = -5		✓ both answers (<i>ca</i>) (3)
1.1.2	$3x^{2}-5x+1=0$ $a=3 \ b=-5 \ c=1$ $x=\frac{-(-5)\pm\sqrt{25-4(3)(1)}}{2(3)}$ $=\frac{5\pm\sqrt{13}}{6}$ x=1,4 or $x=0,2OR$	NOTE: Penalty 1 for incorrect rounding off in either answer Using calculator incorrectly: Max: 2/4 Answers will be $x = 5,6$ or 4,4 Incorrect formula: max 1/4 If $x = \frac{5 \pm \sqrt{37}}{6}$ then CA applies x = 1,8 and $-0,2$: Max 3/4 Correct answer only: 2/4 If factorising: 0/4 If $x = \frac{5 \pm \sqrt{13}}{6}$ only, then 2/4 If $x = 5 \pm \frac{\sqrt{13}}{6}$ only, then 1/4	✓ substitution into correct formula ✓ $\sqrt{13}$ ✓ $\sqrt{13}$ (<i>CA with formula</i>) (4)

Copyright reserved

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

• If a candidate does a question, crosses it out and does not re-do it, mark the delete	ed attempt.
$3x^2 - 5x + 1 = 0$	
contd $x^2 - \frac{5}{3}x = -\frac{1}{3}$	
5 5	
$x^{2} - \frac{5}{3}x + \frac{25}{36} = -\frac{1}{3} + \frac{25}{36}$	
	\checkmark correct method of
$\left(x-\frac{5}{6}\right)^2 = \frac{13}{36}$	completing the
	square
$x - \frac{5}{6} = \frac{\pm \sqrt{13}}{6}$	
$x = \frac{5 \pm \sqrt{13}}{6}$	$\checkmark \sqrt{13}$
	$\checkmark \checkmark$ values of x
x = 1,4 or $x = 0,2$	(CA with formula)
$1.1.3 -9x^2 + 15x - 4 < 0$	(4)
$ \frac{-9x^{2} + 15x - 4 < 0}{9x^{2} - 15x + 4 > 0} $	
(3x-4)(3x-1) > 0	$\checkmark \text{ factors} \\ \checkmark \text{ correct inequality} $
	sign
+ 0 $-$ 0 $+$ OR $-$ 1 $/4$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
1 4	$\checkmark \frac{1}{3}; \frac{4}{3}$
	3 3 \checkmark answer
Answer can be given as: $x \in \left(-\infty; \frac{1}{3}\right) \cup \left(\frac{4}{3}; \infty\right)$	(4)
OR	
$-9x^2 + 15x - 4 < 0$	
(-3x+4)(3x-1) < 0	✓ factors
$x < \frac{1}{3}$ or $x > \frac{4}{3}$	\checkmark correct inequality
$3 \qquad 3 \qquad \qquad \frac{7}{3} \qquad \frac{1}{3}$	sign
	. 1 4
	$\checkmark \frac{1}{3}; \frac{4}{3}$
NOTE:	✓ answer
If stop at factorisation: 2 / 4	(4)
If incorrect factors: CA applies 3 / 4	
If answer : $\frac{1}{3} < x < \frac{4}{3}$ then 3 / 4	
If $x < \frac{1}{3}$ AND $x > \frac{4}{3}$ then 3/4	
Copyright	Please turn ov

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

	induate does a question, crosses it out and does not re-	, r	
1.2	Substitute $x = y + 3$ in $x^2 - xy - 2y^2 - 7 = 0$		✓ substitution
	$(y+3)^2 - y(y+3) - 2y^2 - 7 = 0$		Substitution
	$y^2 + 6y + 9 - y^2 - 3y - 2y^2 - 7 = 0$		
	$2y^2 - 3y - 2 = 0$	 ✓ standard form ✓ factors 	
	(2y+1)(y-2) = 0		
	$y = -\frac{1}{2}$ or $y = 2$	· · · · · · · · · · · · · · · · · · ·	\checkmark both <i>y</i> -values
	$x = 2\frac{1}{2}$ or $x = 5$	NOTE: If the equation is changed to a linear equation, then max 2 / 5	$\checkmark \text{ both } x\text{-values} $ (5)
	OR	There are no penalties for not putting $= 0$.	
	y = x - 3		\checkmark substitution
	$x^{2} - x(x - 3) - 2(x - 3)^{2} - 7 = 0$		
	$x^{2} - x^{2} + 3x - 2(x^{2} - 6x + 9) - 7 = 0$		\checkmark standard form
	$0 = 2x^2 - 15x + 25$		✓ factors
	0 = (2x - 5)(x - 5)		\checkmark both <i>x</i> -values
	$x = 2\frac{1}{2}$ or $x = 5$		(hoth a values
	$y = -\frac{1}{2}$ or $y = 2$		$\checkmark \text{ both y-values} $ (5)
	2		
1.3	$10^{\frac{2009}{2}}$		\checkmark convert to indices
	$\overline{10^{\frac{2011}{2}} - 10^{\frac{2007}{2}}}$		
	$10^{\frac{2009}{2}}$		
	=		\checkmark common factor
	10^{-2} (100 - 1)		,
	$=\frac{10}{99}$		\checkmark answer (3)
	OD		
	OR		
	reserved		Please turn ov

