

You have Downloaded, yet Another Great Resource to assist you with your Studies ③

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

basic education

Department: Basic Education **REPUBLIC OF SOUTH AFRICA**

NATIONAL SENIOR CERTIFICATE

GRADE 12

MECHANICAL TECHNOLOGY FEBRUARY/MARCH 2011

MEMORANDUM

.

MARKS: 200

I.

I.

Т

This memorandum consists of 15 pages.

Copyright reserved

Please turn over

QUESTION 1: MULTIPLE-CHOICE QUESTIONS

(Learning Outcome 3: Assessment Standard 1 – 9)

1.1	$D\checkmark$	(1)
1.2	A	(1)
1.3	D $$	(1)
1.4	$D\checkmark$	(1)
1.5	В√	(1)
1.6	C√	(1)
1.7	A \checkmark	(1)
1.8	C√	(1)
1.9	D \checkmark	(1)
1.10	A \checkmark	(1)
1.11	D \checkmark	(1)
1.12	ВV	(1)
1.13	ВV	(1)
1.14	C√	(1)
1.15	A \checkmark	(1)
1.16	C√	(1)
1.17	D \checkmark	(1)
1.18	A \checkmark	(1)
1.19	C√	(1)
1.20	D $$	(1) [20]

QUESTION 2: FORCES AND SYSTEMS AND CONTROL

(Learning Outcome 3: Assessment Standard 6 and 8

2.1 Stress and strain

- 2.1.1 Compression Stress $\sqrt{1}$
- 2.1.2 Stress in material

$$A = \frac{\pi (D^2 - d^2)}{4}$$

= $\frac{\pi (0.04^2 - 0.03^2)}{4}$

$$=0,55 \times 10^{-3} \text{ m}^2$$
 $\sqrt{}$

$$\sigma = \frac{F}{A}$$

$$\sqrt{23 \times 10^3}$$

$$=\frac{1}{0.55\times10^3}$$

=41,84 MPa
$$\sqrt{(5)}$$

2.1.3 Shortening of bush

$$=0,46 \times 10^{-3}$$

$$=36.8 \times 10^{-3} mm$$
 (5)

2.2 Hydraulic

2.2.1 Fluid pressure

$$A_{p} = \frac{\pi D^{2}_{p}}{4}$$

= $\frac{\pi \times 0.038^{2}}{4}$
= 1.13×10⁻³ m²

$$p = \frac{F_{p}}{A_{p}}$$

$$= \frac{200}{1.13 \times 10^{-3}}$$

$$= 0,18 \text{ MPa or } 176348,9674 \text{ Pa}$$

$$\sqrt{3}$$

2.2.2 Diameter of ram

2.3 **Gear Drive**

2.3.1 Rotation of motor

$$N_{E} = \frac{80 \times 40 \times 90}{30 \times 20}$$

= $\frac{288000}{600}$ \checkmark
= 480 r/min \checkmark (2)

2.3.2 Advantages $\begin{pmatrix} \\ \sqrt{} \\ \sqrt{} \\ \end{pmatrix}$ No slip occurs • It is much stronger •

- More accurate • (2)
 - (Any TWO correct answers) $\sqrt{}$ Last longer

Belt Drive 2.4

Diameter of driven pulley 2.4.1

$$=1355,5 \,mm$$
 (3)

•

$$\frac{T_1}{T_2} = 2,5$$
$$\therefore T_1 = 2,5T_2$$

$$Power = \frac{(T_1 - T_2)\pi Dn}{60}$$

$$8 \times 10^3 = \frac{(2,5T_2 - T_2) \times 0,42 \times 710}{60}$$

$$T_{1} = 341,6 N$$

 $T_{1} = 2,5 T_{2}$

$$=2,5\times341,6$$
$$=854 N$$

Tensile force is 4 N per mm belt width.

