


You have Downloaded, yet Another Great Resource to assist you with your Studies ③

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

basic education

Department: Basic Education **REPUBLIC OF SOUTH AFRICA**

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICS P3

FEBRUARY/MARCH 2011

MEMORANDUM

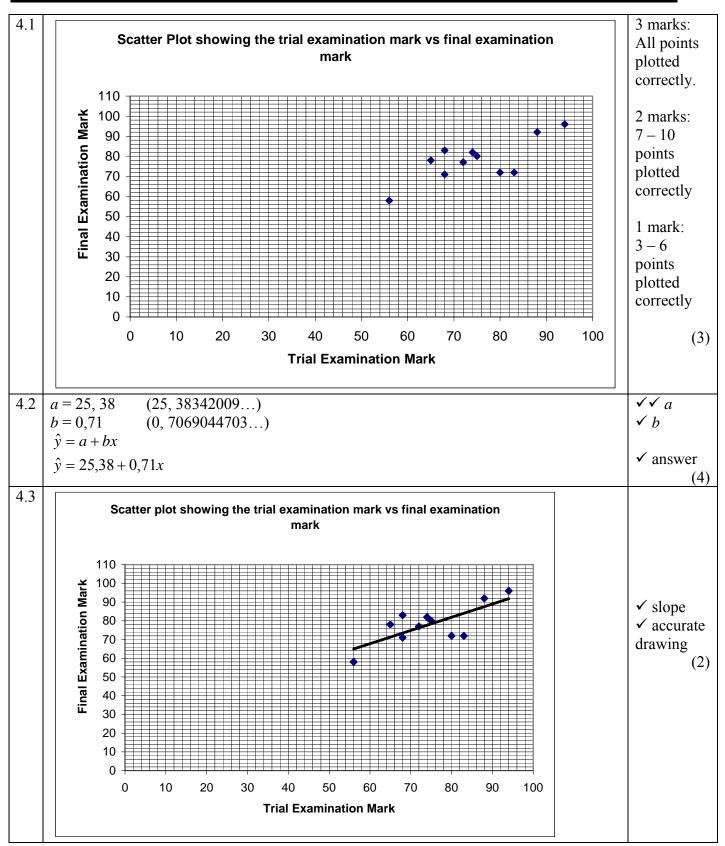
MARKS: 100

1

This memorandum consists of 11 pages.

Copyright reserved

Please turn over

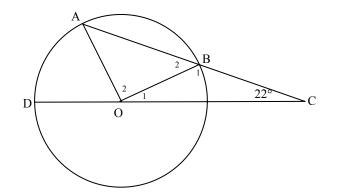

1.1	Mean		
	3,2+3,2+3,2+4,2+4,5+4,9+8,3+9,5+11,7+12,2+12,5		
	=11		
	$=\frac{77,4}{}$		
	11 = 7,03 Median = 4,9	✓ Mean ✓ Median ✓ Mode	
	Mode = 2,3		(3)
1.2	Mode	✓ mode	
	This is the lowest value and will indicate that the increases are	✓ reason	
	very poor.		(2)
1.3	Mean.	✓ Mean	
	This is the highest value and can be used to indicate that	✓ Reason	
	increases are good.		(2)
			[7]

$\sigma = \frac{90-65}{100}$	✓ method
$\sigma = \frac{2}{12,5}$	\checkmark answer (2)
University A:	
78 - 65 = 13	
Her result lies just over 1 standard deviation from the mean.	\checkmark 1 sd from the
	mean
University B:	
$\overline{x} + \sigma = 54$	
$\overline{x} + 2\sigma = 59$	
Her result lies just over 2 standard deviations from the mean	\checkmark 2 sd from the
The result nes just over 2 sumare deviations nom the mean.	mean
Har regult for University P is better	✓ University B.
The result for Oniversity D is belief.	(3)
	[5]
	University A: 78 - 65 = 13 Her result lies just over 1 standard deviation from the mean. University B: $\bar{x} + \sigma = 54$

