

You have Downloaded, yet Another Great Resource to assist you with your Studies ③

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

basic education

Department: Basic Education **REPUBLIC OF SOUTH AFRICA**

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICS P2

FEBRUARY/MARCH 2014

....................

MARKS: 150

П

1

TIME: 3 hours

This question paper consists of 12 pages, 3 diagram sheets and 1 information sheet.

Copyright reserved

Please turn over

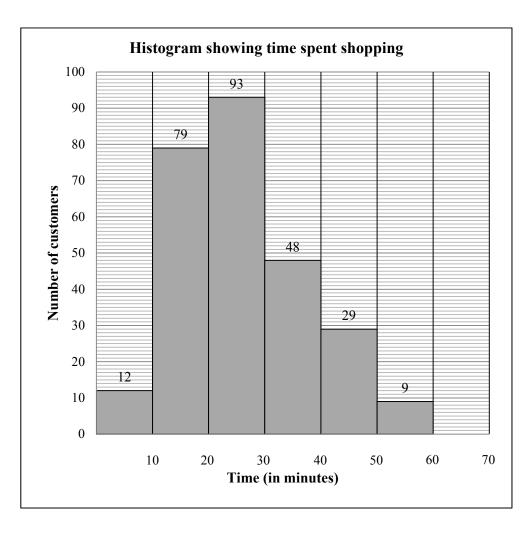
INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

- 1. This question paper consists of 11 questions.
- 2. Answer ALL the questions.
- 3. Clearly show ALL calculations, diagrams, graphs, et cetera that you have used in determining the answers.
- 4. Answers only will not necessarily be awarded full marks.
- 5. You may use an approved scientific calculator (non-programmable and non-graphical), unless stated otherwise.
- 6. If necessary, round off answers to TWO decimal places, unless stated otherwise.
- 7. Diagram sheets for QUESTION 1.4, QUESTION 2.1, QUESTION 2.2 and QUESTION 6.2.2(b) are attached at the end of this question paper. Write your centre number and examination number on these diagram sheets in the spaces provided and insert the diagram sheets inside the back cover of your ANSWER BOOK.
- 8. An information sheet with formulae is included at the end of this question paper.
- 9. Number the answers correctly according to the numbering system used in this question paper.
- 10. Write neatly and legibly.

QUESTION 1

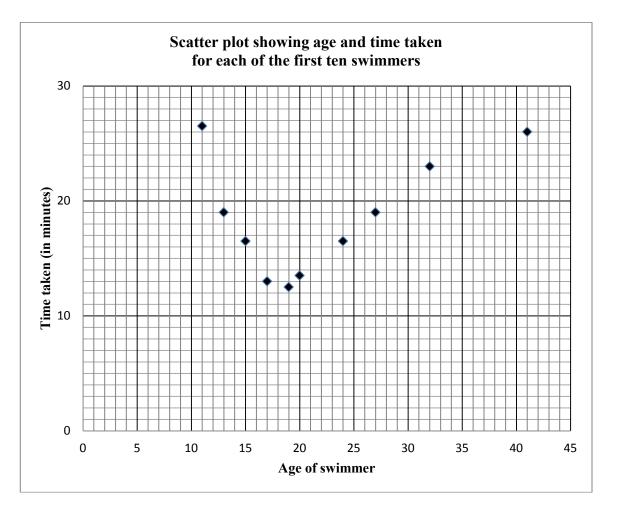
The tuck shop at Great Future High School sells cans of soft drinks. The Environmental Club at the school decided to have a can-collection project for three weeks to make learners aware of the effects of litter on the environment.


The data below shows the number of cans collected on each school day of the three-week project.

58	83	85	89	94
97	98	100	105	109
112	113	114	120	145

1.1	Calculate the mean number of cans collected over the three-week period.	(2)
1.2	Calculate the standard deviation.	(2)
1.3	Determine the lower and upper quartiles of the data.	(2)
1.4	Use the scaled line on DIAGRAM SHEET 1 to draw a box and whisker diagram to represent the data.	(3)
1.5	On how many days did the number of cans collected lie outside ONE standard deviation of the mean?	(3) [12]

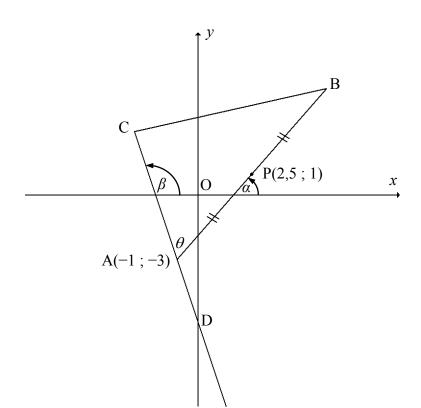
QUESTION 2


The histogram below shows the time, in minutes, spent by customers while shopping at Excellent Supermarket.