1.2		
1.3 contd	$-\frac{10^{1004}\sqrt{10}}{10^{1005}\sqrt{10}-10^{1003}\sqrt{10}}$	\checkmark convert to indices
	$=\frac{10^{1004}\sqrt{10}}{\sqrt{10}(10^{1005}-10^{1003})}$	
		✓ common factor
	$=\frac{10^{1004}}{10^{1003}(100-1)}$	
	$=\frac{10}{99}$	✓ answer
	99	(3)
	OR	
	$\sqrt{10^{2009}}$	\checkmark convert to indices
	$\frac{\sqrt{10^{2009}}}{\sqrt{10^{2009}.10^2} - \sqrt{10^{2009}.10^{-2}}}$	
	$=\frac{\sqrt{10^{2009}}}{\sqrt{10^{2009}}(10-10^{-1})}$	✓ common factor
	$=\frac{1}{10-\frac{1}{10}}$	\checkmark answer (3)
	1	
	$=\frac{1}{\frac{99}{10}}$	
	$=\frac{10}{99}$	
	99	
	OR	
	$-\frac{\sqrt{10^{2000}}\sqrt{10^9}}{\sqrt{10^{2000}.10^{11}}-\sqrt{10^{2000}.10^7}}$	\checkmark convert to indices
	$=\frac{\sqrt{10^{2000}}\sqrt{10^9}}{\sqrt{10^{2000}}\left(\sqrt{10^{11}}-\sqrt{10^7}\right)}$	✓ common factor
	$=\frac{\sqrt{10^9}}{\sqrt{10^{11}}-\sqrt{10^7}}$	
		✓ answer
	$=\frac{10\sqrt{10^7}}{100\sqrt{10^7}-\sqrt{10^7}}$	(3)
	$=\frac{10\sqrt{10^7}}{\sqrt{10^7}}$	
	$=\frac{1}{\sqrt{10^{7}}(100-1)}$	
	$=\frac{10}{99}$	
	OR	

Consistent Accuracy will apply as a general rule. ٠

٠ If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

•

If a candidate does a question twice and does not delete either, mark the FIRST attempt.

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

	nondate does a question, crosses it out and does not re-do it, mark the deleted attempt.	<u>.</u>
	$\frac{\sqrt{10^{2007}}.\sqrt{10^2}}{\sqrt{10^{2007}}.10^4} - \sqrt{10^{2007}}$	\checkmark convert to indices
	$=\frac{10\sqrt{10^{2007}}}{\sqrt{10^{2007}}(\sqrt{10^4}-1)}$	✓ common factor
	$=\frac{10}{100-1}$	
	$=\frac{10}{99}$	✓ answer (3)
	OR	
	Let $x = 2009$ $\sqrt{10^x}$	
	$\sqrt{10^{x+2}} - \sqrt{10^{x-2}}$	
	$=\frac{10^{\frac{x}{2}}}{10^{\frac{x}{2}}.10-10^{\frac{x}{2}}.10^{-1}}$	\checkmark convert to indices
	$=\frac{10^{\frac{x}{2}}}{10^{\frac{x}{2}}(10-10^{-1})}$	✓ common factor
	$=\frac{1}{10-\frac{1}{10}}$	\checkmark answer (3)
	$=\frac{1}{\frac{99}{10}}$	
	$=\frac{10}{99}$	
1.4	$\left(1+\sqrt{2x^2}\right)^2 - \sqrt{8x^2}$	✓ expansion / multiplication
	$= 1 + 2\sqrt{2x^{2}} + 2x^{2} - \sqrt{4}\sqrt{2x^{2}}$ $= 1 + 2\sqrt{2x^{2}} + 2x^{2} - 2\sqrt{2x^{2}}$	$1 + 2\sqrt{2x^2} + 2x^2$ $\checkmark \sqrt{8x^2} = 2\sqrt{2x^2}$
	$= 1 + 2x^{2} + 2x^{2} + 2x^{2}$ $= 1 + 2x^{2}$	$\checkmark \sqrt{8x} = 2\sqrt{2x}$ $\checkmark \text{ answer} $ (3)
		✓ expansion / multiplication
	$\left(1 + \sqrt{2x^2}\right)^2 - \sqrt{8x^2}$	$\frac{1}{1+\sqrt{8x^2}+2x^2}$
	$=1+\sqrt{8x^{2}}+2x^{2}-\sqrt{8x^{2}}$ $=1+2\sqrt{2x^{2}}+2x^{2}-2\sqrt{2x^{2}}$	$\checkmark \sqrt{8x^2} = 2\sqrt{2x^2}$
	$= 1 + 2\sqrt{2x} + 2x - 2\sqrt{2x}$ = 1 + 2x ²	✓ answer (3)

Copyright reserved

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

		1
1.4 contd	OR $(1 + \sqrt{2x^2})^2 - \sqrt{8x^2}$ $= 1 + 2\sqrt{2x} + 2x^2 - 2\sqrt{2x}$ or $= 1 - 2\sqrt{2x} + 2x^2 + 2\sqrt{2x}$ $= 1 + 2x^2$ Note: $\sqrt{x^2} = x$ if $x > 0$ and $-x$ if $x < 0$	 ✓ expansion / multiplication ✓ simplification ✓ answer (3)
	$\frac{\mathbf{OR}}{\left(1+\sqrt{2x^2}\right)^2} - \sqrt{8x^2}$	✓ expansion / multiplication
	$= \left(1 + (2x^2)^{\frac{1}{2}}\right)^2 - 8^{\frac{1}{2}}x$	$1+2.(2x^2)^{\frac{1}{2}}+2x^2$ \checkmark simplification
	$= 1 + 2 \cdot (2x^2)^{\frac{1}{2}} + 2x^2 - 8^{\frac{1}{2}}x$	✓ answer (3)
	$=1+2.2^{\frac{1}{2}}x+2x^2-8^{\frac{1}{2}}x$	
	$=1+8^{\frac{1}{2}}x+2x^{2}-8^{\frac{1}{2}}x$	
	$=1+2x^2$	
	Note: $\sqrt{x^2} = x$ if $x > 0$ and $-x$ if $x < 0$	
	OR	
	Let $2x^2 = y$	
	$\left(1+\sqrt{2x^2}\right)^2-\sqrt{8x^2}$	
	$=(1+\sqrt{y})^2-\sqrt{4y}$	
	$=1+2\sqrt{y}+y-2\sqrt{y}$	
	=1+y	
	$=1+2x^2$	[20]
		[22]