NSC – Memorandum

2.5 **Gear Teeth**

2.5.1	Pitch circle diameter = Module x Number of teeth = 4 x 60 = 240 mm	√ √ (2)
2.5.2	Addendum = Module = 4 mm	√ √ (2)
2.5.3	Clearance = 0,25 x module or 0,157 x module = 0,25 x 4 or 0,157 x 4 = 1 mm or 0,628 mm	√ √ (2)
2.5.4	Dedendum = 1,25 x module or 0,157 x module = 1,25 x 4 or 1,157 x 4 = 5 mm or 4,628 mm	√ √ (2)
2.5.5	Outside diameter = PCD + 2 module = 240 + 2(4) = 248 mm	√ √ (2)

2.6 Square thread cutting tool

A = Trailing/Following angle,	B = Leading angle	$\sqrt{\sqrt{1}}$
C =Clearance angle,	D = Helix angle	√√ (4)

2.7 Clutches

2.7 Friction clutch

$$R = \frac{1}{0.35 \times 2500 \times 2}$$

$$R = \frac{245}{1750}$$

$$R = 0.14 m$$

$$D = 2R$$

$$D = 2(0.14)$$

$$D = 0.28 m$$

$$D = 280 \, mm \qquad \qquad \checkmark \tag{5}$$

QUESTION 3: TOOLS AND EQUIPMENT

(Learning Outcome 3: Assessment Standard 2)

3.1 Brinell hardness tester

	2. L 3. F	est piece .oad lardened steel ball Diameter of impression	く く く く	(4)
3.2	Tensile	test		
	the ultin	rmine, d stress, nate tensile stress, centage elongation of a piece of material.	く く く く	(4)
3.3	Wet co	mpression test		
	• T • T a	To determine worn rings To determine worn piston To check if there is a difference in readings between the dry test and the wet test To verify if there is a need for performing the cylinder leakage test	$\sqrt[n]{\sqrt{n}}$	(4)
	3.4.1	Gas analyzer	$\sqrt{\sqrt{1}}$	(2)
	3.4.2	Carbon Monoxide (CO) and Carbon Dioxide (CO ₂) and water (H ₂ O)	$\sqrt{\sqrt{1}}$	(2)
3.5	Torsior	1		
		is the twisting action in a member caused by two opposing ts along the longitudinal axis of a member.	$\sqrt{1}$	(2)
36	le to in	vestigate the deflection of the beam to see if the beam will	22	

3.6 Is to investigate the deflection of the beam to see if the beam will $\sqrt{\sqrt{}}$ withstand the required force (Testing for rigidity) (

(2) **[20]**

QUESTION 4: MATERIALS

(Learning outcome 3: Assessment standard 3)

4.1	Tin snip	S		
	4.1.1	High carbon steel or Tool steel		√ (1)
	4.1.2	They resist wearIt has high tensile strength	1	√ √ (2)
	4.1.3	To prevent rust		√ (1)
4.2	Ferrous	alloys		
	They are	alloys that contain iron		\checkmark
	 stain chro man vana titan 	, medium and high carbon steels, less steel, mium steel ganese steel adium steel	(Any TWO correct answers)	√ √ (3)
4.3	Hammer	head		
	4.3.1	Medium carbon steel		√ (1)
	4.3.2	Very toughHigh tensile strength		√ √ (2)
4.4	Tensile o	definition		
	The abilit	y of a material to withstand pulling	forces or tension forces	√√ (2)
4.5	Tensile s	strength		
				1

Material B has the lowest tensile strength because it deforms easily $\sqrt{}$ under tension or is the most deformed material. $\sqrt{}$ (2)

4.6 **Electric plug**

4.7

4.6.1	 Nylon It has resistance to wear It is a good insulator It has low frictional propertie 	s. (Any TWO correct answers)	√ √ √ (2)
4.6.2	 Bronze Strong Tough Corrosion resistance Good conductor of electricity 	 (Any TWO correct answers) 	√ √ √ √ (2)
 Stiff Low Light 	ies of Carbon Fibre and strong density nt weight istant to corrosion	(Any TWO: 1 x 2)	√ √ √ (2) [20]