2.1	Complete the frequency column and cumulative frequency column in the table on DIAGRAM SHEET 1.	(3)
2.2	Use the grid on DIAGRAM SHEET 2 to draw the ogive of the above data.	(4)
2.3	Use the ogive to estimate the median time that customers spent at this supermarket.	(2)
2.4	Comment on the skewness of the data.	(1) [10]

QUESTION 3

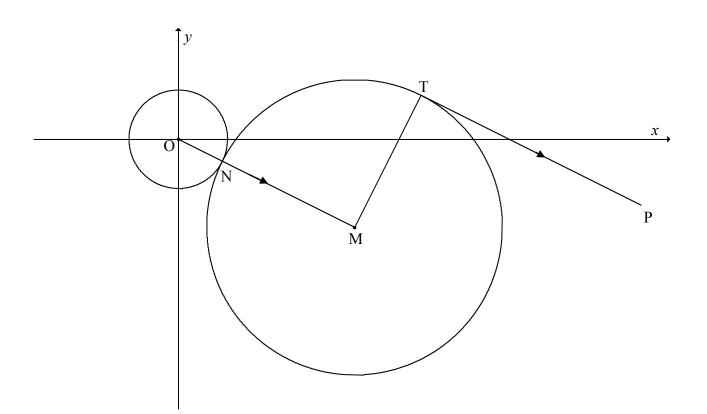
The scatter plot below shows the age and the time taken for each of the first ten swimmers of a swimming club to complete an open water swimming event. The time taken is rounded to the nearest half-minute.


3.1	Write down the coordinates of an outlier in the scatter plot.	(1)

3.2	Which of exponentia	the following functions will best fit the data: linear, quadratic or ul?	(1)				
3.3	Give an ex	planation for the trend observed in this set of data.	(2)				
3.4	If the two worst (longest) times are disregarded from the set of data, how will this affect the following:						
	3.4.1	The standard deviation of the original set of data	(1)				

3.4.2The mean of the original set of data(1)[6]

QUESTION 4


In the diagram below, A(-1; -3), B and C are the vertices of a triangle. P(2,5; 1) is the midpoint of AB. CA extended cuts the *y*-axis at D. The equation of CD is y = -3x + k. $CAB = \theta$. α and β are the angles that AB and AC respectively make with the *x*-axis.

4.5 4.6	Calculate the length of AD. Leave your answer in surd form. If AC = 2AD and AB = $\sqrt{113}$, calculate the length of CB.	(2) (5)
4.4	Calculate the size of θ .	(5)
4.3	Determine the gradient of AB.	(2)
4.2	Determine the coordinates of B.	(2)
4.1	Determine the value of k .	(2)

QUESTION 5

In the diagram below, the equation of the circle with centre M is $(x - 8)^2 + (y + 4)^2 = 45$. PT is a tangent to this circle at T and PT is parallel to OM. Another circle, having centre O, touches the circle having centre M at N.

5.6	Calculate the coordinates of T.	(6) [19]
5.5	Determine the equation of MT in the form $y = mx + c$.	(5)
5.4	Calculate the size of OMT.	(2)
5.3	Calculate the length of ON. Leave your answer in simplest surd form.	(3)
5.2	Calculate the length of OM. Leave your answer in simplest surd form.	(2)
5.1	Write down the coordinates of M.	(1)

x

NSC

P(3; 5)

