

You have Downloaded, yet Another Great Resource to assist you with your Studies ③

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

education

Department: Education **REPUBLIC OF SOUTH AFRICA**

NATIONAL SENIOR CERTIFICATE

GRADE 12

MECHANICAL TECHNOLOGY NOVEMBER 2009 MEMORANDUM

MARKS: 200

This memorandum consists of 16 pages.

Please turn over

NSC – Memorandum

NB. Any other correct answer not mentioned can be accepted. Any mathematical calculation without any unit can not be accepted as correct.

QUESTION 1: MULTIPLE-CHOICE QUESTIONS (Learning Outcome 3: Assessment Standards 1 – 9)

1.1	C√	(1)
1.2	A \checkmark	(1)
1.3	$D\checkmark$	(1)
1.4	C√	(1)
1.5	В√	(1)
1.6	D \checkmark	(1)
1.7	A \checkmark	(1)
1.8	C√	(1)
1.9	C√	(1)
1.10	В√	(1)
1.11	C√	(1)
1.12	$D\checkmark$	(1)
1.13	D \checkmark	(1)
1.14	C√	(1)
1.15	A \checkmark	(1)
1.16	C√	(1)
1.17	$D\checkmark$	(1)
1.18	C√	(1)
1.19	B	(1)
1.20	A \checkmark	(1) [20]

QUESTION 2: FORCES AND SYSTEMS AND CONTROL (Learning Outcome 3: Assessment Standards 6 and 8)

2.1 HYDRAULIC SYSTEM

2.1.1 **Pressure in the system**

$$P = \frac{F_B}{A_B} \qquad \qquad \checkmark$$
$$= \frac{150 \times 10^3}{7,85 \times 10^{-3}} \qquad \qquad \checkmark$$

$$7,85 \times 10^{-5}$$
 $\sqrt{}$ =19,11 MPa

2.1.2 Force in piston A

$$A_{A} = \frac{\pi D^{2}}{4} \qquad \qquad \sqrt{}$$
$$= \frac{\pi (0,25)^{2}}{4}$$
$$= 0,49 \times 10^{-3} \text{ m}^{2} \qquad \qquad \sqrt{}$$

$$P = \frac{F_A}{A_A} \qquad \qquad \sqrt{}$$

$$F_A = P \times A_A$$

$$= 19,11 \times 10^6 \times 0,49 \times 10^{-3}$$

$$= 9,36 \text{ kN or } 9360 \text{ N} \qquad \qquad \sqrt{}$$

(4)

(4)

 $\sqrt{}$

 $\sqrt{}$

2.1.3

$$V_{A} = V_{B}$$

 $V_{B} = A_{B} \times L$
 $= 7,85 \times 10^{-3} \times 0,01$
 $= 0,08 \times 10^{-3} m^{3}$

$$V_{A} = A_{A} \times X \qquad \qquad \sqrt{X}$$
$$X = \frac{V_{A}}{A_{A}} \qquad \qquad \sqrt{A}$$
$$= \frac{0.08 \times 10^{-3}}{0.49 \times 10^{-3}} \qquad \qquad \sqrt{A}$$
$$= 0.16 \text{ m}$$
$$= 160 \text{ mm} \qquad (\text{Accept mm and m}) \qquad \sqrt{A}$$

2.2 Forces

2.2.1 **The diameter of the brass bar**

$$A = \frac{\pi \times D^2}{4}$$

$$D^2 = \frac{A \times 4}{\pi}$$

$$= \sqrt{\frac{A \times 4}{\pi}}$$

$$D = \sqrt{\frac{5 \times 10^{-3} \times 4}{\pi}}$$

$$D = 0.079788 m$$

$$D = 79.788 mm$$

$$= 79.79 mm$$

(6)

(5)

(3)

(3)

(4)

(4)

2.2.2 The strain

2.2.3 The change in length

$$\varepsilon = \frac{\Delta l}{ol} \qquad \qquad \checkmark$$
$$\Delta l = \varepsilon \times ol \qquad \qquad \checkmark$$

$$\Delta l = \left(6,666 \times 10^{-5}\right) \times 250$$

$$\Delta l = 16,67 \times 10^{-3} mm$$

2.3 Belt drives (Diameter of the pump pulley)

2.4 Wheel and axle

2.4.1 Mechanical Advantage

2.4.2 Velocity Ratio/Displacement ratio

Copyright reserved

6 NSC – Memorandum

(6)