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

2.1.1	$T_n = 4n + 1$		✓✓✓ Answer	
	OR	NOTE: If $T_n = 5 + (n-1)(4)$	only	(3)
	$T_n = 5 + (n-1)(4)$ = 4n + 1	then full marks	✓ $d = 4$ ✓ substitution ✓ answer	(3)
2.1.2	$T_n = 5(25)^{n-1}$		✓ $r = 25$ ✓ answer	(2)
2.2	The sequence is 1; $1 + d$; $1 + 2d$ and 1; r ; r^2 ; r^3 ;	; 1 + 3 <i>d</i> ; (AP) (GP)		
		$r^2 = 1 + 2d$	✓ $1+d=r$ ✓ $1+2d=r^2$	
	$r^2 - 2r + 1 = 0$ OR $1 + 2d + 3$	$d^{2} = 1 + 2d$ $d^{2} = 1 + 2d$ $d^{2} = 0$ $d = 0$	$\checkmark r = 1$ $\checkmark d = 0$	
	$\therefore d = 0$ \the one and only such sequence Nomsa is correct.	<i>r</i> = 1	✓reason	(5)
	OR $T_1 = 1$ Let the sequence be 1; a; b; Geometric: $r = \frac{a}{1} = \frac{b}{a}$ $a^2 = b$ Arithmetic: $d = a - 1 = b - a$ 2a - 1 = b $2a - 1 = a^2$	If: Sequence is 1; 1; 1; 1; 1; 1; 1; Then $d = 0$ r = 1 Therefore only one sequence exists. Nomsa is correct Max 3 / 5	✓ Setting up sequence ✓ $a^2 = b$ ✓ $b = 2a - 1$ ✓ $a = 1$	
	0 = a2 - 2a + 1 $0 = (a - 1)2$ $a = 1$	If the candidate only gives Sequence is 1; 1; 1; 1; 1; 1; 1; then 2/5 If $ar^{n-1} = a + (n-1)d$ only	$\checkmark b = 1$	(5)
	b=1 Sequence is 1; 1; 1; Nomsa is correct	then 1 / 5		[10]

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

3.1	-1 + 2 + 5 +		\checkmark all three terms	
	OR			(1)
	-1;2;5			
3.2	$S_n = -1 + 2 + 5 + 8 + \dots to 100 terms$			
	$\mathbf{S}_{n} = \frac{n}{2} \left[2a + (n-1)d \right]$		✓ formula ✓ $n = 100$	
	$S_{100} = \frac{100}{2} [2(-1) + (100 - 1)(3)]$	Answer only: 4 / 4	\checkmark substitution	
	=50[-2+297] =14 750		✓ answer	
	=14 /30 OR			(4)
	$S_n = -1 + 2 + 5 + 8 + \dots to 100 terms$			[5]
	$T_{100} = 3(100) - 4$			
	= 296			
	$S_{n} = \frac{n}{2} [T_{1} + T_{100}]$			
	$S_{100} = \frac{100}{2} \left[-1 + 296 \right]$			
	= 50[295]	Apply consistent accuracy.		
	=14 750	This is the answer if series is $2+5+8+$		
	NOTE:	$S_n = 2 + 5 + 8 + to 100 terms$		
	If $S_n = -1 + 2 + 5 + 8 + \dots to 99$ terms	$\mathbf{S}_{n} = \frac{n}{2} \left[2a + (n-1)d \right]$		
	$\mathbf{S}_{\mathbf{n}} = \frac{n}{2} \left[2a + (n-1)d \right]$	2		
	$s = \frac{99}{2} [2(1) + (00 - 1)(2)]$	$S_{100} = \frac{100}{2} [2(2) + (100 - 1)(3)]$		
	$S_{99} = \frac{99}{2} [2(-1) + (99 - 1)(3)]$	=50[4+297]		
	$=\frac{99}{2}[-2+294]$	=15050		
	=14454	Then 4 / 4		
	Then 3 / 4			

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

4.1	The first differences are $1; -1; -$	3; - 5;	✓ pattern
	These form a linear pattern $T_n = 1 + (n-1)(-2)$ = 3 - 2n		✓ $d = -2$ ✓ answer (3)
	OR $T_n = -2n + 3$ ANSWER ONLY: Full marks		
4.2	Between the 35^{th} and 36^{th} terms of first difference 35^{th} first difference = $3 - 2(35)$ = -67	f the quadratic sequence lies the 35 th	✓ substitution of 35 into $T_n = -2n + 3$ ✓ answer
	OR From the quadratic sequence: P_{36} 35^{th} first difference = $-1158 - (-$ = -67 If substitute and get $T_{35} = -$ and $T_{36} = -2(36) + 3 = -$ answer -2 then $1/2$	1091) $-2(35) + 3 = -67$	(2) $\checkmark P_{36} = -1158 \text{ and}$ $P_{35} = -1091$ $\checkmark \text{ answer}$ (2)
4.3	Second difference of terms is -2 $P_n = an^2 + bn + c$ a = -1. 3a + b = 1 -3 + b = 1 b = 4 a + b + c = -3 -1 + 4 + c = -3 c = -6 $P_n = -n^2 + 4n - 6$ OR	If the general term has been worked out correctly in 4.2 and not redone in 4.3 but answer just written down then 4 / 4	✓ $a = -1$ ✓ substitution ✓ $b = 4$ ✓ $c = -6$ (4)

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

Second difference of terms is -2. 4.3 $P_n = an^2 + bn + c$ contd a = -1. $P_0 = -6 = c$ $P_n = -n^2 + bn - 6$ $-3 = -(1)^2 + (1)b - 6$ h = 4 $P_n = -n^2 + 4n - 6$ OR $P_n = \frac{n-1}{2} \Big[2(first \ first \ difference) + (n-2)(second \ difference) \Big] + P_1$ $P_n = \frac{n-1}{2} [2(1) + (n-2)(-2)] - 3$ $P_n = n - 1 - (n - 2)(n - 1) - 3$ $P_n = n - 1 - n^2 + 3n - 2 - 3$ $P_n = -n^2 + 4n - 6$ OR $P_n = (n-1)P_2 - (n-2)P_1 + 2nd \ difference \frac{(n-1)(n-2)}{2}$ $P_n = (n-1)(-2) - (n-2)(-3) - 2\frac{(n-1)(n-2)}{2}$ $P_n = -2n + 2 + 3n - 6 - n^2 + 3n - 2$ $P_n = -n^2 + 4n - 6$ OR $P_n = \frac{(n-2)(n-3)T_1 - 2(n-1)(n-3)T_2 + (n-2)(n-1)T_3}{2}$ $P_n = \frac{(n^2 - 5n + 6)(-3) - 2(n^2 - 4n + 3)(-2) + (n^2 - 3n + 2)(-3)}{2}$ $P_n = \frac{-3n^2 + 15n - 18 + 4n^2 - 16n + 12 - 3n^2 + 9n - 6}{2}$ $P_n = -n^2 + 4n - 6$ OR

