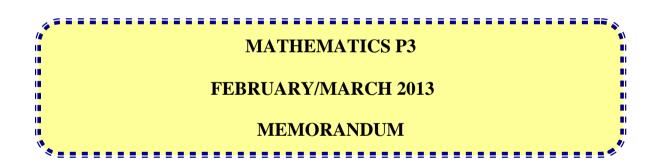


You have Downloaded, yet Another Great Resource to assist you with your Studies ③

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za



basic education

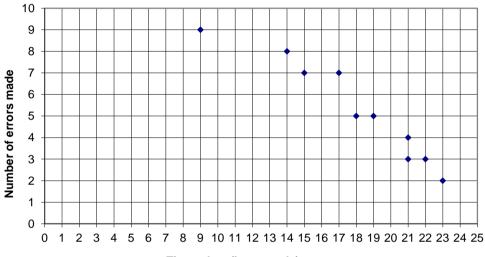
Department: Basic Education **REPUBLIC OF SOUTH AFRICA**

NATIONAL SENIOR CERTIFICATE

GRADE 12

MARKS: 100

This memorandum consists of 11 pages.

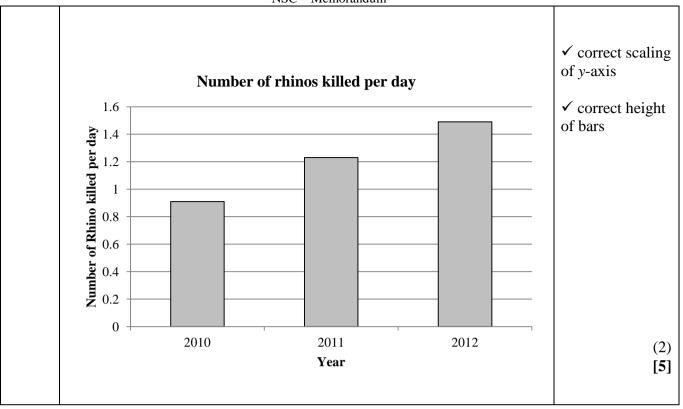

Please turn over

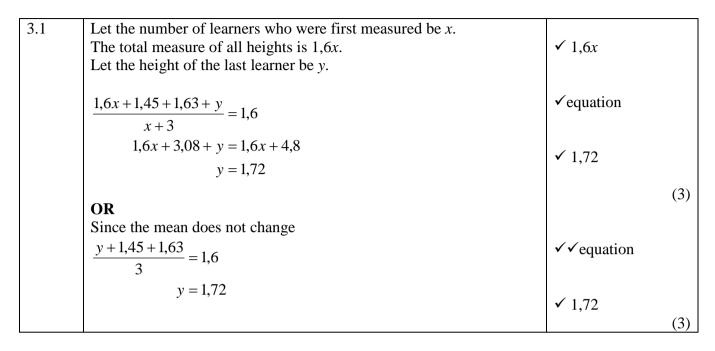
2 NSC – Memorandum

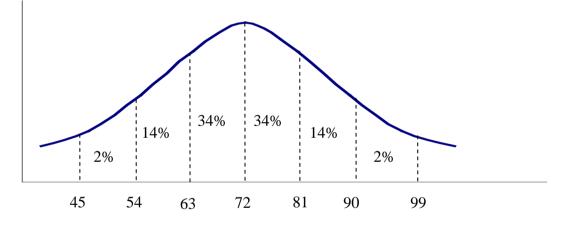
QUESTION 1

Time taken to complete task (in seconds)	23	21	19	9	15	22	17	14	21	18
Number of errors made	2	4	5	9	7	3	7	8	3	5