(4) **[50]**

2.5 **Square threads**

2.5.1 Helix angle:

$$\theta = 9,849^{\circ}$$
 VV

2.5.2 Leading angle

Leading angle=
$$90^{\circ}$$
 - (helixangle + clearanceangle) $\sqrt{$
= 90° - (9,849° + 3°)
= 90° - 12,849°
=77,15° $\sqrt{$ (2)

2.5.3 Trailing angle

$$Trailingangle = 90^{0} + (helixangle - clearanceangle) \qquad \sqrt{$$

$$= 90^{0} + (9,849^{0} - 3^{0})$$

$$= 90^{0} + 6,849^{0}$$

$$= 96,85^{0} \qquad \qquad \sqrt{}$$

(2)

2.6 Clutches (Torque)

$$T = \mu W n R \qquad \qquad \sqrt{}$$
$$T = 0.35 \times (2.5 \times 10^3) \times 2 \left(\frac{0.28}{2}\right) \qquad \qquad \sqrt{}$$
$$= 245 \ Nm \qquad \qquad \sqrt{}$$

Copyright reserved

QUESTION 3: TOOLS AND EQUIPMENT (Learning Outcome 3: Assessment Standard 2)

3.1 **Torsion**

Torsion	is	the	twisting	action	in	а	member	caused	by	two	opposing	
moments along the longitudinal axis of the member.							$\sqrt{}$	(2)				

3.2 Hook's law

3.2.1	Strain $\sqrt{1}$ is directly proportional to the stress $\sqrt{1}$ its deformation					
	causes provided the limit of proportionality/elasticity is not					
	exceeded V	(3)				
	,					

3.2.2 Line 0–A $\sqrt{(1)}$

3.3 Function of tensile test

It is used to determine the tensile strength of material. $\sqrt{}$	(2)
---	-----

3.4 **Tensile test**

3.4.1	Destructive	\checkmark	(1)
3.4.2	Piece of material	\checkmark	(1)
3.4.3	Axial	\checkmark	(1)
3.4.4	Elongation		(1)

3.5 Metal Arc Gas Shielded equipment

 MAGS/MIGS is a semi-automatic welding processor with a continuously fed wire from a spool √ The wire acts as both electrode and filler when the arc is struck between the workpiece and the air. √ A gas passing through the nozzle forms a protective shield around the welding area. √ The arc length is self-adjusting, any variations in the arc length by the 	
welder, produces a change in the burn-off rate of the wire $$	
 The arc length is directly proportional to the voltage. 	
• With a decrease in current; this causes a decrease in electrode burn-off rate $$	
• This restores the original arc length. $$	
 Steps regarding the machine setup. 	(8)
 No safety precautions will be accepted. 	[20]

QUESTION 4: MATERIALS (Learning Outcome 3: Assessment Standard 3)

4.1	Stainless	steel		
	 With h It is a It does Easy t Neat in Wear 	eat it does not warp tough material s not rust o clean n appearance resistance	√ √ √ √ (Any 3 x 1)	(3)
4.2	Elements	s of stainless steel		
	IronCarborChrom	า e	イイ	(3)
4.3	Brass			
	4.3.1	Elements that brass contains:		
		CopperZinc	$\sqrt{1}$	(2)
	4.3.2	Properties:		
		 Good resistance against corrosion It is ductile and malleable It can be easily cast It can be easily polished It can be easily chrome plated 	√ √ √ √ (Any 1x 1)	(1)
4.4	Elements	s of solder		
	LeadTin		$\sqrt{1}$	(2)
4.5	Silver so	lder / Solder		
	It hasResistSurface	a higher melting point and a variety of applications ance against corrosion æ preparation is easy	\checkmark \checkmark \checkmark	(2)

(4)

(1)

Plastics 4.6

- Thermoplastic ${\bf v};$ each time they are heated they become soft and • harden when cooled. Can be heated repeatedly and softened and cooled again. $\sqrt{}$
- Thermosetting; $\sqrt{}$ when heated, first time, it softens and hardens when cooled. When heated for the second time it will not soften. $\sqrt{}$

PVC 4.7

Polyvinyl chloride $\sqrt{}$

Nylon 4.8

•	Needs no lubrications		
•	Cost is low	\checkmark	
•	Low maintenance	\checkmark	
•	Very light in weight	\checkmark	
•	Easy to machine	\checkmark	
•	It's a tough material	\checkmark	
•	Affected by exposure to sunlight	\checkmark	
		(Any 2 x 1)	(2)
			[20]

QUESTION 5: SAFETY, TERMINOLOGY AND JOINING METHODS (Learning Outcome 3: Assessment Standards 1, 4 and 5)

