

You have Downloaded, yet Another Great Resource to assist you with your Studies ③

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

education

Department: Education **REPUBLIC OF SOUTH AFRICA**

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICS P2

NOVEMBER 2009(1)

MEMORANDUM

MARKS: 150

This memorandum consists of 25 pages.

Copyright reserved

Please turn over

П

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

1 1	500.5	(500 5
1.1	Mean $-\frac{522,5}{-435}$	▼ 522,5
	$\frac{12}{12}$	✓ answer
		(2)
	ANSWER ONLY: Full marks	No penalty for
		Rounding:
		Accept 43,54 ; 44
1.2	Ordered Data	√ 9.3
	93 149 15 236 261 28 325 609	,
	65 7 71 0 76 4 08 2	. 10.2
	05,7 71,9 70,4 98,2	▼ 19,5
		✓ 30,3
	28+32.5	✓ 68,8
	Median = $\frac{1}{2}$ = 30,3	
	2	× 08 2
	Lower quartile $-\frac{15+23,6}{-10.3}$	• 98,2
	$-\frac{19,5}{2}$	(5)
	(57, 710)	
	Upper quartile = $\frac{65,7+71,9}{6,9} = 68.8$	If indicated on the
	2	box and whicker
		diagram in 1.2
	The five number summary is (9.3 ; 19.3 ; 30.25 ; 68.8 ; 98.2)	diagram in 1.3 –
	OR	5 marks
	If they use the formula:	
	in they use the formula.	
	Ordered Data	
	9,3 14,9 15 23,6 26,1 28 32,5 60,9	
	65.7 71.9 76.4 98.2	
	$P_{50} = \frac{12+1}{1} = 6,5$	
	Position of median: 2^{2}	
	28 + 32,5 20.2	
	$\therefore Q_2 = \frac{1}{2} = 30,3$	
	2	
	12	
	Position of lower quartile: $P_{\perp} = \frac{13}{2}$	
	4	
	$\cdot 0 = 15 + (0.25(236 - 15)) = 17.15$	
	Position of upper quartile: $P_{75} = 0,75(13) = 9,75$	
	(0 - 657 + (0.75(710 - 657)) - 70.35)	
	$Q_3 = 05, 7 + (0, 75(71, 9 - 05, 7)) = 70,55$	
	Min = 9,3	
	Max = 98.2	
	Accept any one of these five number summaries:	
	Accept any one of these rive number summaries:	
	(9,3; 19,3; 30,3; 68,8; 98,2)	
	(9,3; 15; 30,3; 71,9; 98,2)	
	(9.3:17.2:30.3:70.4:98.2)	

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

1.3								
							1	 minimum and maximum values
							-1	\checkmark quartiles and
	······	20 20	40 50	eo 7 0	•••		100	median
	0 10	20 30	40 50 0	60 70	00	90	100	 whiskers with median line
								(3)
		Note:	t a how and w	hickor wit	houton	• /		
		refere	ence to the nu	mbers: 1/3	nout ang	У		
					-			
1.4	The data is sl	kewed to the	right (positive	ely skewed	d).			\checkmark \checkmark comment about
	This suggests	s that there w	as a large diff	ference be	tween the	he meo	lian	rainfall.
	and the maxi	mum rainfall	(some month	ns had exce	eptional	lly hig	h	(2) Note:
		it year).						Skewed to right 1/2
	Die data is sl	keef na regs (positief skeef)				6
	Dit dui daare	op dat daar 'i	n groot verski	il is tussen	die mee	diaan	en die	
	maksimum re	eënval (somm	ige maande h	iet ongewo	oon hoë	reënve	al	✓ ✓ verwysing na
	genaa geaure	enae ale jaar						(2)
1.5	By using the	calculator, a	$\sigma = 28,19$.	(28,	190582	256)		√√√answer
	OD Don and	Donor moth	ad (not received)	mmondod)			Accept: 28 ; 28,2 ;
	Mean = 43.54	4	iou (not reco	(43.)	.) 5416660	67)		28,1
	x	$x - \overline{x}$	$(x-\overline{x})^2$					(5)
	60,9	17,36	301,3696					
	14,9	-28,64	820,2496					
	9,3	-34,24	1172,378					
	28,0	-15,54	241,4916					
	76.4	28,30	804,2896					
	98.2	54.66	2987.716					
	65,7	22,16	491,0656					(1 1)
	26,1	-17,44	304,1536					• headings correct
	32,5	-11,04	121,8816					of the mean
	23,6	-19,94	397,6036					deviations
	15,0	-28,54	814,5316					
			9536,509]				
	$\sigma = \sqrt{\frac{9536,5}{12}}$	= 28,19			(28,	19059)	✓ answer
	V 12							(3)
								[15]

