

You have Downloaded, yet Another Great Resource to assist you with your Studies ©

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

MECHANICAL TECHNOLOGY

NOVEMBER 2011

POSSIBLE ANSWERS

MARKS: 200

This memorandum consists of 16 pages.

ANSWER SHEET

QUESTION 1: MULTIPLE-CHOICE QUESTIONS

1.1	Α	В	С	D
1.2	A	В	С	D
1.3	Α	В	С	D
1.4	Α	В	С	D
1.5	Α	В	С	D
1.6	Α	В	С	D
1.7	Α	В	С	D
1.8	Α	В	С	D
1.9	Α	В	С	D
1.10	Α	В	С	D
1.11	Α	В	С	D
1.12	Α	В	С	D
1.13	Α	В	С	D
1.14	Α	В	С	D
1.15	Α	В	С	D
1.16	Α	В	С	D
1.17	Α	В	С	D
1.18	Α	В	С	D
1.19	Α	В	С	D
1.20	A	В	С	D [20]
				r]

3

QUESTION 2: TOOLS AND EQUIPMENT

2.1 Cylinder leakage test:

2.1.1 Cylinder Leakage Test ✓ (1)

2.1.2 **Procedure for cylinder leakage test:**

- Run the engine until normal operating temperature. ✓
- Remove the spark plug from cylinder number three. ✓
- Install cylinder leakage tester to the spark plug hole of cylinder number three. ✓
- Remove the oil filler cap, radiator filler cap as well as the air filter. ✓
- Turn the crankshaft pulley until piston number three is at TDC (Power stroke) ✓
- Apply air pressure to cylinder. ✓
- Listen at the carburettor for a hissing noise. (Inlet valve is leaking) ✓
- Listen at the exhaust pipe for a hissing noise. (exhaust valve is leaking) ✓
- Listen at the dipstick for a hissing noise. (Piston rings are worn) ✓
- Listen at the oil filler hole for a hissing noise. (Piston rings are worn) ✓
- Look for bubbles in the radiator water, if so the cylinder head gasket is blown or the cylinder block is cracked. ✓ (11)

[50% (6 marks) will be credited for the steps related to any type of test other than that mentioned in 2.1.1]

2.2 **Spring tester:**

• Squareness/Roundness ✓ or (specifications of length and pressure)

(2)

Correct tension√

2.3 Computer Numerical Control✓

(1)

2.4 Metal arc gas shielded:

2.4.1 Advantages

- Can weld in any position. ✓
- Higher disposition rate. ✓
- Less operator skill required. ✓
- Long welds can be made without stops and starts. ✓
- Minimal post-weld cleaning / no slag removal is required.
- Causes less deformation ✓
- Gives better finish ✓
- Faster than arc welding ✓ (3)

Copyright reserved

'Mechanical Technology

DBE/November 2011

NSC – Easy operation ✓ Any 3 X 1

2.4.2 Gasses

Argon ✓ and CO₂ ✓

(2) **[20]**

QUESTION 3: MATERIALS

3.1 Carbon fibre:

- It gives a smooth finish✓
- Light in weight√
- Resistant to corrosion√
- Easy to mould√
- Its tough√
- It's strong ✓

Any 2 X 1

(2)

3.2 Stiffness of materials:

Material B is the stiffer✓

Reason: Material B is more resistant to a bending deformation ✓ ✓

(3)

3.3 Non-ferrous alloys:

3.3.1 A non-ferrous alloy is a metal that has a combination of two or more non-ferrous metals. ✓ ✓

(2)

3.3.2 Examples:

- Brass√
- Bronze√
- White metal
- Duralumin√
- Solder√
- Silver solder√

Any 3 X 1

(3)

3.4 Composite:

3.4.1 Thermosetting plastics

- Teflon√
- Nylon√

(2)

3.4.2 Properties of Teflon and nylon to support choice:

- High friction resistance√
- Light in weight√
- Easy to work with√
- Provides a smooth finish✓
- Needs no lubrication ✓
- No/low maintenance ✓
- Corrosion free ✓
- Poor conductor of electricity ✓ Any 4 X 1

(4)

3.5 Soft solder

Lead ✓ and tin ✓ or Antimony

(2)

3.6 Silver solder

High melting point ✓
Resistant to corrosion✓

(2)

Copyright reserved

NSC -

good conductor give a strong bead used to join a variety of materials

[20]