5.1 Welding

 Workplace should be partitioned off effectively. 	\checkmark
• Operator should use protective equipment. (Separate rule	are
acceptable)	\checkmark
 Provide and maintain effective ventilation. 	\checkmark
• Ensure proper and adequate fire precautions. (Separate rule	are
acceptable)	
(Any FIVE othe correct answers are acceptable)	(5)

5.2 Centre lathe

•	Don't leave spanners or keys on rotary parts.	\checkmark	
•	Use a brush or wire hook to remove shavings and not your ha	ands. $$	
•	Don't adjust the gearbox of the lathe while it is running.		
•	Don't lean on the machine.	\checkmark	
•	Don't attempt to stop the machine by placing your hand on the	e chuck	
	while the machine is slowing down.		
•	Don't make any measurements while machine is running.	\checkmark	
•	Don't leave machine unattended while running.		
		(Any 3 x 1)	(3)

5.3 Argon or CO₂ regulator

Oil and grease in the presence of oxygen $\sqrt{are flammable}$. $\sqrt{(2)}$	Oil and grease in the presence of oxyge	en $\sqrt{are flammable}$. $\sqrt{are flammable}$	(2)
---	--	--	-----

5.4 Indexing

5.4.1	Rapid indexing	\checkmark	(1)
5.4.2	Angular indexing	\checkmark	(1)
5.4.3	Simple indexing	\checkmark	(1)
5.4.4	Differential indexing	\checkmark	(1)

5.5 Indexing

Hole circles											
Side 1	24	25	28	30	34	37	38	39	41	42	43
Side 2	46	47	49	51	53	54	57	58	59	62	66

Standard change gears										
24 x 2	28	32	40	44	48	56	64	72	86	100

5.5.1 Simple indexing

$$Indexing = \frac{40}{N} = \frac{40}{119}$$

Actual indexing =
$$\frac{40}{A}$$
 \checkmark
= $\frac{40}{120} = \frac{4 \times 2}{12 \times 2}$ \checkmark
= $\frac{8}{24}$

Zero full turns and 8 holes on the 24 - hole circle

5.5.2 Change gears

$\frac{\mathrm{Dr}}{\mathrm{Dn}} = \frac{\mathrm{A} - \mathrm{N}}{\mathrm{A}} \times \frac{40}{1}$	\checkmark	
$\frac{\mathrm{Dr}}{\mathrm{Dn}} = \frac{120 - 119}{120} \times \frac{40}{1}$		
$\frac{\mathrm{Dr}}{\mathrm{Dn}} = \frac{1}{120} \times \frac{40}{1}$	N	
$\frac{Dr}{Dn} = \frac{40}{120} = \frac{4}{12} \times \frac{6}{6}$	\checkmark	
$\frac{\mathrm{Dr}}{\mathrm{Dn}} = \frac{24}{72}$	$\sqrt{}$	(5)

 $\sqrt{\sqrt{}}$

(5)

Copyright reserved

12

NSC – Memorandum

56	Gears
5.0	Gears

5.6.1	Addendum = module = 2,5 mm	$\sqrt[n]{\sqrt{1}}$	(2)
5.6.2	Dedendum = $1,25 x module$ or = $1,157 x module$ = $1,25 x 2,5 mm$ = $1,157x 2,5$ = $3,125 mm$ = $2,8925 mm$	イ イ イ	(3)
5.6.3	Cutting depth =2,25 x moduleor $= 2,157 x module$ $= 2,25 x 2,5 mm$ $= 2,157 x 2,5$ $= 5,625 mm$ $= 5,3925 mm$	$\sqrt[n]{\sqrt{1}}$	(3)
5.6.4	Circular pitch = $\pi x \mod ule$ = $\pi \times 2,5 mm$ = 7,853 mm	$\sqrt[n]{}$	(3)
5.6.5	Clearance $= 0,25 x module$ $or = 0,157 x module$ $= 0,25 x 2,5 mm$ $= 0,157 x 2,25$ $= 0,625 mm$ $= 0,3925 mm$	$\sqrt[n]{\sqrt{1}}$	(3)
5.6.6	$PCD = \frac{Circular pitch \times number of teeth}{\pi}$	\checkmark	
	$=\frac{7,853\times40}{\pi}$	$\sqrt{\sqrt{1}}$	
	= 99,987 mm	\checkmark	