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

2.3	The scatter plot shows an overall decrease in the time taken by the winner since 1972	\checkmark decrease/afname (1)
	Die spreidiagram dui 'n algehele afname in tye aangeteken deur	(1)
	die wenners vanaf 1972.	
	OR	
	Times are faster. <i>Tye is vinniger</i> .	
	OR	
	Negative correlation between year and time.	
2.1	Negatiewe korrelasie tussen jaar en tyd.	
2.4	The top athletes of the world have turned professional. This	. (any accortable
	anows them to train at the best facilities and feceive the best	• any acceptable
	Also equipment manufacturers are in competition with each	trend
	other In this case, manufacturers are designing swimsuits that	(1)
	assist swimmers	(1)
	Swimmers train harder and put in more effort.	
	Die top atlete van die wêreld het professionele atlete geword. Dit	✓ enige aanvaarbare
	laat hulle toe om by die beste fasiliteite te oefen en die beste	rede wat verband hou
	afrigting te ontvang.	met die neiging.
	Vervaardigers van voorraad is in kompetisie met mekaar. Hul	(1)
	onwerp dus swembroeke wat die swemmers help.	
	Swemmers oefen harder en gebruik meer tyd om te oefen.	
2.5	In the context of the times around these two observations, one can	\checkmark acceptable reason
	consider the efforts of 1976 and 1988 to be outliers. This shows	in context
	that these athletes were exceptionally good swimmers at the time.	(2)
	Binne ale konteks van tye geaurenae nierale twee waarnemings,	• • aanvaarbare rede
	dui daaron dat hierdie atlete uitstekende swemmers was daardie	onnie die konteks
	tvd	(2)
2.6	Winning time of 2008 is expected to be about 47.6 seconds	\checkmark answer from graph
2.0	Accept answer from candidate's graph.	(1)
		[8]
		[-]

3.1	50	✓ answer
		(1)
3.2	Cut–off mark of 56% (37 students)or 58% (38 students) Accept interval: 55% - 60%	✓ answer read off from ogive (1)

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

3.3			
	Marks (out of 100)	Frequency (f)	
	$0 \le \text{marks} < 10$	1	✓ class intervals
	$10 \le \text{marks} < 20$	3	0 - 10; 10 - 20
	$20 \le \text{marks} < 30$	4	Or $0 < \text{marks} < 10$
	$30 \le \text{marks} < 40$	11	Or Dr
	$40 \le \text{marks} < 50$	12	Between 0 and 10 Or
	$50 \le \text{marks} < 60$	9	From 0 to 10
	$60 \le \text{marks} < 70$	5	If the intervals not in
	$70 \le \text{marks} < 80$	4	tens, the mark for intervals not given
	$80 \le \text{marks} < 90$	1	intervals not given
	$90 \le \text{marks} < 100$	0	✓ method
			✓ accuracy of five answers
			(3) [5]

4.1	$\tan 45^\circ = m_{AB}$	\checkmark tan 45°	
	=1	✓ answer	
	OR		(2)
	3-0 3	Answer only: full marks	
	$m_{AB} = \frac{1}{1-t} = \frac{1}{1-t}$		
4.2	$3-0 = \tan 45^\circ = 1$	✓equating	
	$\frac{1}{1-t} = tall + 3 = 1$		
	1 - t = 3		
	t = -2	✓ value	(2)
	OR		(2)
	y = mx + c		
	3 = (1)(1) + c		
	<i>c</i> = 2	✓c=2	
	y = x + 2		
	(t;0) in $y = mx + 2$		
	0 = t + 2		
	t = -2	✓value	
			(2)
		Answer only: full marks	

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

4.3	$\sqrt{(1-p)^2 + (3+4)^2} = \sqrt{50}$	✓ substitution into distance
	$(1-p)^2 + (3+4)^2 = 50$	Tormula
	$1 - 2p + p^2 + 49 = 50$	1 avancion
	$p^2 - 2p = 0$	• expansion
	p(p-2) = 0	✓ factors
	$p \neq 0$ or $p = 2$	✓ answer Note: If an answer was not
	OP	chosen: 3/4
	OK .	(4) \checkmark substitution into distance
	$(1-p)^2 + (3+4)^2 = 50$	formula
	$(1-p)^2 = 50 - 49$	
	$(1-p)^2 = 1$	✓ expansion
	1 - p = 1 $1 - p = -1$	✓ factors
	$p \neq 0$ $p = 2$	✓ answer (4)
	OR	(4) If gradient of BC assumed as -1
	Let $p = 2$	and p calculated correctly: 0/4
	$AC = \sqrt{(1-2)^2 + (3+4)^2}$	Answer only: 1/4
	$=\sqrt{1+49}$	autoritation into distance
	$=\sqrt{50}$	formula
	which is true	
	$\therefore p = 2$	✓ √50
		✓ which is true(justification) ✓ answer
		(4)
		If equating to $\sqrt{50}$ from the
1 1		start, then 3/4
4.4	midpoint of BC = $\left(\frac{-2+2}{2}; \frac{0-4}{2}\right)$	\checkmark x-value (x = $\frac{t+p}{2}$)
	midpoint of BC = $(0; -2)$	
		✓ y-value (2)
		(2)
4.5	Gradient of line = $m_{AB} = 1$ Equation of line is: $y + 4 = 1(x - 2)$	\checkmark gradients are equal
	y = x - 6	✓ equation in any form
		(3)
	$\begin{array}{l} \mathbf{OR} \\ y = mx + c \end{array}$	[13]
	y = x - p - 4	[10]