7

QUESTION 4: SAFETY, TERMINOLOGY AND JOINING METHODS

4.1 **Hydraulic press:**

- Make sure the object is firmly secured. ✓
- Make sure pins holding the beam is fitted properly. ✓
- Check pins for wear. ✓
- Check for oil leaks. ✓
- Make sure the area around the press is clean and free from oil. ✓
- Release pressure after operation ✓
- Personal safety ✓
- Safety guards ✓

(4)

Any 4 X 1

4.2 Gas cylinders:

- Store oxygen and acetylene separately.
- Store full and empty cylinders apart. ✓
- Keep cylinders in a cool place away from heat. ✓
- Place cylinders in an upright position. ✓
- Don't drop cylinders. ✓
- Cylinder heads must be on. ✓
- Keep cylinders away from oil or grease. ✓
- Don't hammer on cylinders. ✓
- Secure cylinders properly. ✓
- Do not transport in horizontal position ✓

Any 4 X 1 (4)

4.3 Cutting feed:

$$V = \pi DN$$

$$N = \frac{V}{\pi D}$$

$$N = \frac{100}{\pi \times 0{,}12}$$

$$N = 265,2582385 \ rpm$$

$$f = f_1 \times T \times N$$

$$f = 0.1 \times 40 \times 265,258$$

$$f = 1061,03 \ mm / min$$

(6)

4.4 Indexing:

4.4.1

Indexing =
$$\frac{40}{A}$$

= $\frac{40}{70}$ \checkmark
= $\frac{4 \times 4}{7 \times 4}$ or $\frac{4 \times 6}{7 \times 6}$ or $\frac{4}{7}$ \checkmark
= $\frac{16}{28}$ or $\frac{24}{42}$ or $\frac{28}{49}$ \checkmark

NSC -

16 holes on the 28 – hole cir ✓

24 holes on the 42 - hole circ

28 holes on the 49 -hole circ.

4.4.2

$$\frac{D_r}{D_v} = (A - n) \times \frac{40}{A}$$

$$\frac{D_r}{D_v} = (70 - 67) \times \frac{40}{70}$$

$$\frac{D_r}{D_v} = \frac{120}{70}$$

$$\frac{D_r}{D_v} = \frac{12 \times 4}{7 \times 4}$$

$$\frac{D_r}{D_v} = \frac{48}{28}$$

No full turn, 16 holes on the 28-hole circle

with change gears $\frac{48}{28}$ or

No full turn, 24 holes on the 42-holecircle

with change gears $\frac{48}{28}$ or

No full turn, 28 holes on the 49-holecircle

with change gears $\frac{48}{28}$

3 (5)

4.4.3 Same direction/clockwise/positive ✓

(5)

9

4.5 Gear drives:

4.5.4 Gear B

$$N_A \times T_A = N_B \times T_B \qquad \checkmark$$

$$1200 \times 30 = N_D \times 22 \qquad \checkmark$$

$$N_B = 1636 \ rpm \qquad (3)$$

4.5.5 Gear A

$$PCD = m \times T$$

$$= 3 \times 30 \qquad \checkmark$$

$$= 90 \ mm \qquad \checkmark$$
(2)

4.5.6 **Outside diameter**

Outside diameter (OD) =
$$PCD + 2 \times Module$$

= $90 + (2 \times 3)$
= 96 mm (2)

4.5.7 Dedendum

$$Dedendum = 1,157 \times m \qquad \checkmark$$
$$= 1,157 \times 3$$
$$= 3,471 \ mm \qquad \checkmark$$

OR

$$Dedendum = 1,25 \times m$$

$$= 1,25 \times 3$$

$$= 3,75mm$$
 \checkmark (2)

4.6 Weld defects and testing:

4.6.1 Causes porous weld:

- Atmospheric contamination. ✓
- Surface contamination. ✓
- Dirty or wet electrodes. ✓
- Rusted MIG wire. ✓
- Type of welder ✓
- Current too high ✓
- Poor quality material ✓
- Incorrect method ✓

Any 2 X 1

(2)

4.6.2 **Prevention:**

- Clean the workpiece. ✓
- Use clean, dry electrodes. ✓
- Use correct electrodes including low hydrogen electrodes
 ✓ Any 1 X 1 (1)

4.6.3 Causes of poor fusion:

- Welding current to low or too fast. ✓
- Welding pool too wide or too large✓
- Wrong joint preparation root gap & chamfering). ✓
- Welding electrode to thick. ✓ Any 2 X 1 (2)

4.6.4 **Prevention:**

- Use correct current. ✓
- Be sure to melt the sides of the groove. ✓
- Groove must be free of other metals. ✓

