

You have Downloaded, yet Another Great Resource to assist you with your Studies ③

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

basic education

Department: Basic Education **REPUBLIC OF SOUTH AFRICA**

NATIONAL SENIOR CERTIFICATE

GRADE 12

MARKS: 200

This memorandum consists of 16 pages.

Please turn over

QUESTION 1: MULTIPLE-CHOICE QUESTIONS

- 1.1 C ✓
- 1.2 D ✓
- 1.3 A ✓
- 1.4 C ✓
- 1.5 C ✓
- 1.6 B ✓
- 1.7 A ✓
- 1.8 A ✓
- 1.9 C ✓
- 1.10 D ✓
- 1.11 B ✓
- 1.12 A ✓
- 1.13 C ✓
- 1.14 B ✓
- 1.15 D ✓
- 1.16 A ✓
- 1.17 C ✓
- 1.18 B ✓
- 1.19 D ✓

1.20 A ✓

[20]

(2)

QUESTION 2: TOOLS AND EQUIPMENT

2.1 **Procedure for compression testing:**

a material ✓✓

Rer theDis	n the engine until it reaches normal operating temperature. move the high-tension leads and take out the spark plugs to ignition system. connect the fuel supply to the cylinders. ww the gauge into cylinder one's spark plug hole and rest it w	\checkmark	
you	can see the dial while you crank the engine.	\checkmark	
• Ful	ly open the throttle.	\checkmark	
 Cra 	ink the engine until the dial stops rising. (±10 revolutions)	\checkmark	
• Wri	te down the final reading and reset the gauge to '0'.	\checkmark	
 Rep 	peat the procedure on all the cylinders and compare the read	ling	
with	n the manufacturer manual.	\checkmark	(8)
Testing	of materials:		
2.2.1	Bending test: It is used to determine the ductility or tough	ness of	

2.2.2 Tensile test: It is used to determine the tensile strength of a material $\checkmark \checkmark$ (2)

2.3 **Multimeter:**

2.2

To measure:

		ANY 4 x 1	(4)
•	Battery	١	
•	Diode	١	
•	Transistor	١	
•	Temperature	١	
•	Resistance	١	
•	AC voltage	١	
•	DC voltage	١	
•	DC current	٦	

2.4 **Brinell hardness tester:**

A - Applied force	\checkmark
B - Ball	\checkmark
C - Work piece	\checkmark
D - Indentation	✓ (4)
	[20]

QUESTION 3: MATERIALS

3.1	Hammer head:			
	3.1.1	Type of material:		
		Medium carbon steel 🗸		(1)
	3.1.2	Properties:		
		 stronger than low carbon steel not as ductile as low carbon steel Less brittle than high carbon steel 	✓ ✓ ✓ Y 2 x 1	(2)
	3.1.3	Heat Treatment:		
		With heat treatment it becomes tougher and harder $\checkmark\checkmark$		(2)
3.2	Greenho	use frame:		
	3.2.1	Properties:		
		corrosion resistantstronggood appearance	✓ ✓ ✓	(3)
	3.2.2	Advantages over a solid bar:		
		light in weightcheaper	\checkmark	(2)
	3.2.3	It will rust easily and is not as strong $\checkmark\checkmark$		(2)
3.3	Electrica	l three pin plug:		
	3.3.1	Material for Pin:		
		Copper/Brass. ✓		
		Reasons:		
		 good conductor of electricity corrosion resistant	\checkmark	(3)

ANY 1X1

√

 \checkmark

3.3.2 **Casing:**

Nylon/PVC✓

Reasons:

- good insulator
- cheap to manufacture
- good impact resistance
- resistance to natural elements such as sun, cold and heat ✓

ANY 2x1 (3)

3.4 **Properties of carbon fibre:**

 light in weight 	\checkmark
resistant to corrosion	\checkmark
strong	\checkmark
low density	\checkmark
	ANY 2 x1 (2) [20]

QUESTION 4: SAFETY, TERMINOLOGY AND JOINING METHODS

4.1 Milling machine:

	select the correct tool for the job	\checkmark	
	make sure that all guards are in place	\checkmark	
	make sure that there is no oil and grease on the floor aroun	d the	
	machine	✓	
t	tools must never be left on moving parts	\checkmark	
	work pieces and holding devices must be firmly clamped	\checkmark	
	use a wire hook or brush to remove cuttings	\checkmark	
	never adjust the cutting tool while the machine is running	\checkmark	
	do not lean on the machine	\checkmark	
		ANY 4 x1	(4)
ri	ng compressors:		(')
ļ	Do not use wire or rope to compress the coil spring, use sp		(')
	Do not use wire or rope to compress the coil spring, use sp compressors		
 (Do not use wire or rope to compress the coil spring, use sp compressors Ensure that the equipment is absolutely safe	ring ✓ ✓	()
 (Do not use wire or rope to compress the coil spring, use sp compressors Ensure that the equipment is absolutely safe Make sure that the compressors are well in place before co	ring ✓ ✓	
 	Do not use wire or rope to compress the coil spring, use sp compressors Ensure that the equipment is absolutely safe	ring ✓ ✓ mpressing ✓	