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

QUESTION 5

5.1	Midpoint BD $\left(\frac{0-2}{8-6}\right)$	✓ <i>x</i> -coordinate
	$\left(\frac{1}{2}, \frac{1}{2}\right)$	✓ y-coordinate
	=(-1;1)	(2)
5.2	y = 7(-8) + 58	✓ substitution
	= 2	
	· A lies on the line	(1)
	A neson menne.	Substitute both at the same
		time with justification (1)
5.3	The line $y = 7x + 58$ is a tangent to the circle at A.	√relationship
	$m_{ine} = 7$	2-1 1
	2-1 1	$v \cdot m_{AM} = \frac{1}{-8 - (-1)} = -\frac{1}{7}$
	$m_{AM} = \frac{2}{-8 - (-1)} = -\frac{1}{7}$	$\checkmark m_{line} = 7$
	$m_{line} \times m_{AM} = 7 \times -\frac{1}{7} = -1$	✓ product
	\therefore AM \perp to the line	(5)
	OR	

NOTE: $m_{line} = 7$ and CA gradient of AM then no relationship: 4/5

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

5.2	ΩD.	
5.5 contd	$m_{BD} = 7$	$\checkmark \checkmark m_{BD} = 7$
	$m_{line} = 7$	$\checkmark m_{line} = 7$
	∴ line // diameter	
		 ✓ conclusion (5) Note: Only lines parallel 4/5
	OR	
	$(x+1)^2 + (y-1)^2 = 50$	\checkmark circle equation
	$x^2 + 2x + 1 + y^2 - 2y + 1 = 50$	\checkmark substitution of $v = 7x +$
	$x^{2} + 2x + 1 + (7x + 58)^{2} - 2(7x + 58) + 1 = 50$	58
	$x^{2} + 2x + 1 + 49x^{2} + 812x + 3364 - 14x - 116 + 1 = 50$	
	$50x^2 + 800x + 3200 = 0$	\checkmark standard form
	$x^{2} + 16x + 64 = 0$	
	$(x+8)^2 = 0$	✓ answer
	x = -8	• tangent (5)
	y = 2	
	y = 7x + 58 is a tangent to the circle	
5.4	$AD = \sqrt{(8-2)^2 + (0+8)^2}$	✓ substitution
	$=\sqrt{36+64}$	
	= 10	✓ answer
	$AB = \sqrt{(2+6)^2 + (-8+2)^2}$	
	$-\sqrt{64+26}$	✓ substitution
	$-\sqrt{04+50}$	
	-10	✓ answer
		(4)
		Note: Answers $\sqrt{10}$ then $3/4$

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

5.5	$m_{AD} = \frac{8 - (2)}{0 - (-8)}$		
	$m_{AD} = \frac{3}{4}$	\checkmark gradient of AD	
	$m_{AB} = \frac{2 - (-6)}{-8 - (-2)}$ $= -\frac{4}{-4}$	✓ gradient of AB	
	3 $m_{AB}.m_{AD} = -\frac{4}{3} \times \frac{3}{4}$ $= -1$ $D\hat{A}B = 90^{\circ}$	✓ PRODUCT	(3)
	OR BD ² = $(8+6)^2 + (0+2)^2$ = 200	✓ distance formula	
	$= AD^{2} + AB^{2}$ $\therefore D\hat{A}B = 90^{\circ}$	✓ Pythagoras✓ conclusion (3)	
	OR $a^{2} = b^{2} + d^{2} - 2(b)(d)\cos A$ $200 = 100 + 100 - 2(10)(10)\cos A$ $0 = -200\cos A$ $A = 90^{\circ}$	 ✓ cos rule ✓ substitution ✓ conclusion (3) 	
	OR $(AD)^2 = 100$ $(AB)^2 = 100$ $BD^2 = (-2 - 0)^2 + (-6 - 8)^2$ = 4 + 196 = 200 $\therefore BD^2 = AD^2 + AB^2$	✓ $BD^2 = 200$ ✓ $BD^2 = AD^2 + AB^2$ ✓ conclusion	
	$\therefore D\hat{A}B = 90^{\circ} \text{(Pyth)}$ OR $\hat{A} = 90^{\circ} \text{(angles in semi - circle)}$	(3) ✓ ✓ ✓ reason (3)	
5.6	$\theta = 45^{\circ}$	✓ answer	(1)