4.6.5 Liquid dye penetration test:

- Clean the weld that needs to be tested. ✓
- The dye is sprayed onto the welded surface.
- Allowed dye to penetrate all the cracks. ✓
- Excess dye is cleaned away with a cleaning agent. ✓
- Allowed surface to dry. ✓
- Spray a developer onto the surface to bring out the dye trapped in cracks. ✓
- The dye will show all the surface defects ✓ (7)

 [50]

Copyright reserved

(5)

QUESTION 5: MAINTENANCE AND TURBINES

5.1 **Lubrication:**

5.1.1 **Properties**

- Viscosity must be correct. ✓
- It must resist oxidation. ✓
- It must avoid foaming. ✓
- Resist carbon forming. ✓
- It must prevent corrosion or rust√.
- It must resist extreme pressures. ✓
- Pour point ✓
- Resistance to temperature change ✓ Any 5 X 1
- 5.1.2 Viscosity of oil refers to the resistance of oil to flow./ thickness of oil ✓✓ (2)

5.1.3 **EP Oils**

- Manual gearbox√
- Final drive or differential
- Heavy duty machinery Any 2 X 1 (2)
- 5.1.4 Society of Automotive Engineers ✓ (1)

5.1.5 **Cutting Fluid**

- Acts as lubricant ✓
- Prevents chips from sticking ✓
- Improves quality of finish ✓
- Keeps the work piece cool √
- Keeps the cutting tool cool ✓
- Gives the cutting tool a longer life span ✓
- Wash away/remove chips/swarfs
 Any 4 x 1
 (4)

5.1.6 **Gear Lubrication**

COLUMN A	COLUMN B		
Engine	SAE 20W50	B√	
Gearbox	Extreme pressure oil (EP 90)	D√	
Differential	Extreme pressure oil (EP 90)	D√	
Power steering	Hydraulic oil	A√	(4)

5.1.7 Automatic transmission Fluid

- Transmitting power via torque converter ✓
- Acting as hydraulic fluid via servo cylinder ✓
- Acts as a heat-transfer medium ✓
- Acts as lubricant for gears and bearings ✓ Any 2 X 1

5.2 Blower:

5.2.1 Roots blower ✓ (1)

5.2.2 1. Inlet ✓

2. Outlet ✓

3. Rotors ✓

(3)

(5)

5.2.3 **Operation**

- The engine drives the rotors by means of gears or chain ✓
- Air is trapped between the rotor and aluminium casing. ✓
- This air is carried around the outside of the rotor and is pushed into a decreasing volume. ✓
- This raises the pressure of the air with the rotational speed of the rotors. ✓
- The air is forced into the inlet manifold and then fed into the cylinders. ✓

5.3 **Superchargers**

- To fill the cylinder with air pressure higher than atmospheric pressure. ✓
- To increase the compression pressure in the cylinder. ✓
- To increase volumetric efficiency of the engine. ✓
- No lag in relation to turbo charger ✓
- Obtain more power ✓ Any 3 X 1 (3)

•

5.4 Superchargers and turbochargers

- Supercharger is mechanically driven by gears or a belt. ✓
- Turbocharger is driven by the exhaust gases. ✓ (2)

5.5 **Steam turbine uses**

- To drive generators to generate electricity. ✓
- To operate ships. ✓
- To operate pumps ✓ Any 2 X 1 (2)

5.6 Advantages of steam turbines

- It is compact. ✓
- No lubrication is required. ✓
- Steam turbine speeds can be more accurately regulated. ✓
- A variety of fuels can be used to obtain steam. ✓
- Steam turbines are more economical. ✓
- Higher speeds can be obtained as compared to internal combustion engines. ✓
- Low maintenance ✓ Any 4 X 1 (4)
 [40]

Copyright reserved

QUESTION 6: FORCES AND SYSTEMS AND CONTROL

6.1 **Hydraulics:**

6.1.1 Fluid pressure:

$$A_{B} = \frac{\pi D^{2}}{4}$$

$$A_{B} = \frac{\pi (0,2)^{2}}{4}$$

$$A_{B} = 31,41593 \times 10^{-3} m^{2}$$

$$P = \frac{F_{B}}{A_{B}}$$

$$P = \frac{15 \times 10^{3}}{31,41593 \times 10^{-3}}$$

$$= 477464,8293 Pa$$

$$= 0,48 MPa$$

$$(6)$$

6.1.2 Force F on piston A:

$$A_{A} = \frac{\pi D^{2}}{4} \qquad \checkmark$$

$$A_{A} = \frac{\pi \times (0,075)^{2}}{4} \qquad \checkmark$$

$$A_{A} = 4,4178 \times 10^{-3} m^{2} \qquad \checkmark$$

$$P_{A} = P_{B}$$

$$P_{A} = \frac{F_{A}}{A_{A}} \qquad \checkmark$$

$$F_{A} = (0,48 \times 10^{6})(4,42 \times 10^{-3}) \qquad \checkmark$$

$$F_{A} = 2,10935 \ kN \qquad \checkmark$$

$$= 2,11 \ kN$$

$$or \quad \frac{F_{I}}{A_{I}} = \frac{F_{2}}{A_{2}} \qquad \checkmark \checkmark$$