4.3

•	Always wear the correct personal protective clothes	\checkmark
•	Make sure that the welding area is well ventilated	\checkmark
٠	Ensure there are no fire hazards in the workshop and that adequate	
	fire protection is in place	\checkmark
•	Ascertain that equipment is safe before being used	\checkmark
	ANY 3	x1

4.4 Indexing:

Indexing for 17 teeth:

Indexing=
$$\frac{40}{n}$$
 \checkmark
= $\frac{40}{17}$ \checkmark
= $2\frac{6}{17} \times \frac{2}{2}$ \checkmark
= $2\frac{12}{34}$ \checkmark

2 full turns 12 holes on a 34 hole circle ✓ or 2 full turns 18 holes on a 51 hole circle

(3)

4.5 Indexing:

4.5.1	Indexing	required:
-------	----------	-----------

Indexing =
$$\frac{40}{N}$$
 \checkmark
= $\frac{40}{90}$ \checkmark
= $\frac{4}{9} \times \frac{6}{6}$ \checkmark
= $\frac{24}{54}$ \checkmark

Indexing = 0 full turns and 24 holes on a 54 hole circle \checkmark

(5)

(6)

4.5.2 Change gears required:

Change gears =
$$(N - n) \times \frac{40}{N}$$
 \checkmark
= $(90 - 91) \times \frac{40}{90}$ \checkmark
= $-\frac{4}{9}$ \checkmark
= $\frac{4}{9} \times \frac{8}{8} = \frac{32}{72}$ \checkmark
Driver $= \frac{32}{72}$ \checkmark

4.6 MIGS/MAGS Welding process:

A - Gas shroud	\checkmark	
B - Nozzle	\checkmark	
C - Wire feed	\checkmark	
D - Arc	\checkmark	
E - Inert shielded gas	\checkmark	
F - Parent metal	\checkmark	
G - Molten weld pool	\checkmark	(7)

~

ANY 2x1

(2)

4.7 Uses of cutters:

	 Surface contamination Rusted MIG wire Atmospheric contamination 	
4.8.1	Porosity causes:	
Welded J	loints:	
4.7.4	Form ('Profile') cutters are used for producing hollows, corner- rounded edges, gears, formed tooth and threads	(1)
4.7.3	Slitting saw cutters are used for parting off and slitting thin sections and the cutting of deep and narrow slots	(1)
4.7.2	End mill cutters are used for machining slots, keyways, pockets, facing narrow faces and cutting profiles	(1)
4.7.1	T-slot milling cutters are designed for cutting T-slots in machine tables and similar applications.	(1)

Dirty or wet electrodes

Porosity preventions:

•	Clean the surface	\checkmark	
•	Use the correct electrode	\checkmark	
•	Check for impurities in base metal	\checkmark	
		ANY 1x1	(1
Sla	g inclusion preventions:		
•	By chipping off the slag from the previous w Brushing the weld bead with a wire brus		
•			
•	Brushing the weld bead with a wire brushing the weld bead with a wire brushing the		
•	Brushing the weld bead with a wire brus		

The twisting of a metal out of shape due to uncontrolled expansion and contraction forces due to weld heat $\checkmark \checkmark$

4.8.2

4.8.3

(2)

4.8.4 Arc welding:

- Rate of the electrode burning and the progress of the • weld \checkmark ✓
- Amount of penetration and fusion •
- The way the weld metal is flowing ✓ •
- The sound of the arc, indicating the correct current and • voltage for the particular weld \checkmark

ANY 3x1 (3)

4.8.5 **MIG/MAGS:**

 Can weld in any position 	\checkmark	
Higher deposition rate	\checkmark	
Less operator skill required	\checkmark	
Long welds can be made without stops and starts	\checkmark	
 Minimal post weld cleaning is required 	\checkmark	
	ANY 4x1	(4)
		[50]