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

	induce does a question, crosses it out and does not re-do it, mark the deleted attempt.	1	
4.3 contd	$P_2 - P_1 = T_1$		
conta	$P_3 - P_2 = T_2$		
	$P_4 - P_3 = T_3$		
	$P_n - P_{n-1} = T_{n-1}$		
	$P_n - P_1 = T_1 + T_2 + \dots + T_{n-1}$		
	$P_n - P_1 = \frac{n-1}{2} [2(1) + (n-2)(-2)]$		
	$P_n - (-3) = (n-1)(3-n)$		
	$P_n = -n^2 + 4n - 6$		
4.4	Maximum value of T _n is $\frac{4(-1)(-6) - 4^2}{4(-1)} = -2$	\checkmark max value – 2	
	The maximum value is negative and hence the sequence can not have any positive terms as the function is maximum valued	\checkmark explanation	(2)
	OR		
	$-n^2 + 4n - 6$	\checkmark max value – 2	
	$=-(n-2)^2+4-6$	✓ explanation	
	$=-(n-2)^2-2$		(2)
	The function has a maximum-value of -2 and therefore the pattern will never have positive values.		
	\mathbf{OR} $T_n = -n^2 + 4n - 6$		
	$\frac{d}{dn}(T_n) = -2n + 4$	\checkmark max value – 2	
	0 = -2n + 4	✓ explanation	(2)
	n = 2		(2)
	$T_2 = -(2)^2 + 4(2) - 6$		
	= -2		
	The function has a maximum-value of -2 and therefore the pattern will never have positive values.		
	OR As the sequence decreases from the second term onwards and the second term is negative, the sequence will never have a positive term.	✓✓ answer	
	OR		(2)
	$T_n = -n^2 + 4n - 6$		
	$\frac{d}{dn}(T_n) = -2n + 4$		
	$\frac{d}{dn}(T_n) < 0$ for $n > 2$ and $T_2 < 0$ so the sequence decreases and stays	✓✓ answer	(2)
	negative		(2) [11]
Copyright		Please ti	-

er

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

<u>V</u> ULD	SHON 3										
5.1	First year:	150									
	Second year: $150 + 18 = 168$										
	8										
	Third year: $168 + \frac{8}{9}(18) = 184$										
		-									
	Crearth 10	$(8)^{n-2}$	ft							✓ genera	1 torma
	Growth = 18	$\left(\frac{-}{9}\right)$	atter <i>n</i> y	ears						• genera	
	17 th year gro	wth is 19	$\binom{8}{2}^{1/2}$	- 3 08 /	em						
	17 year gio	wui is it	(9)	- 5,00 (✓ answe	
	Yr 1	Yr 2	Yr 3	Yr 4	Yr 5	Yr 6	Yr 7	Yr 8	Yr 9		(2)
	Ht 150	168	184	198,2	210,84	222,07	232,06	240,94	248,83		
	Inc	18	16	14,2	12,64	11,23	9,99	8,88	7,89		
	Yr 10	Yr 11	Yr 12	Yr 13	Yr 14	Yr 15	Yr 16	Yr 17			
	Ht 255,84	262,08	267,62	272,55	276,93	280,82	284,28	287,36			
	Inc 7,01	6,24	5,54	4,93	4,38	3,89	3,46	3,08			
5.2	Height after										
	$= 150 + \frac{18(1)}{1}$	$-\left \frac{0}{2}\right $		NO	ГЕ:					$\checkmark n = 9$	
	_150 \	(9)			vriting o	ut 9 teri	ns and			✓ substit	ution
	=130+	8	-		ng to 15					into sum	
	1	<u>– </u>			ect, full		15 WC1			formula	
	= 150 + 105,	ر 87681 <i>14</i>	5	Cont	ect, Iuli	marks				Tormana	
	= 150 + 105, = 255,88 cm		J		1	0/2					
				Ans	wer only	1: 2/3					
	OR										
	10	$\binom{8}{1}^{9}$								✓ answe	
	$18 \left[\left(\frac{1}{9} \right) - 1 \right]$									(3)	
	$=150 + \frac{((3))}{2}$										
	$= 150 + \frac{18\left(\left(\frac{8}{9}\right)^9 - 1\right)}{\frac{8}{9} - 1}$										
		9									
	= 150 + 105,	8768146	5								
	= 255,88 cm										
5.3	Max height	= 150 +	sum to	infinity						✓ statem	ent
				-							
		=150+	. 8							✓ substit	ution
			$1 - \frac{1}{0}$							into the s	um to
		150	y 							infinity f	
	= 150 cm + 162 cm							√ max he			
	= 312 cm								(3)		
	The tree will never reach a height of more than 312 cm.									[8]	
NOT										1	۲۸٦
NOTI						× n_1	, 12				
If a candidate answers in 5.1 that the growth is $18\left(\frac{8}{9}\right)^{n-1} = 18\left(\frac{8}{9}\right)^{16} = 2,73$ cm then 1 / 2											
The answer for 5.2 as continued accuracy uses $n = 10$, Height after 10 years											
Height after 10 years $= 150 + \frac{18\left(1 - \left(\frac{8}{9}\right)^{10}\right)}{1 - \frac{8}{7}} = 150 + 112,11 \dots = 262,11 \text{ cm}$ This is awarded 3/3 as consistent accuracy											
	$18 \left[1 - \left(\frac{8}{3} \right)^{-1} \right]$									ed 3/3 as	
-150+	((9)) =	= 150 + 1	112,11 .	= 26	52,11 cm	l		consis	tent acc	uracy	
-150+	$1 - \frac{8}{3}$										
	9										