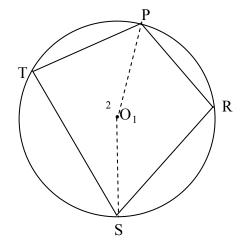
3.1		$\checkmark \checkmark$ structure of
	36% Fall (Rain & Fall)	the tree diagram
	63%	 ✓ 63% Rain ✓ 36% Fall
	Rain (Rain & Not Fall) Not Fall 37% 12% Fall (No Rain & Fall) No Rain	✓ 64% Not fall
	88% (No Rain & Not Fall)	
	Not Fall	✓ 88% Not Fall (6)
3.2	P(Not Fall) = $\left(\frac{37}{100} \times \frac{88}{100}\right) + \left(\frac{63}{100} \times \frac{64}{100}\right)$	$\checkmark \frac{37}{100} \times \frac{88}{100}$
	$=\frac{407}{1250} + \frac{252}{625}$	$\checkmark \frac{63}{100} \times \frac{64}{100}$
	$=\frac{911}{1250} = 0,7288$	✓ answer (3)
3.3	P(Dry & Fall) = $\frac{37}{100} \times \frac{12}{100}$	$\checkmark \frac{37}{100} \times \frac{12}{100}$
	$=\frac{111}{2500} = 0,0444$	✓ answer (2) [11]

4 NSC – Memorandum

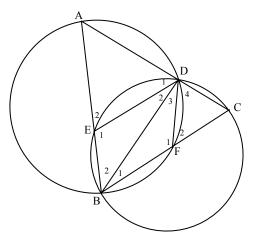
Average of trial examination	80	68	94	72	74	83	56	68	65	75	88
Final examination mark	72	71	96	77	82	72	58	83	78	80	92

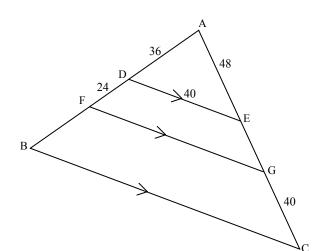

4.4	r = 0,74 (0, 7391817008)	\checkmark answer (2)
4.5	$\hat{y} = 25,38 + 0,71x$ $\hat{y} = 25,38 + 0,71(75)$ = 78,63 % If the original values of <i>a</i> and <i>b</i> then $\hat{y} = 78,401$	✓ substitution ✓ answer (2) [13]

	Broken a limb	Not broken a limb	TOTAL
Male	463	b	782
Female	а	С	d
TOTAL	913	617	1 530


5.1		
3.1	a = 450	✓ answer for <i>a</i>
	b = 319	\checkmark answer for <i>b</i>
	c = 298	\checkmark answer for <i>c</i>
	d = 748	\checkmark answer for <i>d</i>
		(4)
5.2	P(Female who has not broken a limb)	
	298	✓ 298
	$=\frac{1}{1530}$	
	149	
	$=\frac{1}{765}$	✓ answer
		(2)
5.3	P(Female & broken a limb)	
	$=\frac{450}{1520}$	✓ <u>463</u>
	1530	1530
	$=\frac{5}{2}$	
	$=\frac{1}{17}$	
	= 0,2941176471	$\checkmark\checkmark$
		$\frac{782}{1000} \times \frac{913}{1000}$
	= 0,29	$\overline{1530}^{1}\overline{1530}$
	$P(Female) \times P(Broken a limb)$	
	$=\frac{748}{1530}\times\frac{913}{1530}$	✓ independent
	1530 1530	(4)
	= 0,29	[10]
	The events of being female and having broken a limb are independent.	
	If a candidate answers not independent due to the fact that the answers are	
	not accurate to more than 2 decimal places, award full marks.	