NSC-Memorandum

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

5.7 contd	$MB^{2} = (-1+2)^{2} + (1+6)^{2}$	
conta	= 1 + 49	✓✓MB
	= 50	
	$MB = \sqrt{50}$	$\sqrt{100}$ 22.5°
	$\frac{ZM}{ZM} = \tan 22.5^{\circ}$	••• tall 22,5
	MB $ZM = 7.07 \tan 22.5^{\circ}$	
	$Z_{\rm M} = 7.07 \tan 22.5$	✓ √ answer (6)
	= 2,95	(0)
	OR	
	By a well known formula	
	Area $\triangle ABD = r \times (semi-perimeter)$	✓✓ formula
	$\frac{1}{1} \times 10 \times 10 = r \times \frac{1}{200} (20 + \sqrt{200})$	$\checkmark \sqrt{200}$
	$2^{10} - 7^{2} - 2^{20} - 7^$	$\checkmark \checkmark$ answer (6)
	$50 = r(10 + 5\sqrt{2})$	(0)
	r = 2,93	
	OR	
	$MB = \sqrt{50}$ (radius of circle)	✓MB
	$NB = \sqrt{50}$ (adjacent sides of kite)	✓ NB
	AB = 10	
	$AN = 10 - \sqrt{50}$	\checkmark AN = 2,93
	= 2,93	,
	But TANZ is a square $\therefore AN = ZN$	✓ square
	\therefore radius = 2.93	• answer (6)

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

6.1.1	$4 \times 5 = 20$ squared units	✓✓answer
		$2^2 \times 5$ 1/2
		If $2 \times 5 = 10 0/2$
(10		(2)
6.1.2	$(x; y) \rightarrow (2x; 2y)$	$\sqrt{2x}$
	NI-t-	$\mathbf{v} _{2y}$ (2)
	Nole: If candidate state: coordinates times two 2/2	(2)
	In candidate state. coordinates times two 272	$\prod_{i=1}^{n} (\kappa x_i, \kappa y_i) \cdot 1/2$
		If $2(x; y): 2/2$
6.1.3		\checkmark coordinates A'
		\checkmark coordinates B'
		\checkmark coordinates C'
		(3)
		If diagram not
		drawn but
		correctly given: 1/3
		concerty given. 1/5
	(-2;4) A $(-2;4)$ A $(-2;4)$ $(-$	If coordinates
		correctly plotted but
		not joined: 2/3
614	Not rigid. The shape remains the same, whilst the size is changed (enlarged	V same shape and
0.1.4	Not fight. The shape remains the same, whilst the size is changed /emarged	different size
	Note:	(2)
	Shape remains the same: $1/2$	not rigid only $2/2$
	Only the shape remains the same: 2/2	just enlarged 0/2
6.2		Mark per coordinate
	Reflection about the line $y = x$: $(x; y) \rightarrow (y; x)$	✓ ✓ reflection
	Rotate clockwise about the origin: $(y; x) \rightarrow (x; -y)$	\checkmark \checkmark translation
	Translate 2 left and 3 down: $(x; -y) \rightarrow (x-2; -y-3)$	(6)
	OB	
	General rule: $(r:v) \rightarrow (r-2:-v-3)$	Answer only:
		Full marks
		[15]

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

OR

The first 2 transformations in the given order is the same as the reflection in the *x*-axis i.e. $(x; y) \rightarrow (x; -y)$ Then the translation gives us $(x; y) \rightarrow (x; -y) \rightarrow (x-2; -y-3)$

NOTE:

If just given: $(x; y) \to (x-2; y-3): 2/6$

If using $(x; y) \rightarrow (y; x) \checkmark \checkmark$ $(x; y) \rightarrow (y; -x) \checkmark$ $(x; y) \rightarrow (x-2; y-3) \checkmark$ throughout :4/6

If learner starts with
(x; y) and continue
to use $(x; y)$ for the
second and third
transformation 4/6