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

6.1	$\frac{1}{2}x^2 = -\frac{1}{x+1} + 1$. (aquating
	2 x+1 x2(x+1) = -2 + 2(x+1)	 ✓ equating ✓ multiplication by LCD
	$x^3 + x^2 = -2 + 2x + 2$	LCD
	$x^3 + x^2 - 2x = 0$	\checkmark standard form
	$x(x^2 + x - 2) = 0$	✓ common factor✓ factorisation of
	x(x+2)(x-1) = 0	quadratic
	x = 0 or x = -2 or x = 1	✓ y-answer
	$y = 0$ or $y = \frac{1}{2}(-2)^2$ or $y = \frac{1}{2}(1)^2$	answer $P(-2; 2)$
	$y=2$ or $y=\frac{1}{2}$	answer Q $\left(1;\frac{1}{2}\right)$
	P(-2;2)	(6)
	$Q\left(1;\frac{1}{2}\right)$	
	OR	
	$\frac{1}{2}(-2)^2 = 2$ \therefore (-2; 2) lies on $f(x) = \frac{1}{2}x^2$	\checkmark substitution
	$-\frac{1}{(-2)+1} + 1 = 2 \qquad \therefore (-2; 2) \text{ lies on } g(x) = -\frac{1}{x+1} + 1$	\checkmark substitution
	(-2)+1 $x+1\therefore (-2; 2) is one of the points P, O or Q. From the graph it is P$	
		✓ P lies on <i>f</i> and <i>g</i>
	$\frac{1}{2}(1)^2 = \frac{1}{2}$ \therefore (-2; 2) lies on $f(x) = \frac{1}{2}x^2$ \therefore $\left(1; \frac{1}{2}\right)$ is one of the	✓ substitution✓ substitution
	points P, O or Q. From the graph it is Q	
	$-\frac{1}{(1)+1} + 1 = \frac{1}{2} \qquad \therefore \text{Q lies on } g(x) = -\frac{1}{x+1} + 1$	
	$\therefore \left(1; \frac{1}{2}\right) \text{ is one of the points P, O or Q. From the graph it is Q}$	\checkmark Q lies on f and g
		(6)
6.2	For $m > 0$, $m = 1$	✓ gradient $m = 1$
	the equation of the axis of symmetry is $y = x + c$. 1 = (-1) + c	
	c = 2	
		$\checkmark c = 2$ (2)
	Therefore the equation is $y = h(x) = x + 2$.	

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

6.2		<u>61</u>	
6.3	The equation of the inverse of	of <i>h</i> 18	
	x = y + 2	Answer only: Full marks	\checkmark interchange x and y
	$\therefore y = x - 2$	Answer only. I un marks	✓ answer
			(2)
6.4	$g(x) = -\frac{1}{x+1} + 1 = \frac{-1+x+1}{x+1}$	$\frac{1}{x} = \frac{x}{x}$	\checkmark simplification of
	x+1 $x+1$	<i>x</i> +1	g(x)
	1		
		(-r)(-r-1)	
	$LHS = \frac{x}{x+1} + \frac{x}{\frac{1}{x+1}}$	$RHS = \left(\frac{-x}{1-x}\right) \left(\frac{x-1}{(x-1)+1}\right)$	\checkmark simplification of
	-+1	(1-x)((x-1)+1)	LHS
		(1-x)x	
	$=\frac{x}{x+1}+\frac{1}{x+1}$	$=\frac{(1-x)x}{(1-x)x}$	\checkmark simplification of
		=1	RHS
	$=\frac{x+1}{x+1}$	-1	(2)
	x + 1		(3)
	= 1	NOTE:	
		If substitute a value of x	
	LHS = RHS	and prove it, then $0/3$	
	OR		
			\checkmark 2 substitutions
	LHS = $g(x) + g\left(\frac{1}{x}\right)$	$\mathbf{RHS} = g(-x).g(x-1)$	correct.
	$\begin{bmatrix} LIIS - g(x) + g(\frac{1}{x}) \end{bmatrix}$	(1) (1) (1)	NOTE : not just
		$=\left(-\frac{1}{-x+1}+1\right)\left(-\frac{1}{x-1+1}+1\right)$	rewriting $g(x)$ again
	$= -\frac{1}{x+1} + 1 - \frac{1}{\frac{1}{x+1}} + 1$		
	$x + 1 = \frac{1}{-} + 1$	$=\left(\frac{-1+1-x}{1-x}\right)\left(\frac{-1+x}{x}\right)$	
	X	$-\left(\frac{1-x}{1-x}\right)\left(\frac{1-x}{x}\right)$	\checkmark simplification of
	$=-\frac{1}{x+1}+2-\frac{x}{1+x}$	$(\mathbf{r})(\mathbf{r}, \mathbf{l})$	LHS
	x+1 $1+x$	$=\left(\frac{-x}{1-x}\right)\left(\frac{x-1}{x}\right)$	
	1 + x + 2		✓ simplification of
	$=-\frac{1+x}{1+x}+2$	$=\left(\frac{x}{x-1}\right)\left(\frac{x-1}{x}\right)$	RHS
	= -1 + 2	$-\left(\frac{x-1}{x-1}\right)$	
		=1	(3)
	=1	-1	
	I US - DUS		[13]
	LHS = RHS		