Scatter plot showing time taken to complete task and number of errors made

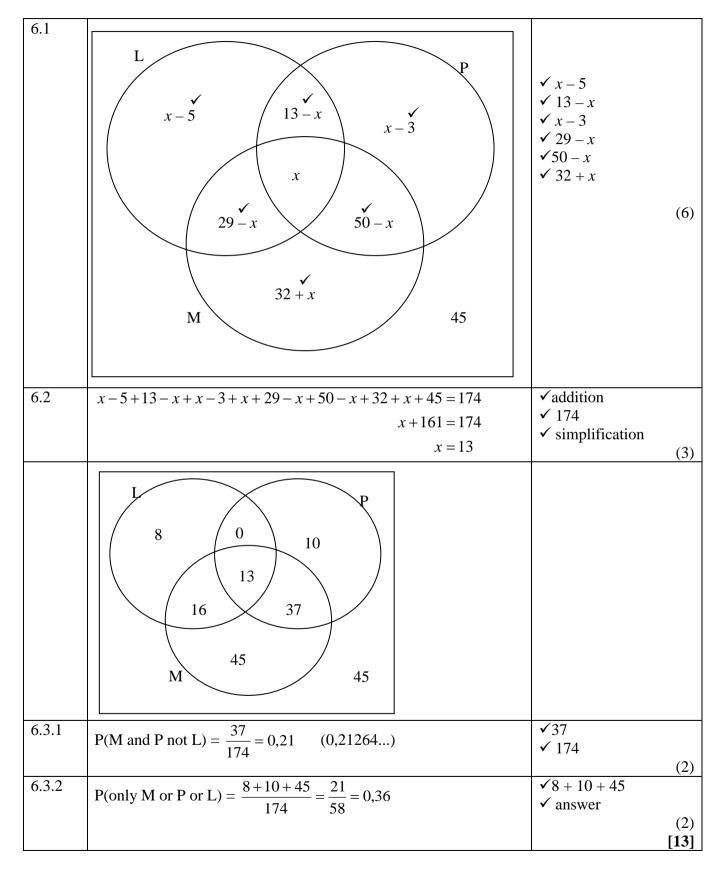


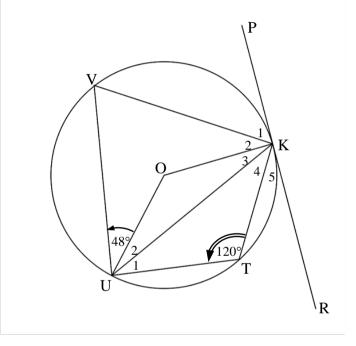

Time taken (in seconds)


<u> </u>		
1.1	See scatter plot above.	$\checkmark \checkmark \checkmark \checkmark$ all 10 points
		plotted correctly.
		2 marks if 5–9
		points are plotted
		correctly.
		1 mark if 1-4 points
		are plotted correctly.
		(3)
1.2	When more time is taken to complete the task, the learners make	✓ explanation
	fewer errors.	(1)
	OR	
	When less time is taken to complete the task, the learners make more	
	errors.	
1.3	a = 14,71 (14,705811)	$\checkmark \checkmark a$
	b = -0,53 (-0,525464)	$\checkmark b$
	$\hat{y} = 14,71 - 0,53x$	\checkmark equation
		(4)
1.4	r = -0.96 (-0.959074)	✓✓ answer
		(2)

	NSC – Memorandum	
1.5	$\hat{y} \approx 14,71 - 0,53(13)$	\checkmark substitution
	≈ 7,82	✓ answer
		(2)
	≈ 8	
1.6	There is a strong negative relationship between the variables.	✓ strong negative
		(1)
		[13]

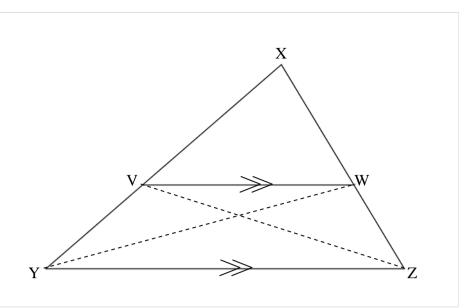
2.1	The bar graph shows a significant decrease in the number of rhino killed in 2012. This creates the impression that there is no crisis in the number of rhino killed by poachers. Instead, it suggests that the problem is under	\checkmark no crisis
2.2	control. The first two bars show the number of rhino killed in a full year. The bar for 2012 reflects the number of rhino killed in the first 113 days of the year. Therefore, this graph cannot be used to make a comparison of the number of rhinos killed each year.	(1) ✓ 2012 bar is not for a full year (1)
2.3.1	You can use the existing figures for 2012 to project the total number of rhinos that will be killed in 2012. If the rate at which rhinos are killed remains constant for the year, then $\frac{168}{113} \times 365 = 543$ rhino will be killed in 2012. OR You can calculate the number killed per day and represent this information	✓ project total number for the year (1)
2.3.2	n a graph. Number of rhinos killed each year	
	000 0 500 0 400 0 300 0 100 0	 ✓ correct scaling of <i>y</i>-axis ✓ correct height of bars
	100 0 2010 2011 Year	(2)
	OR	