QUESTION 7

7.1	$T' (x\cos\theta - y\sin\theta; y\cos\theta + x\sin\theta)$	$\checkmark x$ coordinate
		\checkmark y coordinate
		(2)
		Clock-wise formula: 0/2
7.2	A' $(p\cos 135^\circ - q\sin 135^\circ; q\cos 135^\circ + p\sin 135^\circ)$	$\checkmark x$ coordinate
		\checkmark y coordinate
	If clockwise rotation:	(2)
	A' $(p\cos 135^\circ + q\sin 135^\circ; q\cos 135^\circ - p\sin 135^\circ)$	
		CA from 7.1
7.3	$x' = p\cos(135^\circ) - q\sin(135^\circ)$	
	$-1 - \sqrt{2} = -p\cos 45^\circ - q\sin 45^\circ$	✓ equating
	$-1 - \sqrt{2} = -p\left(\frac{\sqrt{2}}{2}\right) - q\left(\frac{\sqrt{2}}{2}\right)$	✓ substitution
	$-1 - \sqrt{2} = -\frac{\sqrt{2}}{2}p - \frac{\sqrt{2}}{2}q(1)$	
	and	<i>.</i>
	$y' = y\cos(135^\circ) + p\sin(135^\circ)$	✓ equating
	$1 - \sqrt{2} = -q\cos 45^\circ + p\sin 45^\circ$	
	$1 - \sqrt{2} = q \left(-\frac{\sqrt{2}}{2} \right) + p \left(\frac{\sqrt{2}}{2} \right)$	✓ substitution $\frac{\sqrt{2}}{2}$
	$1 - \sqrt{2} = -\frac{\sqrt{2}}{2}q + \frac{\sqrt{2}}{2}p(2)$	
	(1) + (2):	
	$-2\sqrt{2} = -\sqrt{2}q$	✓ solving simultaneously
	<i>q</i> = 2	

Copyright reserved

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

$-\frac{\sqrt{2}}{2}(p+q) = -1 - \sqrt{2}$	
$p+q = -\frac{2}{\sqrt{2}}(-1-\sqrt{2})$	✓
$p + q = \sqrt{2} + 2$	$-\frac{\sqrt{2}}{\sqrt{2}}(p+q) = -1 - \sqrt{2}$
and	~ 2 substitution
$\frac{1}{\sqrt{2}}(p-q) = 1 - \sqrt{2}$	$\checkmark \frac{1}{\sqrt{1-1}}(p-q) = 1 - \sqrt{2}$
$p - q = \sqrt{2} - 2$	$\sqrt{2}$
$p + q = \sqrt{2} + 2$	\checkmark substitution $\frac{\sqrt{2}}{2}$
$2p = 2\sqrt{2}$	\checkmark solving simultaneously
$p = \sqrt{2}$ $q = 2$	✓ answer for q
OR	\checkmark answer for <i>p</i>
A(p;q) is obtained from A' by a rotation through 135° in a	(7)
clockwise direction	
$p = (-1 - \sqrt{2})\cos(-135^\circ) - (1 - \sqrt{2})\sin(-135^\circ)$	
$= (-1 - \sqrt{2}) \left(-\frac{1}{\sqrt{2}} \right) - (1 - \sqrt{2}) \left(-\frac{1}{\sqrt{2}} \right)$	✓ substituting $(-1-\sqrt{2})$
$=\frac{2}{\sqrt{2}}$	✓ substitution $\frac{1}{\sqrt{2}}$
$= \sqrt{2}$ $q = (1 - \sqrt{2})\cos(-135^\circ) + (-1 - \sqrt{2})\sin(-135^\circ)$	
$=(1-\sqrt{2})\left(-\frac{1}{\sqrt{2}}\right)+(-1-\sqrt{2})\left(-\frac{1}{\sqrt{2}}\right)$	✓ equating
$\left(\begin{array}{c} \sqrt{2} \end{array} \right) \left(\begin{array}{c} \sqrt{2} \end{array} \right)$	\checkmark substitution $\frac{1}{\sqrt{2}}$
$=\frac{2\sqrt{2}}{\sqrt{2}}$	✓ substituting $(-1-\sqrt{2})$
=2	
$\therefore \mathbf{A} = (\sqrt{2}; 2)$	• answer for q
	\checkmark answer for <i>p</i>
	(7)