QUESTION 5: SAFETY, TERMINOLOGY AND JOINING METHODS

5.1	 Torsion tester Use safety goggles Make sure the workpiece is properly tightened. Be careful for metal particles coming off after the metal fractures. Do not hold the test piece with your hands; it may be hot, use pliers. 	$\sqrt[n]{}$ $\sqrt[n]{}$ $\sqrt[n]{}$ (4)
5.2	 MIG welder The welding area must be kept clean and tidy. Operator must use protective equipment Make sure that the main cable insulation is not damaged when welding. Gas bottle must be well secured with a chain Welding area must have effective ventilation Welding must not be carried out in areas of explosive and flammable liquids. Use a fume extractor for toxic fumes given off when welding galvanized or zinc coated material (Any FOUR correct answers) 	$ \begin{array}{c} \sqrt{}\\ \sqrt{}\\ \sqrt{}\\ \sqrt{}\\ \sqrt{}\\ \sqrt{}\\ \sqrt{} \end{array} $
5.3	 Helical cutter Uses less power Vibration experience by machine is less Longer life span for the cutter Deeper cuts may be taken Wider cutters may be used (Any FOUR correct answers) 	$\begin{array}{c} \sqrt{}\\ \sqrt{}\\ \sqrt{}\\ \sqrt{}\\ \sqrt{}\end{array}$ (4)

5.4 **Dividing head**

To divide the circumference of a circular work into equally spaced dimension. $$\sqrt[]{$\sqrt[]{$\sqrt[]{$\sqrt[]{$\sqrt[]{$\sqrt[]{$\sqrt[]{$/$}}}}}}}$

5.5 Indexing

Hole circles											
Side 1	24	25	28	30	34	37	38	39	41	42	43
Side 2	46	47	49	51	53	54	57	58	59	62	66

Standard change gears										
24 x 2	28	32	40	44	48	56	64	72	86	100

5.5.1 Indexing

$Indexing = \frac{40}{n} = \frac{40}{160}$	\checkmark
$=\frac{1}{4}\times\frac{7}{7}or\frac{1}{4}\times\frac{6}{6}$	\checkmark
$=\frac{7}{28} or \frac{6}{24}$	\checkmark

7 holes on a 28-hole circle or 6 holes on a 24-hole circle $\sqrt[3]{1}$ (5)

5.5.2 **Change gears**

 $\frac{D_r}{D_v} = (A - n) \times \frac{40}{A}$ = $(160 - 163) \times \frac{40}{160}$

$$=\frac{-3\times40}{160}$$

$$=\frac{-120}{160}$$

$$=\frac{-3}{\times}\times\frac{8}{3}$$

Drive gear is 24 and the driven gear is 32	√ (5)
--	-------

5.7

5.8

5.9

5.6 **Cutting speed**

Cutt	ing speed		
	$V = \pi D N$		
	$N = \frac{V}{\pi D}$		
	$N = \frac{200}{\pi \times 0.2}$	N	
	N = 318.31 rpm		
	$f = f \times T \times N$		
	$f = f \times T \times N$ $f = 0, 1 \times 20 \times 318.31$	$\sqrt[n]{}$	
	f = 636.62 mm/min	•	(6)
Divi	ding head		
1.	Plunger		
2. 3.	Index plate 40-teeth worm wheel	$\sqrt[n]{}$	
4.	Single start worm	Ŵ	<i>(</i> _)
5.	Sector arm	V	(5)
Liqu	iid/dye penetrate test		
•	Clean the surface to be tested.		
٠	A liquid dye penetrant is sprayed onto the clean surface.		
•	Allow a short time for the dye to penetrate the welded joint. Remove the excess dye on the welded joint using a cloth.		
•	Wash the surface and allow it to dry thoroughly.	\checkmark	
•	Spray a developer on the surface which brings out the color in the dye penetrant, that has penetrated the cracks or pin holes.	\checkmark	
•	Should the liquid dye come out of the welded joint, it means there	ار	(7)
	are flaws in the joint.	N	(7)
	mplete penetration		
Cau	ses: Current too low		
	Electrode too large	Ń	
	Joint preparation incorrect		(3)
•	Weld speed too fast (Any THREE correct answers)	v	(0)
Cure	es/Prevention	,	