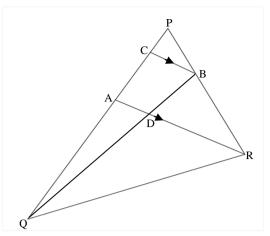

3.2.1	90 = 72 + 2(9) \therefore 90 lies at 2 standard deviations to the right of the mean. \Rightarrow 48% of the students scored between 72 and 90 marks.	✓ 2 sd from mean ✓ 48% (2)
3.2.2	45 = 72 - 3(9) ∴ 45 lies at 3 standard deviations to the left of the mean. 63 = 72 - 9 ∴ 63 lies at 1 standard deviation to the left of the mean. The area between 1 sd and 3 sd is approximately 16%. ∴ 16% of 184 = approximately 29 students scored between 45 and 63 marks.	 ✓ calculating the number of sds from mean ✓ 16% ✓ 29 (3) [8]

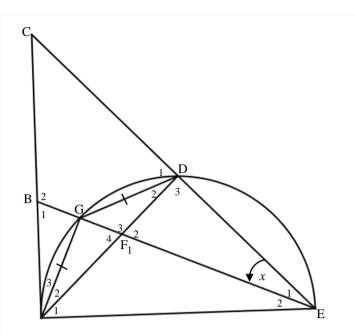
4.1	Since A and C are mutually exclusive, there is no intersection of A	√√ 0	
	and C \therefore P(A and C) = 0.		(2)
4.2	Since B and C are independent, $P(B \text{ and } C) = P(B).P(C)$.	\checkmark P(B and C) =	
	P(B and C) = (0,4)(0,2) = 0,08	P(B).P(C).	
		√ 0,08	
			(2)
4.3	Since A and B are independent, $P(A \text{ and } B) = P(A).P(B)$.	√ 0,12	
	P(A and B) = (0,3)(0,4) = 0,12		
	P(A or B) = P(A) + P(B) - P(A and B)	✓ formula	
	= 0,3 + 0,4 - 0,12	✓ substitution	
	= 0,58	√ 0,58	
			(4)
			[8]

5.1	Number of arrangements	
	= 7!	√7
	= 5040	√7!
		(2)
5.2	Number of arrangements	
	= 5!	√5
	= 120	√5!
		(2)
5.3	Number of arrangements	✓ 3!
	$= 3! \times 5!$	✓ 5!
	= 720	✓ answer
		(3)
		[7]


$T_1 = -1$; $T_2 = 5$. $T_3 = T_1 + 3T_2 - 4 = -1 + 3(5) - 4 = 10$	✓ substitution✓ 10
$T_4 = T_2 + 3T_3 - 4 = 5 + 3(10) - 4 = 31$	✓ 31
$T_5 = T_3 + 3T_4 - 4 = 10 + 3(31) - 4 = 99$	√ 99
	[4]

8.1	$\hat{V} = 180^\circ - 120^\circ = 60^\circ$ [Opp angles of cyclic quad are supp]	✓ 60° ✓ reason	
			(2)
8.2	$\hat{KOU} = 2(60^\circ) = 120^\circ$ [Angle at centre = twice angle at circum.]	✓120°	
		✓ reason	
			(2)
8.3	$\hat{U}_2 = \frac{180^\circ - 120^\circ}{2} = 30^\circ$ [Base angles of isosceles ΔUOS ; OU = OK	√ 30°	
	$U_2 = \frac{1}{2} = 30^{\circ}$ [Base angles of isosceles $\Delta 005, 00 = 0K$	✓ reason	
	= radii]		(2)
8.4	$\hat{K}_1 = 48^\circ + 30^\circ = 78^\circ$ [tan-chord theorem]	√ 78°	
		✓ reason	
			(2)
8.5	$\hat{K}_2 = 90^\circ - 78^\circ = 12^\circ$ [tan \perp radius]	✓12°	
		✓ reason	
			(2)
			[10]