17

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

8.1	$\sin \alpha = \frac{8}{2}$	(15 0)	
	17	(-15;8)	
		17	$x = -\sqrt{15}$
	$\sin \alpha > 0$: in second quadrant	$ \longrightarrow \alpha $	✓ answer
	$y_{\alpha} = 0$ $y_{\alpha} = 17$		(3) For drawing the radius
	$x_{\alpha} = -15$ (Fythagolas)	↓ I	vector in the correct
	$\tan \alpha = -\frac{\delta}{15}$		quadrant 1/3
			Without a sketch but
			correct values: 3/3
8.2	$\sin(90^\circ + \alpha) = \cos\alpha$		✓ reduction
	= - 15		\checkmark answer (2)
	17		Answer only: full marks
			Cannot accept decimal
0.2	2		values
8.3	$\cos 2\alpha = 1 - 2\sin^2 \alpha$		✓ expansion
	$=1-2\left(\frac{8}{2}\right)^{2}$		
	(17)		\checkmark substitution
	$=\frac{161}{1}$		√ any further
	289		calculation or answer
	OR		(3)
	$\cos 2\alpha = 2\cos^2 \alpha - 1$		1 avancion
	$(-15)^2$		• expansion
	$=2\left(\frac{15}{17}\right) -1$		
	161		\checkmark substitution
	$=\frac{1}{289}$		\checkmark any further
			calculation or answer
	OR		(3)
	$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha$		√ expansion
	$=\left(\frac{-15}{2}\right)^{2}-\left(\frac{8}{2}\right)^{2}$		cxpansion
			/
	$=\frac{161}{200}$		✓ substitution
	289		\checkmark any further
			calculation or answer
			(3)
			[8]

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

QUESTION 9

NOTE: Only penalise once in the question for leaving out the x

Penalise once in this question for treating as an equation

9.1	$\sin(90^{\circ} - x) \cdot \cos(180^{\circ} - x) + \tan x$	$\cos(-x)\cdot\sin(180^\circ+x)$	
	$= \cos x(-\cos x) + \tan x(\cos x)(-\sin x)$	(n, x)	$\checkmark \sin(90^\circ - x) = \cos x$
	$\sin x$.		$\checkmark \cos(180^\circ - x) = -\cos x$
	$=-\cos^2 x - \frac{\cos x \sin x}{\cos x}$		$\checkmark \cos(-x) = \cos x$
	$=-\cos^2 x - \sin^2 x$		$\checkmark \sin(180^\circ + x) = -\sin x$
	$= -(\cos^2 x + \sin^2 x)$		$\checkmark \tan x = \frac{\sin x}{\cos x}$
	= -1		\checkmark simplification
			✓ answer
0.2	$\sin 100^{\circ}$ and 225° ton 200°		(7)
9.2	$\frac{\sin 190 \cos 223 \tan 390}{\cos 200 \sin 125^{\circ}}$		
	$\cos 100^{\circ} \sin 135^{\circ}$ $\sin 10^{\circ} (\cos 45^{\circ}) \tan 30^{\circ}$		$\checkmark \sin 190^\circ = -\sin 10^\circ$
	$=\frac{-\sin 10(-\cos 45) \tan 50}{\sin 10^{\circ} \sin 45^{\circ}}$		$\checkmark \cos 225^\circ = -\cos 45^\circ$
	- sin 10 sin 43		$\checkmark \tan 390^\circ = \tan 30^\circ$
	$-\frac{1}{\sqrt{2}}\cdot\frac{1}{\sqrt{2}}$		$\checkmark \cos 100^\circ = -\sin 10^\circ$
	$=\frac{\sqrt{2}}{1}$ or $=-\tan 30$	0°	$\checkmark \sin 135^\circ = \sin 45^\circ \text{ or}$
	$\frac{1}{\sqrt{2}}$	If using $-\cos 80^\circ$: no penalty	$\cos 45^{\circ}$
	1	If the candidate stop at	$\checkmark \checkmark$ substitution
	$=-\frac{1}{\sqrt{3}}$	1 1	
		$=\frac{-\frac{\sqrt{2}}{\sqrt{2}}\cdot\frac{\sqrt{3}}{\sqrt{3}}}{1}$ 6/7	(7)
		$\frac{1}{\sqrt{2}}$	
9.3	$\sin x + 2\cos^2 x = 1$	L	
	$\sin x + 2(1 - \sin^2 x) = 1$		\checkmark substitution of identity
	$-2\sin^2 x + \sin x + 1 = 0$		\checkmark standard form
	$2\sin^2 x - \sin x - 1 = 0$		✓ factorisation
	$(2\sin x + 1)(\sin x - 1) = 0$		
	$\sin x = 1$ $x = 00^\circ + k^2 60^\circ \cdot k \in \mathbb{Z}$		$\checkmark \sin x = 1; \sin x = -\frac{1}{2}$
	$x = 90^{\circ} + k.300^{\circ}, k \in \mathbb{Z}$		2
			$\checkmark x = 90^\circ + k.360^\circ; k \in \mathbb{Z}$
			$\checkmark \checkmark$ answers (any two
			answers)
			(7)
			If $k \in Z$ not included: 6/7
			Also $\pm k.360^\circ; k \in N_0 \text{ or } Z$