6.1	Number of different ways the shirts and trousers can be arranged = (7 + 4)! = 11! = 39 916 800	✓ 11 ✓ 11!	(2)
6.2	Number of ways so that the shirts are together and trousers are together = 7!.4!.2 = 241 920	✓ 7! ✓ 4! ✓ × 2	(3)
6.3	P(Shirt at beginning and trouser at the end) = $\frac{9 \times 4 \times 7}{11!}$ = $\frac{14}{55}$	 ✓ × 4 × 7 ✓ 9! ✓ 11! ✓ answer 	(4) [9]


7.1	7 -3 -3 -9 -5 -27 -32 -31 -113 -356 -356	✓✓ answers (2)
7.2	$T_{k+1} = T_k - (3)^k$ $T_1 = 7$ $k \ge 1$ OR	\checkmark $T_{k+1} = T_k - (3)^k$ $\checkmark T_1 = 7$ $\checkmark k \ge 1$
	$T_{k+1} = T_k - 3(3)^{k-1}; T_1 = 7; k \ge 1$ OR $T_k = T_{k-1} - (3)^{k-1}; T_1 = 7; k \ge 2$	(3) [5]


8.	AO = OB	(radii)	✓ S	
	AO = BC	(given)		
	OB = BC		✓ S	
	$\hat{O}_1 = 22^{\circ}$	$(\angle s \text{ opp} = \text{radii})$	\checkmark S/R	
	$\hat{B}_2 = 44^{\circ}$	$(ext \angle \Delta = sum int opp)$	✓ S	
	$\hat{A} = 44^{\circ}$	$(\angle s \text{ opp} = \text{radii})$	✓ S	
	$A\hat{O}D = 66^{\circ}$	$(ext \angle \Delta = sum int opp)$	✓ answer	
		× 11/		[5]

9.1	Join PO and OS		✓ constructio	on
	Let $\hat{O}_1 = 2x$			
	$\hat{\mathbf{T}} = x$	$(\angle$ at circ centre = 2 \angle at circumference)	✓ S/R	
	$\hat{O}_2 = 360^\circ - 2x$	(∠s round a point)	✓ S	
	$\hat{\mathbf{R}} = 180^{\circ} - x$	$(\angle$ at circ centre = 2 \angle at circumference)	✓ S/R	
	$\hat{\mathbf{T}} + \hat{\mathbf{R}} = x + 180^\circ - x$		✓ S	
	=180°		((5)

9.2.1(a)	$\hat{D}_4 = \hat{C}$	$(\angle s \text{ opp} = \text{sides})$	✓ S/R
	$\hat{\mathbf{C}} = x$	$(\angle \operatorname{sum} \Delta)$	\checkmark S \checkmark S/R
	$\hat{\text{DEB}} = 180^\circ - x$	(opp \angle cyclic quad supp)	(3)
9.2.1(b)	$\hat{A} = 180^\circ - 2x$	$(ext \angle cyclic quad = int opp \angle)$	\checkmark S \checkmark R
			(2)
9.2.2	$\hat{\mathbf{D}}_1 + \hat{\mathbf{A}} = \hat{\mathbf{E}}_1$	$(ext \angle \Delta = sum int opp)$	✓ S/R
	$\hat{\mathbf{D}}_1 = x$		
	$\hat{\mathbf{C}} = x$	$(\angle \operatorname{sum} \Delta)$ OR proved above	✓ statement
	$\hat{\mathbf{D}}_1 = \hat{\mathbf{C}} = x$		
	DE CB	(corres $\angle s =$)	✓ Reason (3)
			[13]