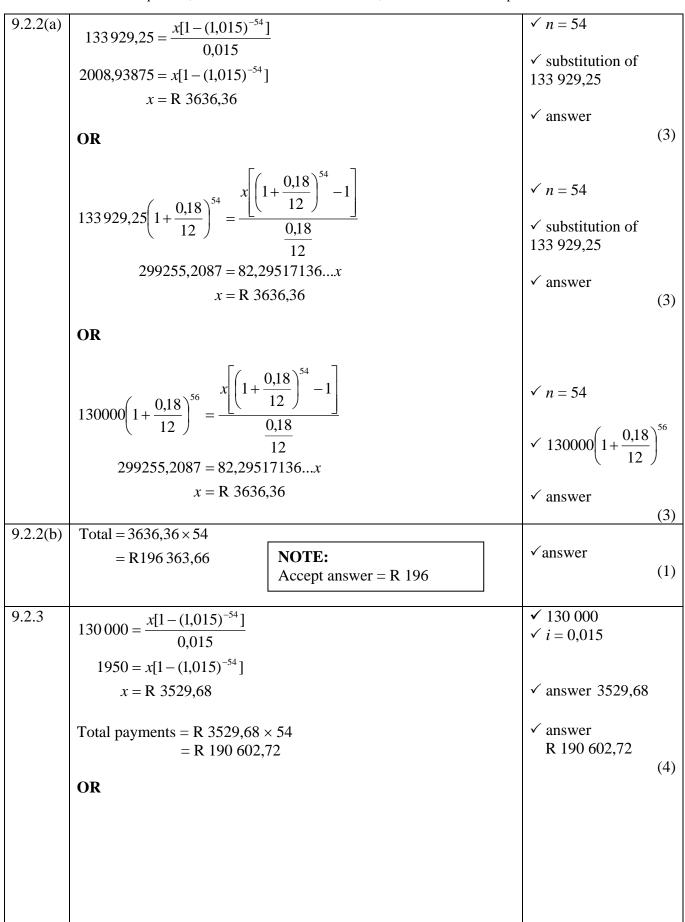
- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

QUESTION 7

7.1	$y \in [-3; 3]$			✓ answer	
	, <u>,</u> , , , , , , , , , , , , , , , , ,		NOTE:		(1)
	OR		Notation incorrect : 0 / 1		
	$-3 \le y \le 3$				
	OR				
	y can be any value fro	m-3 to 3			
7.2	x-value is 7,37° to the	e left of 90°		\checkmark method	
	B(82,63°; 0,38)			$\checkmark x$ -value	
		NOTE:		✓ <i>y</i> -value	
		Answer only			(3)
			ct and y-value incorrect : 2/3		
			rect and y-value correct : 1/3		
			rt incorrect of x and y-value		
		correct: 2 / 3			
7.3	Period = $\frac{360^{\circ}}{2}$		NOTE	$1 \sqrt{\frac{360^\circ}{}}$	
	$1 \text{ chod} = \frac{3}{3}$		NOTE:	3	
	= 120°		Answer only : 2 / 2	✓ answer	
					(2)
7.4	$x = -180^{\circ}$			✓ ✓ answer	
					(2)
					[8]

8.1	x > 0	✓ answer	
0.1			(1)
	OR		(1)
	$x \in (0; \infty)$		
8.2	$y = 2^{-x}$	✓ answer	
		((1)
	OR		
	$y = \left(\frac{1}{2}\right)^x$		
8.3	y = 0	✓ answer	
0.5	<i>y</i> = 0		(1)
8.4.1	Reflect the graph of f over the x-axis NOTE :	✓ answer	` <i>´</i>
	Reflect only $\cdot 0 / 1$	((1)
	For each point the <i>y</i> -coordinate changes sign.		
8.4.2	D eflect the graph of f over the line $y = x$	✓✓ answer	
0.4.2	Reflect the graph of <i>f</i> over the line $y = x$. Then shift the graph down 5 units	✓ answer	
	Then shift the graph down 5 times		(3)
1			(J)

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.


8.4.2 contd	OR Sketch the graph of the inverse of f . Shift the graph of the inverse of f down	wn by 5 units.	
	OR Shift the graph 5 units LEFT. Reflect the graph over the line $y = x$.		
8.5	$log_{2} x < 3$ $-log_{2} x > -3$ For $-log_{2} x = -3$ $2^{3} = x$ $x = 8$	NOTE: Notation incorrect: Answer $x < 8$: 2/3	 ✓ multiplication by − 1 ✓ Notation ✓ critical values
	f(x) > -3 0 < x < 8 or $x \in (0; 8)$	Answer only correct: 3 / 3	(3) [10]

QUESTION 9

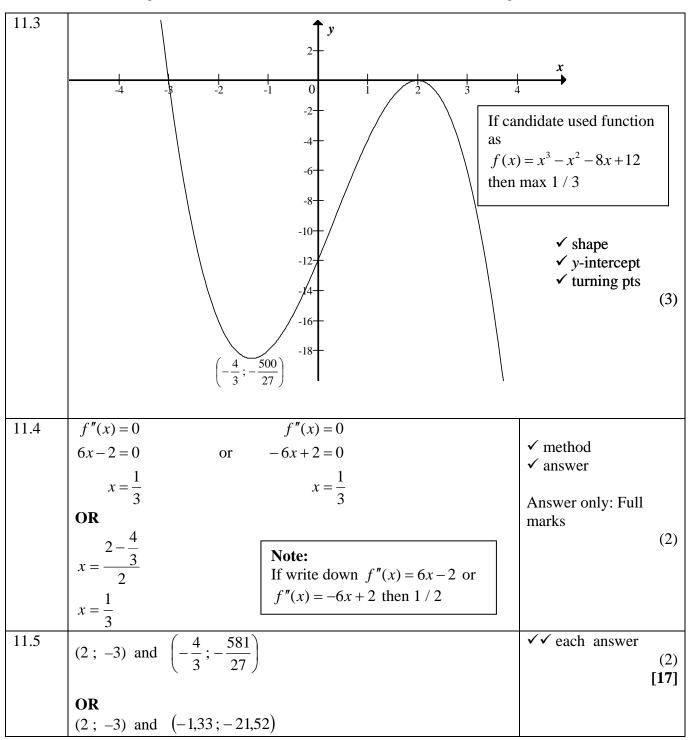
Penalise ONCE in question 9 for early rounding off.