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

$\sin x = -\frac{1}{2}$	\checkmark manipulation
$x = 210^{\circ} + k.360^{\circ}; k \in \mathbb{Z}$ OR $x = 210^{\circ} + k.360^{\circ}$	• substitution of identity
or $x = 330^{\circ} + k.360^{\circ}; k \in \mathbb{Z}$ or $x = -30^{\circ} + k.360^{\circ}$	\checkmark co ratios
OR	
$x = -150^{\circ} + k.360^{\circ}; k \in \mathbb{Z}$ OR $x = -150^{\circ} + k.360^{\circ}; k \in \mathbb{Z}$	Z
$or \ x = 330^{\circ} + k.360^{\circ}$ $or \ x = -30^{\circ} + k.360^{\circ}$	$\checkmark x = 180^\circ + (90^\circ - 2x) + k360^\circ$
	$\checkmark x = 90^\circ + k120^\circ$
OR	$\checkmark x = 360^{\circ} - (90^{\circ} - 2x) + k360^{\circ}$
$\sin x + 2\cos^2 x = 1$	$\checkmark x = -270^\circ - k360^\circ$
$\sin x = 1 - 2\cos^2 x$	
$\sin x = -\cos 2x$	(/)
$\sin x = \left[\sin(90^\circ 2x) \right]$	If $k \in \mathbb{Z}$ not included. $0/7$
sin x = -[sin(y0 - 2x)] x = 180° + (00° - 2x) + k360°	
$x = 360^{\circ} - (90^{\circ} - 2x) + k360$ $x = 360^{\circ} - (90^{\circ} - 2x) + k360$	\sim manipulation
$5x = 270^{\circ} + k360^{\circ}$ of $x = -270^{\circ} - k360^{\circ}$	\checkmark substitution of identity
$x = 90^\circ + k120^\circ$ $k \in \mathbf{Z}$	
	\checkmark co ratios
OR	
	$2x = 180^{\circ} - (90^{\circ} - x) + k360^{\circ}$
	$\sqrt{x} = 90^\circ + k360^\circ$
$\sin x + 2\cos^2 x = 1$	$\checkmark 2x = 180^{\circ} + (90^{\circ} - x) + k360^{\circ}$
$\sin x = 1 - 2\cos^2 x$	$\checkmark x = 30^\circ + k120^\circ$
$\sin x = -\cos 2x$	
$-\cos(90^\circ - x) = \cos 2x$	(7)
$2x = 180^{\circ} + (90^{\circ} - x) + k360^{\circ}$	If $k \in \mathbb{Z}$ not included: 6/7
$2x = 180^{\circ} - (90^{\circ} - x) + k360^{\circ}$ or $3x = 270^{\circ} + k360^{\circ}$	[20]
$x = 90^{\circ} + k360^{\circ}$ $x = 30^{\circ} + k120^{\circ}$	
$k \in \mathbb{Z}$	

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

10.1	$\sin(A+B) = \sin A \cdot \cos B + \cos A \cdot \sin B$	✓ expansions	
	$\frac{1}{\cos(A+B)} - \frac{1}{\cos A \cdot \cos B - \sin A \cdot \sin B}$		
	1		
	$\sin A \cdot \cos B + \cos A \cdot \sin B$ $\cos A \cdot \cos B$. divisions	
	$= \frac{1}{\cos A \cdot \cos B - \sin A \cdot \sin B} \times \frac{\cos A \cdot \cos B}{1}$	• divisions	
	$\overline{\cos A \cdot \cos B}$		
	$\sin A \cdot \cos B = \cos A \cdot \sin B$		
	$\frac{1}{\cos A \cdot \cos B} + \frac{1}{\cos A \cdot \cos B}$		
	$= \frac{\cos A \cos B}{\cos A \cos B} \sin A \sin B$		
	$\overline{\cos A.\cos B} - \overline{\cos A.\cos B}$	\checkmark tanA and tanB	
	$\tan A + \tan B$		(3)
	$=\frac{1}{1-\tan A \cdot \tan B}$		
	OR		
	$RHS = \frac{\tan A + \tan B}{2}$		
	$1 - \tan A \cdot \tan B$	$\sin A$	
	$\frac{\sin A}{+} \frac{\sin B}{-}$	$\mathbf{v} = \frac{1}{\cos A}$	
	$= \frac{\cos A \cos B}{\cos A} \times \frac{\cos A \cos B}{\cos A}$		
	$1 - \frac{\sin A}{\sin B} \frac{\sin B}{\cos A \cos B}$		
	$\cos A \cos B$		
	$=\frac{\sin A \cos B + \sin B \cos A}{\sin B \cos A}$	✓ multiplication	
	$\cos A \cos B - \sin A \sin B$		
	sin	✓ expansions	
	$\sin(A+B)$		(3)
	$-\frac{1}{\cos(A+B)}$		
	$= \tan(A+B)$		
	= LHS		
10.2	$\tan C = \tan(180^\circ - (A+B))$	✓ C	
	$\tan C = -\tan(A+B)$		
	$(\tan A + \tan B)$	$\checkmark - \tan(A+B)$	
	$\tan C = -\left(\frac{\tan R}{1 - \tan R}\right)$	\checkmark substitution into	
	$\tan C(1 \tan A \tan B) = (\tan A + \tan B)$	formula	
	$\tan C (1 - \tan A, \tan B) = -(\tan A + \tan B)$	I CD	
	$\tan C - \tan A \cdot \tan B \cdot \tan C = -\tan A - \tan B$	LCD	
	$\tan A + \tan B + \tan C = \tan A \cdot \tan B \cdot \tan C$		(4)
	OP	If no conclusion: 3/4	