OR

5.8

5.7 Welding defects – Weld spatter:

5.7.1	Causes:		
	 Current too high. Arc too long. Incorrect electrode Surface contamination (e.g. Rust) 	√ √ √ (Any 3 x 1)	(3)
5.7.2	Prevention:		
	 Correct current setting. Correct welding technique. Correct electrode Proper surface preparation. 	√ √ √ (Any 3 x 1)	(3)
Milling o	cutters		
5.8.1	Equal-angle cutter	\checkmark	(1)
5.8.2	Convex cutter	\checkmark	(1) [50]

QUESTION 6: MAINTENANCE AND TURBINES (Learning Outcome 3: Assessment Standards 7 and 9)

6.1 Friction bearing failure

 Operating temperature too excessive. 	\checkmark	
Oil supply has foreign materials and /or contaminated with w	/ater. √	
 Bearing material is corroded. 		
 Incorrect lubricant used. 		
Lubrication insufficient.	\checkmark	
 Faulty design. 	\checkmark	
 Poor maintenance and incorrect assembly. 		
	(Any 4 x 1)	(4)

6.2 **Cutting fluid**

 Carry away the heat generated by machining process 	\checkmark	
Acts as a lubricant	\checkmark	
• Prevents the chips from sticking and fusing to the cutter teeth	\checkmark	
 Improves quality of the finish of the surface 	\checkmark	
To keep the workpiece and the cutting tool cool	\checkmark	
To obtain a high cutting speed	\checkmark	
 It gives a cutting tool a longer lifespan 	\checkmark	
	(Any 4 x 1)	(4)

6.3 **Properties of oil**

6.3.1	Viscosity of oil:	
	Refers to the resistance $$ of oil to flow. $$	(2)
6.3.2	Pour point:	
	Refers to the <u>lowest temperature</u> $$ at which a liquid can <u>flow</u> . $$	(2)
Belt slip		

•	Overloading the belt.	\checkmark	
•	Lubricants on the contact surface.	\checkmark	
•	Belt too slack.	\checkmark	
•	Worn belt.	\checkmark	
•	Contact angle on pulley too small.	\checkmark	
		(Any 4 x 1)	(4)

6.4

6.5 Lubricating oil

6.5.1	SAE =	Society of Automotive Engineers.	\checkmark	(1)
6.5.2	20 =	Oil thin enough to be used in winter.	\checkmark	(1)
6.5.3	W =	Winter.	\checkmark	(1)
6.5.4	50 =	Oil thick enough to be used in summer.	\checkmark	(1)

6.6 V-belts

6.6.1 Advantages	
------------------	--

• V-belts are used over short distances. $$	
• It is silent in operation. $$	
• Requires very little maintenance. $$	
• Is able to absorb shock loads $$	
• Operate a low bearing pressure. $$	
• In a multi-V-belt drive, if one belt breaks the machine can still	
run on the remaining belts. $$	
(Any 3 x 1)	(3)

6.6.2 **Disadvantages**

•	Cannot repair a broken V-belt $$	
•	Unsuitable for long distances $$	
•	V-belts have the tendency to pull tighter under heavy loads, and cause further damage when machine seizes \checkmark	
•	V-belts cannot be used on fixed and loose pulleys $$	
	(Any 3 x 1)	(3)

6.7 Blower

6.8

6.9

6.7.1	Type of blower		
	Vane-type blower	$\sqrt{\sqrt{1}}$	(2)
6.7.2	Parts		
	1. Inlet 2. Outlet 3. Rotor 4. Vane	\bigvee \bigvee \bigvee	(4)
Steam t	urbine – advantages		
 It is No I Stea A va Stea High eng Con 	compact. ubrication is required. am turbine speeds can be more accurately regulat ariety of fuels can be used to obtain steam. am turbines are more economical. her speeds can be obtained as compared to intern ine. vert heat energy into mechanical energy.	ed. $\sqrt[4]{1}$ al combustion $\sqrt[4]{1}$ (Any 4 x 1)	(4)
Gas turl	bine – advantages		
 High The tran Smoore No mainteender 	n power output from a given weight of engine. torque output characteristic permits a notable sim smission system. both vibration less running due to absence of recip rubbing parts such as piston so that internal friction ost eliminated.	plification of the $\sqrt[]{}$ procating parts. $\sqrt[]{}$ n and wear are $\sqrt[]{}$	

 $\sqrt{}$ Easy starting. • Can use wide range of fuels and does not require expensive anti-• $\sqrt{}$ knock additives. Low lubricating-oil consumption. $\sqrt{}$ • $\sqrt{}$ No water-cooling system needed. • Non-poisonous exhaust giving very little trouble with pollution. $\sqrt{}$ • Requires little routine maintenance $\sqrt{}$ •

(Any 4 x 1) (4)

[40]

TOTAL: 200