9.1	$A = P(1-i)^{n}$ $15000 = 24000(1-0.18)^{n}$ $0.625 = (0.82)^{n}$ $n = \frac{\log 0.625}{\log 0.82}$ = 2.37 years	NOTE: If subs A and P incorrectly: Answer would be $n = -2,37$ years $\therefore n = 2,37$ years: $2/4$ If subs A and P incorrectly: Answer would be $n = -2,37$ years : $1/4$ Answer $n = 2,4$ years $4/4$ Answer $n = 2,4$ years $4/4$ Answer rounded to 3 years and all calculations shown and $n = 2,37$ shown: 4/4 Answer rounded to 3 years and $n = 2,37$ not shown: $3/4$	 ✓ substitution ✓ simplification ✓ application of logs ✓ answer (4) Incorrect formula: 0/4
9.2.1	$130\ 000 \left(1 + \frac{0.18}{12}\right)^2$ = 130000 (1,015) ² = R 133 929,25	NOTE: – 1 per error for incorrect substitution to a max of 2 marks	 ✓✓ substitution ✓ answer (3) Incorrect formula: 0/3

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

9.2.3 contd	$130\ 000\left(1+\frac{0.18}{12}\right)^{54} = \frac{x\left[\left(1+\frac{0.18}{12}\right)^{54}\right]^{54}}{\frac{0.18}{12}}$ $290475,5842 = 82,29517136$ $x = R\ 3529,68$ Total payments = R\ 3529,68 × 54 $= R\ 190\ 602,72$		✓ $130\ 000\left(1+\frac{0.18}{12}\right)^{54}$ ✓ $i = 0.015$ ✓ answer 3529.68 ✓ answer R 190 602.72 (4)
	OR $130000 \left(1 + \frac{0.18}{12}\right)^{55} = \frac{x \left(1 + \frac{0.18}{12}\right) \left[\left(1 + \frac{0.18}{12}\right) \left(1 + \frac{0.18}{12}\right)$	2	✓ $130\ 000\left(1+\frac{0.18}{12}\right)^{55}$ ✓ $i = 0.015$ ✓ answer 3529,68 ✓ answer R 190 602,72
	Total payments = R $3529,68 \times 54$ = R 190 602,72	NOTE: Disregard the cents values if they are incorrect.	(4)
9.2.4	R196 363,66 – R190 602,72 =R5 760,96		✓ answer (1) [16]


- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

10.1	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $= \lim_{h \to 0} \frac{-2(x+h)^2 + 3 - (-2x^2 + 3)}{h}$	$ \frac{\checkmark}{\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}} \\ \frac{\checkmark}{-2(x+h)^2 + 3} $
	$= \lim_{h \to 0} \frac{-2x^2 - 4xh - 2h^2 + 3 + 2x^2 - 3}{h}$ $= \lim_{h \to 0} \frac{h(-4x - 2h)}{h}$ $= \lim_{h \to 0} (-4x - 2h)$	✓ simplification✓ simplification
	= -4x NOTE: Penalty 1 mark only for incorrect notation (lim missing or = in incorrect place)	✓ answer (5)
	Answer only : $0 / 5$ Cannot give mark for answer if the answer is incorrect according to the working out, even if the answer is given as $-4x$.	
10.2	$y = x^{2} - \frac{1}{2x^{3}}$ $y = x^{2} - \frac{1}{2}x^{-3}$	
	$\frac{dy}{dx} = 2x + \frac{3}{2}x^{-4}$ OR	$\begin{array}{c} \checkmark 2x \\ \checkmark +\frac{3}{2}x^{-4} \end{array} $
	$\frac{dy}{dx} = 2x + \frac{3}{2x^4}$ OR	(2) [7]
	$\frac{dy}{dx} = 2x - (-3)\frac{1}{2}x^{-4}$	

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

111	2 2	1
x (() (x x x () () () ()	$D = -x^{3} + x^{2} + 8x - 12$ $x^{3} - x^{2} - 8x + 12 = 0$ $(x-2)(x^{2} + x - 6) = 0$ (x-2)(x-2)(x+3) = 0 x = 2 or x = -3 where the equation of the equation	 ✓ any one of factors ✓ quadratic factor ✓ linear factors ✓ ✓ x-answers (5)
11.2 j	$\frac{1}{f'(x) = -3x^2 + 2x + 8}$ $0 = 3x^2 - 2x - 8$ 0 = (x - 2)(3x + 4) $z = 2 \text{ or } x = -\frac{4}{3}$ urning points are (2; 0) and $\left(-\frac{4}{3}; -\frac{500}{27}\right)$ OR (2; 0) and (-1,33; -18,52) NOTE: If = 0 is omitted in 11.2: penalty 1 mark If not in coordinate form but coordinates implied: OK	✓ $f'(x) = 0$ ✓ $-3x^2 + 2x + 8 = 0$ or $3x^2 - 2x - 8 = 0$ ✓ factors ✓ x -values ✓ y -values (5)

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

12.1	$s(0) = 5(0)^3 - 65(0)^2 + 200$	(0) + 100	$\checkmark t = 0$
	= 100 metres	NOTE: If subs $t = 8$, then answer = 100: 0 / 2	✓ answer (2) Answer only: full marks
12.2	$s(t) = 5t^{3} - 65t^{2} + 200t + 10$ $s'(t) = 15t^{2} - 130t + 200$ $s'(4) = 15(4)^{2} - 130(4) + 20$ = -80 metres per m NOTE: If used average rate of cha If subs $t = 4$ into $s(t)$: 0 / 10	ange between $t = 0$ and $t = 4$: $0 / 3$	✓ $s'(t) = 15t^2 - 130t + 200$ ✓ substitution $t = 4$ ✓ answer (- 80) (3)
12.3	per minute and the car is tr negative rate of change. OR The <u>vertical</u> velocity of the NOTE:	e sea level is decreasing at 80 metres avelling downwards hence it is a e car at $t = 4$ is 80 metres per minute.	 ✓ speed 80 metres per minute ✓ downwards (2)
12.4	$s'(t) = 15t^{2} - 130t + 200$ s''(t) = 30t - 130 130 = 30t t = 4,33 minutes		✓ $s''(t) = 30t - 130$ ✓ $s''(t) = 0$ ✓ answer (3)
	OR $t = \frac{-(-130)}{2(15)}$ t = 4,33 minutes		[10]