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

QUESTION 11

NOTE: Penalty of one for early rounding off once in this question

1101	E. Tenanty of one for early founding off once in this question	
11.1.1	$B\hat{D}A = 208^{\circ} - 67^{\circ}$	$\checkmark \hat{BDC} = 141^{\circ}$
	$= 141^{\circ}$ $\frac{\sin D \widehat{B} A}{97} = \frac{\sin 141^{\circ}}{120}$	✓ sine rule✓ substitution
	$\sin D\hat{B}A = 0,5087006494$	$\hat{\mathbf{p}} = 20.58^{\circ}$
	$D\hat{B}A = 30,58^{\circ}$	• $B = 30,38$ • method or
	$\therefore \text{Bearing of Ship A from Ship B} = 180^{\circ} - (360^{\circ} - 208^{\circ}) + 30,58^{\circ}$	$\widehat{MBD} = 28^{\circ}$ $\checkmark \text{ answer}$
	= 58,58°	(6)
	$BDA = 208^\circ - 67^\circ$	
	$=141^{\circ}$	$\checkmark \hat{BDC} = 141^{\circ}$
	$\sin D\hat{B}A = \sin 141^{\circ}$	
	$-\frac{1}{97} - \frac{1}{120}$	✓ sine rule
	$\sin D\hat{B}A = 0,5087006494$	\checkmark substitution
	$D\hat{B}A = 30,58^{\circ}$	
	then $360^\circ - 208^\circ = N\hat{D}B$ (reflex angles)	$\checkmark N\hat{D}B = 152^{\circ}$
	$\therefore N\hat{D}B = 152^{\circ}$	
	$but M\hat{B}D + N\hat{D}B = 180^{\circ}$ (co - interior angles/ angles around a point)	
	$\therefore M\hat{B}D = 28^{\circ}$	$\checkmark M\hat{B}D = 28^{\circ}$
	$then \ M\hat{B}A = M\hat{B}D + D\hat{B}A$	
	$=30,58^{\circ}+28^{\circ}$	✓ answer
	= 58,58°	(6)

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

OR	
$\cos B = \frac{a^2 + c^2 - b^2}{2ac}$ but $a = c$	✓ cos rule✓ equal sides
$\cos B = \frac{a^2 + a^2 - b^2}{2aa}$	✓ substitution
$=\frac{2a^2-b^2}{2a^2}$	\checkmark
$=1-\frac{b^2}{2a^2}$	simplification (4)

25

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

12.2	$\cos(x-30^\circ) = \frac{1}{2}$	✓ manipulation
	$2\cos(x-30^\circ) = 1$	✓ answer
	See points A and B on the graph	(2)
	Note:	A and B in the correct place on the graph: full marks
	If drawn the line $y = \frac{1}{2}$ and put A and B on the graph: $0/2$	on the gruph. full marks
	If A and B on the <i>x</i> -axis: $1/2$	
	If $A = -30^{\circ}$ and $B = 90^{\circ}$: $1/2$	
12.3	$\cos(x-30^\circ) = 0.5$	✓ 60° (ref angle)
	$x - 30^\circ = 60^\circ$ $x - 30^\circ = -60^\circ$	✓ 90°
	$x = 90^{\circ}$ $x = -30^{\circ}$	✓ - 30°
		(3)
		Answer only: 3/3
12.4	g'(x) = 0 is at maximum and minimum values of graph	$\checkmark \checkmark$ one for each <i>x</i> -value
	$x = 30^{\circ}; 210^{\circ}$	(2)
12.5	$x \in [-90^\circ; -60^\circ) \cup (120^\circ; 270^\circ]$	✓ notation
		$\checkmark \checkmark$ critical values
	OR	(3)
	$-90^{\circ} \le x < -60^{\circ}$ or $120^{\circ} < x \le 270^{\circ}$	
	OR	[12]
	If $x < -60^{\circ} \text{ or } x > 120^{\circ} 2/3$	