10.1	EG 24 (DE l		✓ S/R
	$\frac{\mathrm{EG}}{48} = \frac{24}{36} \qquad (\mathrm{DE} \parallel)$	FG)	
	$EG = \frac{48 \times 24}{24}$		✓ answer
	36		
10.2	EG = 32 cm		✓ statement
10.2	$\frac{BC}{DE} = \frac{AC}{AE}$		• statement
			$\checkmark\checkmark$
	$BC = \frac{120 \times 40}{48}$		substitution
	= 100 cm		✓ answer
			(4)
	OR		
	$\frac{AB}{AD} = \frac{AC}{AE}$		
	$AB = \frac{120 \times 36}{48}$		✓ S
	AB = 90		
	$\Delta ABC \parallel\mid \Delta ADE$	$(\angle \angle \angle)$	✓ S
	$\frac{BC}{DE} = \frac{AB}{AD}$	(sides in proportion)	√ 90
		(F. F	✓ answer
	$BC = \frac{90 \times 40}{36}$		(4)
	36 BC = 100 cm		
	OR		
	$\Delta ABC \parallel \Delta ADE$	$(\angle \angle \angle)$	✓ S
	$\frac{BC}{DE} = \frac{AC}{AE}$	(sides in proportion)	✓ S
		· · · · ·	¥ 5
	$BC = \frac{120 \times 40}{36}$		\checkmark substitution
	BC = 100 cm		✓ answer
			(4)
			[6]

Copyright reserved

Please turn over

QUES	QUESTION 11					
	C $\begin{pmatrix} 2\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\$					
11.1	Let $\hat{A}_1 = x$ In $\triangle ABC$ and $\triangle ADT$ 1. $\hat{A}_1 = \hat{B}_2 = x$ (tan ch th) $\hat{B}_2 = \hat{A}_3 = x$ (AC BD alt $\angle s$) $\hat{A}_1 = \hat{A}_3$ 2. $\hat{T}_3 = B\hat{C}A$ (ext \angle cyclic quad) 3. $\hat{B}_1 = \hat{D}_1$ (3 rd \angle on triangle) $\triangle ABC \triangle ADT$ ($\angle \angle \angle$)	 ✓ statement ✓ reason ✓ statement ✓ statement ✓ reason ✓ statement 				
11.2	$\hat{A}_{1} = \hat{C}_{2} = x (\text{tan ch th})$ $\hat{T}_{1} = \hat{C}_{2} = x (AC \parallel BD; \text{ alt } \angle s)$ $\therefore \hat{T}_{1} = \hat{A}_{1} = x$ $\hat{T}_{4} = x (\text{vert opp angles})$ $\hat{T}_{4} = \hat{A}_{1} (=x)$ PT is a tangent (conv tan ch th)	✓ S/R ✓ S/R	(6)			
	OR $\hat{A}_1 = \hat{B}_2 = \hat{A}_3 = x$ (AC BT) $\hat{A}_3 = \hat{T}_1 = \hat{T}_4 = x$ (\angle s in same segment) $\hat{A}_1 = \hat{T}_4 = x$ PT is a tangent(conv tan ch th)	✓ S/R ✓ S/R	(3)			
	OR $\hat{B}_1 = \hat{T}_2$ ($\angle s$ in same seg) $\hat{B}_1 = \hat{D}_1$ ($ \Delta s$) $\hat{D}_1 = \hat{T}_2$ PT is a tangent(conv tan ch th)	✓ S/R ✓ S/R ✓ Reason	(3)			
11.3	In $\triangle APT$ and $\triangle TPD$ 1. \hat{P} is common. 2. $\hat{T}_4 = \hat{A}_1$ (proven) 3. $A\hat{T}P = \hat{D}_2$ (3 rd \angle on triangle) $\triangle APT \parallel\mid \Delta TPD$ ($\angle \angle \angle$)	✓ S/R ✓ S/R ✓ S	(3)			

11.4	$\frac{AP}{PT} = \frac{PT}{PD} \qquad (\Delta APT \parallel \mid \Delta TPD)$	✓ statement✓ reason
	AP.PD = PT.PT	
	$AP.\frac{1}{3}AP = PT^2$	✓ DP = $\frac{1}{3}$ AP
	$AP^2 = 3PT^2$	\checkmark substitution
		(4)
		[16]

TOTAL: 150