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

13.1 $x + 3y \le 18$ $x + y \le 8$ $2x + y \le 14$ $x, y \ge 0$ $\sqrt{\sqrt{3}}$ answer $\sqrt{\sqrt{3}}$ answer $\sqrt{3}$ answer 	er er (7)
$2x + y \le 14$ $x, y \ge 0$ OR $6x + 18y \le 108$ $8x + 8y \le 64$ $14x + 7y \le 98$ $x, y \ge 0$ OR $y \le -\frac{1}{3}x + 6$ $y \le -2x + 14$ $x, y \ge 0$ I3.2 P = 30x + 40y ISOUTE: If written as equations (inequality omitted): max 6 / 7 One should note that x and y should be counting numbers $y \le -2x + 14$ $x, y \ge 0$ ISOUTE: If written as equations (inequality omitted): max 6 / 7 One should note that x and y should be counting numbers $y \le -2x + 14$ $x, y \ge 0$ ISOUTE: If written as equations (inequality omitted): max 6 / 7 One should note that x and y should be counting numbers $y \le -2x + 14$ $x, y \ge 0$ ISOUTE: If P = 30A + 40B then 1 / 2 ISOUTE: If P	er (7) er
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(7) er
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(7) er
$6x + 18y \le 108$ $8x + 8y \le 64$ $14x + 7y \le 98$ $x, y \ge 0$ NOTE: If written as equations (inequality omitted): max $6 / 7$ OR $y \le -\frac{1}{3}x + 6$ $y \le -x + 8$ $y \le -2x + 14$ $x, y \ge 0$ One should note that x and y should be counting numbers13.2P = $30x + 40y$ NOTE: If P = $30A + 40B$ then $1/2$ 13.3 $y = -\frac{3}{4}x + \frac{P}{40}$ $\frac{13}{12}$ $\sqrt[4]{4}$	er
$6x + 18y \le 108$ $8x + 8y \le 64$ $14x + 7y \le 98$ $x, y \ge 0$ NOTE: If written as equations (inequality omitted): max $6 / 7$ OR $y \le -\frac{1}{3}x + 6$ $y \le -x + 8$ $y \le -2x + 14$ $x, y \ge 0$ One should note that x and y should be counting numbers13.2P = $30x + 40y$ NOTE: If P = $30A + 40B$ then $1/2$ 13.3 $y = -\frac{3}{4}x + \frac{P}{40}$ $\frac{1}{12}$ $\sqrt[4]{4}$	
$8x + 8y \le 64$ $14x + 7y \le 98$ $x, y \ge 0$ OR $y \le -\frac{1}{3}x + 6$ $y \le -x + 8$ $y \le -2x + 14$ $x, y \ge 0$ If written as equations (inequality omitted): max 6 / 7 If inequalities sign the wrong way round: max 6 / 7 One should note that x and y should be counting numbers $y \le -2x + 14$ $x, y \ge 0$ If P = 30x + 40y If P = 30A + 40B then 1 / 2 If P = 30A + 40B then 1 / 2 If P = 30A + 40B then 1 / 2	
$14x + 7y \le 98$ $x, y \ge 0$ OR $y \le -\frac{1}{3}x + 6$ $y \le -2x + 14$ $x, y \ge 0$ $13.2 P = 30x + 40y$ $y = -\frac{3}{4}x + \frac{P}{40}$	
$x, y \ge 0$ If inequalities sign the wrong way round: max $6/7$ $y \le -\frac{1}{3}x + 6$ $y \le -x + 8$ $y \le -2x + 14$ $x, y \ge 0$ One should note that x and y should be counting numbers13.2 $P = 30x + 40y$ NOTE: If $P = 30A + 40B$ then $1/2$ 13.3 $y = -\frac{3}{4}x + \frac{P}{40}$ $\frac{13}{12}$ $\checkmark \checkmark$	
OR $y \le -\frac{1}{3}x + 6$ $y \le -x + 8$ $y \le -2x + 14$ $x, y \ge 0$ One should note that x and y should be counting numbers13.2P = 30x + 40yNOTE: If P = 30A + 40B then 1 / 213.3 $y = -\frac{3}{4}x + \frac{P}{40}$ 13.4 $y = -\frac{3}{4}x + \frac{P}{40}$	
OROne should note that x and y should be counting numbers $y \le -x+8$ $y \le -2x+14$ $x, y \ge 0$ One should note that x and y should be counting numbers13.2 $P = 30x + 40y$ NOTE: If $P = 30A + 40B$ then $1/2$ 13.3 $y = -\frac{3}{4}x + \frac{P}{40}$ $\frac{13}{12}$ $\sqrt[4]{40}$	
$y \le -x + 8$ $y \le -2x + 14$ $x, y \ge 0$ $13.2 P = 30x + 40y$ $13.3 y = -\frac{3}{4}x + \frac{P}{40}$ $y = -\frac{3}{4}x + \frac{P}{40}$	
$y \le -x + 8$ $y \le -2x + 14$ $x, y \ge 0$ 13.2 P = 30x + 40y If P = 30A + 40B then 1 / 2 $y = -\frac{3}{4}x + \frac{P}{40}$ $y = -\frac{3}{4}x + \frac{P}{40}$	
x, y \ge 0 NOTE: 13.2 P = 30x + 40y $\checkmark \checkmark$ answer 13.3 $y = -\frac{3}{4}x + \frac{P}{40}$ $\checkmark \checkmark$ 13.4 $y = -\frac{3}{4}x + \frac{P}{40}$ $\checkmark \checkmark$	
13.2 P = $30x + 40y$ NOTE: If P = $30A + 40B$ then $1/2$ $\checkmark \checkmark$ answer 13.3 $y = -\frac{3}{4}x + \frac{P}{40}$ $13 + \frac{P}{40}$ $13 + \frac{P}{40}$ $13 + \frac{P}{40}$ 13.3 $y = -\frac{3}{4}x + \frac{P}{40}$ $13 + \frac{P}{40}$ $13 + \frac{P}{40}$ $13 + \frac{P}{40}$	
13.3 $y = -\frac{3}{4}x + \frac{P}{40}$	
13.3 $y = -\frac{3}{4}x + \frac{P}{40}$	(2)
$y = -\frac{4}{4}x + \frac{40}{40}$	
$y = -\frac{4}{4}x + \frac{40}{40}$	
$\checkmark \checkmark \checkmark answer of marks$	(2)
Maximum at (3 ; 5)	
13.4 $-2 < m < -1$ NOTE :	
accept $1 < m < 2$: $2/2$.	(2)
If \leq signs used then max 1 / 2	
	[13]