$$F_{I} = \frac{F_{2} \times A_{I}}{A_{2}} \qquad \checkmark$$

$$= \frac{15 \times 10^{3} \times 4,4178 \times 10^{-3}}{31,41593 \times 10^{-3}} \qquad \checkmark$$

$$= 2,1093 \ kN \qquad \checkmark$$

$$= 2,11 \ kN \qquad (6)$$

6.1.3 **Distance 'X':**

$$V_{B} = V_{A}$$

$$A_{B} \times X = A_{A} \times L_{A}$$

$$X = \frac{A_{A} \times L_{A}}{A_{B}}$$

$$X = \frac{(4,42 \times 10^{-3})(0,12)}{31,41 \times 10^{-3}}$$

$$X = 16,87499773 \text{ mm/stroke}$$

$$X = 16,87499773 \times 16$$

$$X = 269,99 \text{ mm}$$

$$= 270 \text{ mm}$$

$$(6)$$

6.2 Stress and strain:

6.2.1 Side length:

$$\sigma = \frac{F}{A}$$

$$A = \frac{F}{\sigma}$$

$$A = \frac{30 \times 10^{3}}{6 \times 10^{6}}$$

$$A = 5 \times 10^{-3} m^{2}$$

$$A = L^{2}$$

$$L = \sqrt{A}$$

$$L = \sqrt{5 \times 10^{-3} m^{2}}$$

$$L = 0,0707106 m$$

$$L = 70,71 mm$$

(8)

6.2.2 **Strain:**

$$E = \frac{\sigma}{\varepsilon}$$

$$\varepsilon = \frac{\sigma}{E}$$

$$\varepsilon = \frac{6 \times 10^{6}}{90 \times 10^{9}}$$

$$\varepsilon = 0,06667 \times 10^{-3}$$

$$= 6,67 \times 10^{-5}$$

$$(4)$$

Copyright reserved

6.2.3 Change in length:

$$\varepsilon = \frac{\Delta \ell}{o\ell} \qquad \checkmark$$

$$\Delta \ell = \varepsilon \times o\ell$$

$$\Delta \ell = 6,67 \times 10^{-5} \times 200 \quad \checkmark$$

$$= 0,013 \,\text{mm} \qquad \checkmark$$
(3)

6.3 **Belt drives:**

6.3.1 Rotational frequency of the driven pulley

$$(D_{DN} + t) \times N_{DN} = (D_{DR} + t) \times N_{DR}$$

$$N_{DN} = \frac{(D_{DR} + t) \times N_{DR}}{(D_{DN} + t)}$$

$$= \frac{(475 + 12) \times 1440}{(180 + 12)}$$

$$= \frac{487 \times 1440}{192}$$

$$= 3652,5 rpm$$

Or

$$N_1D_1 = N_2D_2$$

$$N2 = \frac{N_1D_1}{D_2}$$

$$= \frac{475 \times 1440}{180}$$

$$= 3800 \text{ rpm}$$

(5)

6.3.2 Belt speed:

$$V = \frac{\pi(D+t) \times N}{60}$$

$$= \frac{\pi(0.475 + 0.012) \times 1440}{60}$$

$$= 36.72 \, \text{m.s}^{-1}$$
(3)

6.4 Clutches:

6.4.1 The maximum torque transmitted:

$$T = \mu W n R$$

$$T = 0.3 \times 4 \times 10^{3} \times 2 \times \frac{0.28}{2}$$

$$= 0.3 \times 4 \times 10^{3} \times 2 \times 0.14$$

$$= 336 N m$$

Copyright reserved

1

(5¹)

6.4.2 Power transmitted at 3500 rpm in kW:

NSC -

$$P = \frac{2\pi NT}{60}$$

$$P = \frac{2\pi \times 3500 \times 336}{60}$$

$$P = 123,15 \, kW$$

(4) **[50]**

TOTAL: 200