9.1	Construct VZ and WY	✓ construction
	$\frac{\text{area } \Delta XVW}{\text{area } \Delta VWY} = \frac{XV}{VY} (\text{equal altitudes})$ $\frac{\text{area } \Delta XVW}{\text{area } \Delta WVZ} = \frac{XW}{WZ} (\text{equal altitudes})$ $\text{area } \Delta YVW = \text{area } \Delta VWZ (VW \parallel YZ)$	✓ $\frac{\text{area } \Delta XVW}{\text{area } \Delta VWY} = \frac{XV}{VY}$ ✓ $\frac{\text{area } \Delta XVW}{\text{area } \Delta WVZ} = \frac{XW}{WZ}$
	area ΔXVW is common	\checkmark area \triangle YVW = area \triangle VWZ
	$\frac{XW}{WZ} = \frac{XV}{VY}$	✓ VW YZ ✓ conclusion
	WZ VI	(6)

10 NSC – Memorandum

9.2.1	$\frac{\text{area } \Delta PRA}{\text{area } \Delta QRA} = \frac{PA}{QA} (\text{equal altitudes})$	$\checkmark \frac{\text{area } \Delta PRA}{\text{area } \Delta QRA} = \frac{PA}{QA}$	
	$\frac{\text{area } \Delta PRA}{2} = \frac{3}{2}$	✓ answer	
	area $\triangle QRA$ 5		(2)
9.2.2	$\frac{BD}{DQ} = \frac{CA}{AQ} (AR \parallel CB)$ $\frac{PC}{CA} = \frac{1}{2} (AR \parallel CB)$ $PC = y \text{ units}$ $CA = 2y \text{ units}$ $CQ = 5y \text{ units}$ $\frac{BD}{BQ} = \frac{2}{7}$	✓ $\frac{BD}{DQ} = \frac{CA}{AQ}$ ✓ reason ✓ $\frac{PC}{CA} = \frac{1}{2}$ ✓ CQ = 5y units ✓ $\frac{BD}{BQ} = \frac{2}{5}$	(5) [13]

10.1	$\hat{A}_2 = x$ ($\angle s$ in same seg)	$\checkmark \hat{A}_2 = x$
		✓ reason
	$\hat{D}_2 = x$ ($\angle s \text{ opp} = \text{sides}$)	$\checkmark \hat{\mathbf{D}}_2 = x$
		✓ reason
	$\hat{E}_2 = x$ (= chs = \angle s) or (\angle s in same seg)	$\checkmark \hat{\mathbf{E}}_2 = x$
		✓ reason
	$\hat{A}_3 = x$ (tan-chord theorem)	$\checkmark \hat{A}_3 = x$
		✓ reason
		(8)
10.2	In \triangle ABE and \triangle DFE	
	1. $\hat{E}_2 = \hat{E}_1$ (= x)	$\checkmark \hat{E}_2 = \hat{E}_1$
	2. $\hat{D}_3 = 90^\circ$ ($\angle s$ in semicircle)	$\checkmark \hat{D}_3 = 90^\circ$
	$B\hat{A}E = 90^{\circ}$ (tan \perp rad)	✓ reason
	$B\hat{A}E = \hat{D}_3$	✓ $BÂE = 90^{\circ}$
	$\Delta ABE \parallel \Delta DFE \qquad (\angle \angle \angle)$	✓ reason
	$\frac{BE}{FE} = \frac{AE}{DE} \qquad (\Delta s)$	$\checkmark \frac{BE}{FE} = \frac{AE}{DE}$
	BE.DE = AE.FE	
		✓ ∆s
10.0		(7)
10.3	$\hat{D}_1 = 90^\circ - x (\angle s \text{ on str line})$	$\checkmark \hat{\mathbf{D}}_1 = 90^\circ - x$
	$\hat{B}_1 = 90^\circ - x (\angle \text{ sum } \Delta)$	✓ reason
	$\hat{\mathbf{B}}_{1} = \hat{\mathbf{D}}_{1}$	$\checkmark \hat{\mathbf{B}}_1 = 90^\circ - x$
		✓ reason
		(4)
		[19]

TOTAL: 100