A

QUESTION 6

6.1 The diagram below shows polygons A, B and C. P(3;5) is a vertex of polygon A.

B

И

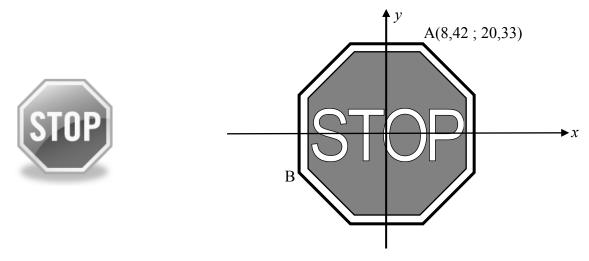
.k

-k

С Fully describe the transformation from polygon A to polygon B. 6.1.1 (2) 6.1.2 Write down the rule that transforms polygon B to polygon C. (2) P' is the image of P when polygon A is rotated about the origin through 6.1.3 180°. Write down the coordinates of P'. (2)P(3; 2), Q(-1; 2), R(-2; 1) and S(-1; 0) are the vertices of quadrilateral PQRS. PQRS is enlarged through the origin by a scale factor of 2 to obtain 6.2.1 P'Q'R'S'. Write down the coordinates of Q'. (1)P''Q''R''S'' is the image when P'Q'R'S' is reflected about the *v*-axis and 6.2.2 then translated 3 units to the right and 1 unit upwards. Write down the single rule that transforms PQRS to P''Q''R''S''. (3) (a) Use the grid on DIAGRAM SHEET 3 to draw P''Q''R''S''. (b) Label the vertices. (5)

6.2.3 Solve for t in the equation:

Perimeter of PQRS =
$$t \times$$
 perimeter of P^{''}Q^{''}R^{''}S^{''}


(2) [17]

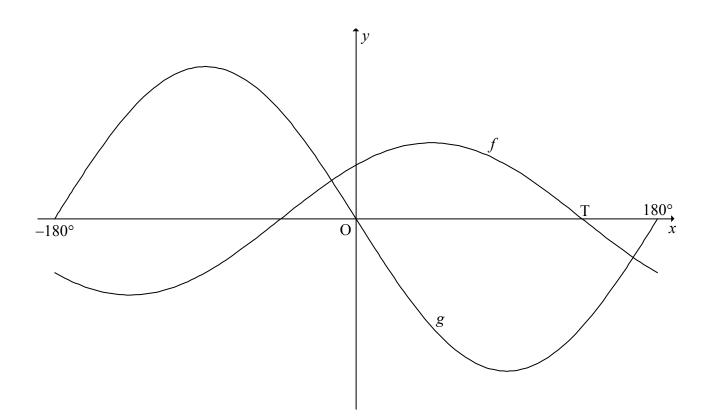
6.2

8

0

QUESTION 7

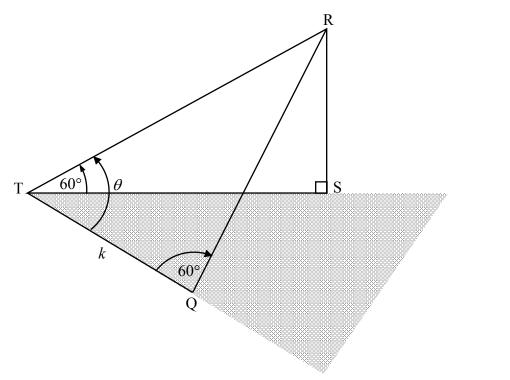
The STOP sign is a regular octagon. Consider A(8,42 ; 20,33) as a vertex on a STOP sign having its centre at the origin.


If the STOP sign is rotated about the origin in an anticlockwise direction such that A coincides with point B, determine the coordinates of B. [6]

QUESTION 8

8.1	If $\sin A = \frac{3}{5}$ and $\cos A < 0$, determine, WITHOUT using a calculator, the value of:								
	8.1.1	sin(-A)	(2)						
	8.1.2	tan A	(3)						
8.2	If cos 34° of <i>p</i> :	= p, WITHOUT using a calculator, write down the following in terms							
	8.2.1	cos 214°	(2)						
	8.2.2	cos 68°	(2)						
	8.2.3	tan 56°	(4)						
8.3	WITHOU'	T using a calculator, determine the value of the following expression:							
	cos 350° si	$\sin 40^\circ - \cos 440^\circ \cos 40^\circ$	(5) [18]						