 $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ (3) (Any THREE correct answers)

Copyright reserved

•

• Use correct current

• Proper electrode should be used

• Joint should prepared properly Correct speed should be used

[50]

QUESTION 6: MAINTENANCE AND TURBINES

(Learning Outcome 3: Assessment Standard 7 and 9)

6.1 Lubricating oil

6.1.1	Label – timing chain \sqrt 1. Timing chain \sqrt 2. Camshaft pulley \sqrt 3. Chain guide \sqrt 4. Crankshaft pulley \sqrt 5. Tensioner \sqrt (5)
6.1.2	Needs of lubricating oil √ Viscosity must be correct. √ It must resist oxidation. √ It must prevent rust. √ It must avoid foaming. √ Resist carbon forming. √ It must prevent corrosion. √ It must resist extreme pressures (Any FOUR correct answers) √ (4)
6.1.3	 Reasons for oil change Formation if gum, acids and lacquer may be left by the √ combustion of the fuel. √ Loses its viscosity after a while due to heat. Metal particles due to metal and metal contact √ (3)
Oils	
6.2.1	SE - The letter 'S' Spark Ignition Engines $\sqrt{1}$
6.2.2	CE - The letter 'C' Compression Ignition Engine $\sqrt{1}$
6.2.3	SAE 20W50 - Society of Automotive Engineers. Multi grade oil $\sqrt[3]{}$ (2)
6.2.4	ATF - Automatic transmission fluid $\sqrt{1}$
Cutting	fluid
 Ac Pr Im Tc 	arry away the heat generated by machining process. $$ cts as a lubricant. $$ revents the chips from sticking and fusing to the cutter teeth. $$ prove quality of the finish of machined surface. $$ o obtain a higher cutting speed. $$ gives the cutting tool a longer lifespan. $$

• Does not rust the machine. (Any FOUR correct answers) $\sqrt{(4)}$

6.2

6.3

6.4 **Properties of grease**

	• • •	It must be water resistant, it must not mix $$ Rust/corrosion resistant $$ Good for load pressure $$ High melting point $$ Low freezing point(Any THREE correct answers) $$	
6.5	Supe	rchargers	
	6.5.1	 Purpose: The supercharger fills the cylinder with an increased √ pressure that is higher than atmospheric pressure. The compression pressure in the cylinder is increased. √ The volumetric efficiency of the engine is increased. √ (Any TWO correct answers) (2) 	
	6.5.2	 Examples: Used in racing cars. Four-stroke Compression Ignition engines in heavy √ vehicles. Earth moving equipment √ Aircraft engine to overcome loss of power owing to height above sea level. (Any THREE correct answers) √ (3) 	
	6.5.3	 Advantages: More power is obtained compared to a similar vehicle √ without supercharger. Supercharged engines are more economical per given kilowatt output. Less fuel is used compared to engine mass. Power loss is eliminated above sea level √ (3) (Any THREE correct answers) 	
6.6	Turbo	ocharger	
6.7	•	A turbocharger is driven by the exhaust gasses of the engine and therefore there is no power loss. $\sqrt[4]{\sqrt{1}}$ The turbocharger is generally cheaper. (Any ONE correct answer) $\sqrt[4]{\sqrt{1}}$ (2)	
0.7	• •	It is compact $\sqrt{1}$ No lubrication is required $\sqrt{1}$ Steam turbine speed can be more accurately regulated $\sqrt{1}$	

- A variety of fuels can be used to obtain steam $\sqrt[4]{100}$ More economical (Any THREE correct answers) $\sqrt[4]{100}$ (3)
- Copyright reserved

.

•

6.8 Gas turbines

• • • •	Easy starting High power output from the given weight of engine No rubbing parts such piston so that internal friction and wear are almost eliminated. No water cooling system needed Requires little routine maintenance (Any THREE correct answers)	イイ	(3) [40]
	TOTAL:		200