9

5.3

5.4

QUESTION 5: MAINTENANCE AND TURBINES

5.1 **Reasons for bearing failure:**

•		
-	Insufficient lubrication	
•	Excessive lubrication 🗸	
•	Grease flowing ✓	
•	Foaming oil 🗸	
•	Corrosive contaminants in bearing	
•	Raceway turning on shaft or in housing \checkmark	
•	Inadequate bearing clearances caused by being too tight on shaft of	or
	on housing	
•	Excessive clearance	
•	Contamination/dirt	
	ANY 4 X	1
Im	portance of oil seal:	
•		
•	Oil seals are fitted to ensure that there are no oil leaks as differen	
	parts of an engine are being lubricated $\checkmark \checkmark$	
Oil	terms:	
•	Corrosion resistance is the ability of oil to displace water from the	е
	metal allowing the oil to coat the surfaces \checkmark	-
•	Rust resistance also has the alkaline reaction to neutralize combustio	n
•		n
-	Rust resistance also has the alkaline reaction to neutralize combustio	
-	Rust resistance also has the alkaline reaction to neutralize combustio acid thus preventing corrosion \checkmark tting fluids:	
-	Rust resistance also has the alkaline reaction to neutralize combustio acid thus preventing corrosion tting fluids: Carry away the heat generated by machining process	
Cu •	Rust resistance also has the alkaline reaction to neutralize combustio acid thus preventing corrosion tting fluids: Carry away the heat generated by machining process Acts as a lubricant ✓	
Cu • •	Rust resistance also has the alkaline reaction to neutralize combustio acid thus preventing corrosion tting fluids: Carry away the heat generated by machining process Acts as a lubricant Prevents the chips from sticking and fusing to the cutter teeth	
Cu • •	Rust resistance also has the alkaline reaction to neutralize combustio acid thus preventing corrosion tting fluids: Carry away the heat generated by machining process Acts as a lubricant Prevents the chips from sticking and fusing to the cutter teeth Improves quality of the finish of the surface	
Cu • • •	Rust resistance also has the alkaline reaction to neutralize combustio acid thus preventing corrosion tting fluids: Carry away the heat generated by machining process Acts as a lubricant Prevents the chips from sticking and fusing to the cutter teeth Improves quality of the finish of the surface To keep the work piece and the cutting tool cool	
Cu • •	Rust resistance also has the alkaline reaction to neutralize combustio acid thus preventing corrosion tting fluids: Carry away the heat generated by machining process Acts as a lubricant Prevents the chips from sticking and fusing to the cutter teeth Improves quality of the finish of the surface To keep the work piece and the cutting tool cool	

(8)

(1)

 \checkmark

√

5.5 **Gearbox oil change:**

- Draining must be done at normal working temperature.
- Locate the filler plug on the side of the gearbox casing and wipe the plug and area around it clean. Place tray under the gearbox. ✓
- Remove the filler plug.
- Remove the drain plug using a well-fitting spanner in the base of the gearbox.
- Allow oil to drain out of the gearbox into the drain pan.
- Clean the drain plug and make sure to fit a new sealing washer. \checkmark
- Replace the drain plug and make sure it is tight.
- Refill the gearbox with the recommended oil to the base of the filler plug and allow excess oil to trickle out and refit the filler plug. ✓

5.6 Blower:

5.6.2 **Labels of a blower:**

A - Vane	\checkmark	
B - Inlet	\checkmark	
C - Rotor	\checkmark	
D - Housing	\checkmark	
E - Outlet	\checkmark	(5)

5.6.3 **Operation of a blower:**

- Engine drives the rotor by means of a belt drive
- Thus creating a vacuum when air is taken in through the inlet port \checkmark
- The air is then carried between the vanes and the housing to the outlet port \checkmark
- As a result of the eccentric mounting of the rotor, the space is reduced and air is pushed out under pressure
- This air is forced through the inlet manifold into the cylinders \checkmark (5)

5.7 **Difference between turbo and supercharger:**

- Turbocharger is driven by the exhaust gases of the engine \checkmark
- Supercharger is mechanical driven by using the engine power \checkmark (2)

5.8 Advantage of supercharger:

	 Increases the output power of the engine A smaller engine fitted with a centrifugal blower delivers the same power as a larger engine It eliminates lack of oxygen above sea level Increases the volumetric efficiency of the engine With the aid of the intercooler both the power and the torque output of the engine are increased 	(3)
5.9	Advantages of steam turbines:	
	 It is compact No lubrication is required Steam turbine speeds can be more accurately regulated A variety of fuels can be used to obtain steam Steam turbines are more economical Higher speeds can be obtained as compared to internal combustion engine Convert heat energy into mechanical energy ANY 3 X 1 	(3)
5.10	Disadvantage of steam turbine:	
	 Needs a large area for fuel storage Cooling towers are used to regulate steam to reduce the usage of water ANY 1 X 1 	(1) [40]