QUESTION 9

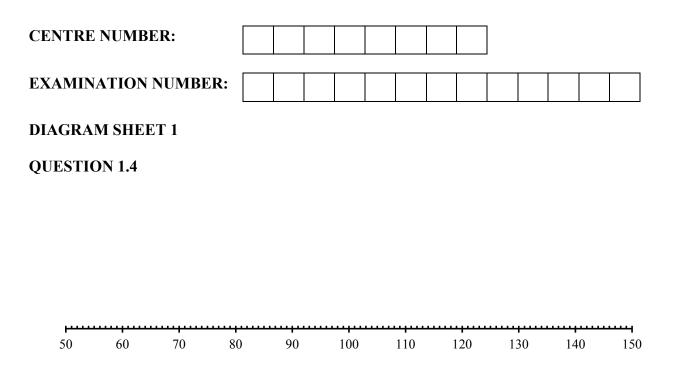

The graphs of $f(x) = \cos(x - 45^\circ)$ and $g(x) = -2\sin x$ are drawn below for $x \in [-180^\circ; 180^\circ]$. The point T is an *x*-intercept of *f* as indicated on the diagram.

		(2) [16]
9.6	The graph h is obtained when the graph f is shifted 45° to the right. Write down the equation of h in its simplest form.	(2)
9.5	Write down the interval for which both f and g are strictly increasing.	(3)
9.4	Write down the interval for which $f(x) \ge g(x)$.	(2)
9.3	Write down the coordinates of point T.	(2)
9.2	Solve the equation: $\cos(x - 45^\circ) = -2\sin x$ for $x \in [-180^\circ; 180^\circ]$.	(3)
9.1	Show that $\cos(x - 45^\circ) = -2\sin x$ can be written as $\tan x = -0,2612$.	(4)

QUESTION 10

In the diagram below, RS is the height of a vertical tower. T and Q are two points in the same horizontal plane as the foot S of the tower. From point T the angle of elevation to the top of the tower is 60°. $R\hat{T}Q = \theta$, $R\hat{Q}T = 60^\circ$ and TQ = k metres.

10.1 Express TR in terms of θ and k.

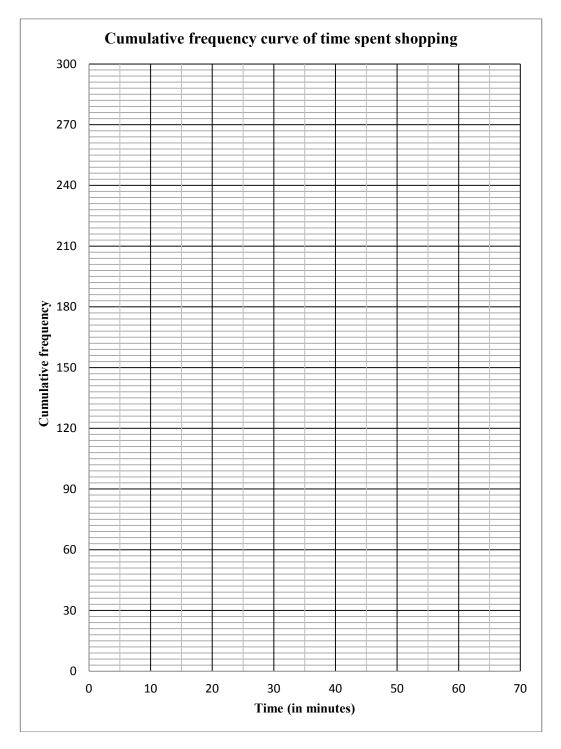

10.2 Show that
$$RS = \frac{3k}{2(\sqrt{3}\cos\theta + \sin\theta)}$$
. (7)
[10]

(3)

QUESTION 11

11.1	Consider	the functio	n: $f(x) = 3 - 2\sin^2 x$	
	11.1.1	Determi	ne the range of <i>f</i> .	(4)
	11.1.2	For whic	ch value(s) $x, x \in [-180^\circ; 180^\circ]$, will f have a minimum value?	(3)
11.2	11.2.1	Show th	at $1 - \cos 2Q = 2\sin^2 Q$.	(1)
	11.2.2	Given:	$\hat{P} + \hat{Q} + \hat{R} = 180^{\circ}$	
		(a)	Show that $\sin 2R = -\sin(2P + 2Q)$.	(3)
		(b)	Hence, show that $\sin 2P + \sin 2Q + \sin 2R = 4 \sin P \sin Q \sin R$.	(7) [18]

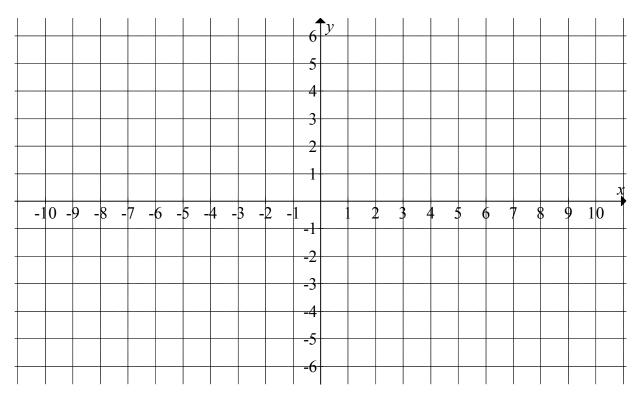
TOTAL: 150


QUESTION 2.1

Time (in minutes)	Frequency	Cumulative frequency
$0 < x \le 10$		
$10 < x \le 20$		
$20 < x \le 30$		
$30 < x \le 40$		
$40 < x \le 50$		
$50 < x \le 60$		

CENTRE NUMBER:							
EXAMINATION NUMBER:							

DIAGRAM SHEET 2


QUESTION 2.2

CENTRE NUMBER:							
EXAMINATION NUMBER:							

DIAGRAM SHEET 3

QUESTION 6.2.2(b)

INFORMATION SHEET

$$\begin{aligned} x &= \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \\ A &= P(1+ni) \qquad A = P(1-ni) \qquad A = P(1-i)^n \qquad A = P(1+i)^n \\ \sum_{i=1}^n 1 &= n \qquad \sum_{i=1}^n i = \frac{n(n+1)}{2} \qquad T_n = a + (n-1)d \qquad S_n = \frac{n}{2}(2a + (n-1)d) \\ T_n &= ar^{n-1} \qquad S_n = \frac{a(r^n - 1)}{r-1} \quad ; \quad r \neq 1 \qquad S_\infty = \frac{a}{1-r} \; ; \; -1 < r < 1 \\ F &= \frac{x[(1+i)^n - 1]}{i} \qquad P = \frac{x[1-(1+i)^{-n}]}{i} \\ f'(x) &= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \\ d &= \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \qquad M\left(\frac{x_1 + x_2}{2} ; \frac{y_1 + y_2}{2}\right) \\ y &= mx + c \qquad y - y_1 = m(x - x_1) \qquad m = \frac{y_2 - y_1}{x_2 - x_1} \qquad m = \tan \theta \\ (x-a)^2 + (y-b)^2 = r^2 \\ ln \; AABC: \; \frac{a}{\sin A} &= \frac{b}{\sin B} = \frac{c}{\sin C} \qquad a^2 = b^2 + c^2 - 2bc \cos A \qquad area \Delta ABC = \frac{1}{2} ab \sin C \\ \sin(\alpha + \beta) &= \sin \alpha \cdot \cos \beta + \cos \alpha \cdot \sin \beta \qquad \sin(\alpha - \beta) = \sin \alpha \cdot \cos \beta - \cos \alpha \cdot \sin \beta \\ \cos(\alpha + \beta) &= \cos \alpha \cdot \cos \beta - \sin \alpha \cdot \sin \beta \qquad \cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta \\ \cos(\alpha + \beta) &= \cos \alpha \cdot \cos \beta - \sin \alpha \cdot \sin \beta \qquad \cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta \\ \cos 2\alpha &= \begin{cases} \cos^2 \alpha - \sin^2 \alpha \\ 2\cos^2 \alpha - 1 \end{cases} \end{aligned}$$

 $(x; y) \rightarrow (x \cos \theta - y \sin \theta; y \cos \theta + x \sin \theta)$

$$\overline{x} = \frac{\sum fx}{n} \qquad \qquad \sigma^2 = \frac{\sum_{i=1}^n (x_i - \overline{x})^2}{n}$$

$$P(A) = \frac{n(A)}{n(S)} \qquad \qquad P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

$$\widehat{y} = a + bx \qquad \qquad b = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sum (x - \overline{x})^2}$$