6.1.1

6.1.2

6.1.3

6.1.4

6.2 Gear drives:

6.2.1 Number of teeth on idler gear:

$$N_{B} \times T_{B} = N_{A} \times T_{A} \qquad \checkmark$$

$$T_{B} = \frac{N_{A} \times T_{A}}{N_{B}} \qquad \checkmark$$

$$= \frac{700 \times 56}{980} \qquad \checkmark$$

		NSC – Memorandum					
STION 6: FORCES AND SYSTEMS AND CONTROL							
	Stress and Strain:						
	Compressive stress \checkmark		(1)				
<u>)</u>	Stress:						
	$\sigma = \frac{F}{A}$	\checkmark					
	$=\frac{3\times10^{3}}{10,08\times10^{-3}}$	\checkmark					
	$= 0,298 \times 10^{6} \text{ Pa}$	\checkmark					
	=0,298 MPa	\checkmark	(4)				
5	Strain: $\varepsilon = \frac{\Delta L}{L}$	\checkmark					
	$=\frac{0,5\times10^{-3}}{3,5}$	\checkmark					
	$= 0,143 \times 10^{-3}$	\checkmark	(3)				
ŀ	Elasticity modulus:						
	$E = \frac{\sigma}{\epsilon}$	\checkmark					
	$=\frac{0,298\times10^{6}}{0,143\times10^{-3}}$	\checkmark					
	$=2,08\times10^{9}$						

$$T_{B} = \frac{N_{A} \times T_{A}}{N_{B}} \qquad \checkmark$$

$$= \frac{700 \times 56}{980} \qquad \checkmark$$

$$= 40 \text{ teeth} \qquad \checkmark \qquad (4)$$

6.2.2 Rotation frequency of the driven gear:

$$N_{c} \times T_{c} = N_{A} \times T_{A} \qquad \checkmark$$

$$N_{c} = \frac{N_{A} \times T_{A}}{T_{c}} \qquad \checkmark$$

$$= \frac{700 \times 56}{64} \qquad \checkmark$$

$$= 612.5 \text{ rpm} \qquad \checkmark \qquad (4)$$

6.2.3 Anti-clockwise ✓✓

(2)

6.3 Belt drives:

6.3.1 **Diameter of the pulley that needs to be fitted onto the machine:**

$$N_{dn} \times D_{dn} = N_{dr} \times D_{dr} \qquad \checkmark$$

$$D_{dn} = \frac{N_{dr} \times D_{dr}}{N_{dn}} \qquad \checkmark$$

$$= \frac{9.4 \times 640}{15} \qquad \checkmark$$

$$= 401.07 \text{ mm}$$

$$= 400 \text{ mm} \qquad \checkmark$$
(4)

✓

 \checkmark

✓

6.3.2 **Power transmitted:**

$$\frac{T_1}{T_2} = 2,5$$

$$T_2 = \frac{T_1}{2,5}$$

$$T_2 = \frac{320}{2,5}$$

$$= 128N$$

Power =
$$(T_1 - T_2) \times \pi \times DN$$

= $(320 - 128) \times \pi \times 0.64 \times 9.4$
= $192 \times \pi \times 0.64 \times 9.4$
= $3628,76$ Watt
= $3,628$ kW

(6)

6.4 Hydraulics:

6.4.1 **Pressure:**

$$A_{A} = \frac{\pi D^{2}}{4}$$
$$= \frac{\pi (0,04)^{2}}{4}$$

$$A_{A} = 1,257 \times 10^{-3} m^{2}$$

P =
$$\frac{F_A}{A_A}$$
 ✓
= $\frac{0.9 \times 10^3}{1.257 \times 10^{-3}}$ ✓
= 715990,45Pa
=715,990 kPa ✓

6.4.2 Number of strokes:

The volume of the system stays the same

$$A_{B} = \frac{\pi D^{2}}{4} \qquad \checkmark$$
$$= \frac{\pi (0,240)^{2}}{4}$$
$$= 45,24 \times 10^{-3} m^{2} \qquad \checkmark$$

Volume displayed by A = Volume displayed by B

$$V_{A} = V_{B}$$

$$A_{A} \times L_{A} = A_{B} \times L_{B}$$

$$L_{A} = \frac{A_{B} \times L_{B}}{A_{A}}$$

$$= \frac{(45,24 \times 10^{-3})(35 \times 10^{-3})}{1,257 \times 10^{-3}}$$

$$= 1,26 m$$

Number of strokes by piston A =
$$\frac{L_A}{One stroke length}$$

= $\frac{1,26}{0,126}$
= 10 strokes

(9)

(5)

✓

 \checkmark

6.5 **Clutch:**

Effective diameter:

(5) **[50]**

GRAND TOTAL: 200