

You have Downloaded, yet Another Great Resource to assist you with your Studies ③

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

education

Department: Education PROVINCE OF KWAZULU-NATAL

> NATIONAL SENIOR CERTIFICATE

PHYSICAL SCIENCES

COMMON TEST

MARCH 2022

This marking guideline consists of 7 pages.

MARKS : 100

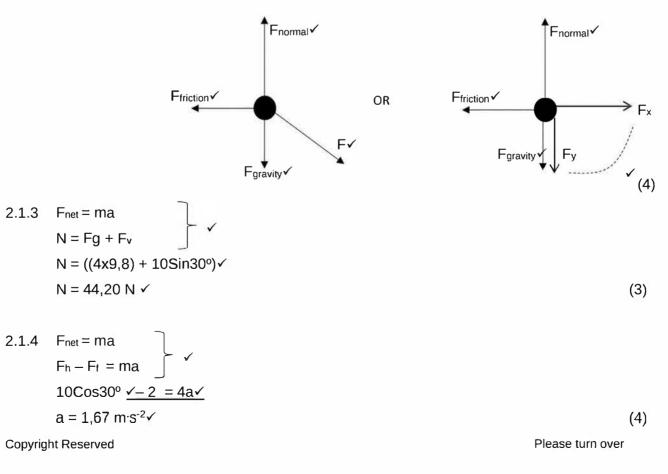
Copyright Reserved

Please turn over

NSC

QUESTION 1

- 1.1 B
- 1.2 **B**
- 1.3 A
- 1.4 C ✓ ✓
- 1.5 B ✓ ✓
- 1.6 D ✓ ✓


 $(6 \times 2) = 12$

QUESTION 2

2.1.1 When a resultant/net force acts on an object, the object will accelerate in the direction of the force at an <u>acceleration directly proportional to the force</u> ✓ and <u>inversely proportional to the mass of the object.</u> ✓ OR

The resultant/net force acting on an object is equal to the rate of change of momentum of the object in the direction of the net force. $\checkmark \checkmark$ (2 or 0) (2)

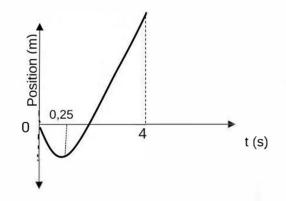
2.1.2

	NSC March 2022 Common T	Test
2.1.5	DECREASES✓	(1)
2.1.6	INCREASES \checkmark The horizontal component of the applied force increases \checkmark and the frictional force decreases. \checkmark	(2)
2.2.1	State Newton's Law of Universal Gravitation: Each body in the universe attracts every other body with a force that is <u>directly proportional to the product of their</u> <u>masses</u> and <u>inversely proportional to the square of the distance between their</u> <u>centres</u> . \checkmark Note: Underlined phrases must be in context of the law	(2)
2.2.2 QUES	$g = G \frac{M}{r^2} \checkmark$ $= \frac{6.67 \times 10^{-11} \cdot 5.98 \times 10^{24}}{(6.38 \times 10^6)^2 \checkmark} \checkmark$ $= 9.799 \text{ N.kg}^{-1} (\text{m·s}^{-2}) \checkmark (9.8 \text{ m·s}^{-2})$ Note: if only 9.8 m·s ⁻² written then 1/4 marks	(4) [22]
QULU		
3.1 3.2	In an isolated system, \checkmark the total linear momentum remains constant (is conserved). \checkmark [first mark awarded only if it is in context of momentumconservation] $\Sigma p_i = \Sigma p_f$ $m_1v_{i1} + m_2v_{i2} = m_1v_{f1} + m_2v_{f2}$	(2)
	$\frac{(1500)(0) + (2000)(20)}{v_{f2}} \checkmark = (1500)(12) + (2000)v_{f2} \checkmark$ $v_{f2} = 11 \text{ m} \cdot \text{s}^{-1} \checkmark$ $OR \ (1500)(0) + (2000)(-20) \checkmark = (1500)(-12) + (2000)v_{f2} \checkmark$	(4)
	$V_{f2} = -11 \text{ m} \text{ s}^{-1} \text{ Hence speed} = 11 \text{ m} \text{ s}^{-1} \checkmark$	
3.3	The driver moves (momentarily) forward. \checkmark	(1)
3.4	Newton's first Law ✓ OR Inertia	(1) [8]
Copyrigi	nt Reserved Please turn over	r

QUESTION 4

4.1 Motion during which the only force acting on an object is the gravitational force. $\checkmark \checkmark$ (2)

NSC


4.2 The object is projected upwards from above the ground ✓ / the top of a building. It then moved downwards ✓ below the starting position / top of the building. ✓ (3)

4.3	OPTION 1	OPTION 2	OPTION 3]
	v _f = v _i + a∆t√	v _f = v _i + a∆t√	Grad = 9,8 $\checkmark = \frac{0 - v_i}{0,25 - 0} \checkmark$	
	0 = v _i + (9,8)(0,25) ✓	0 = v _i + (− 9,8)(0,25) ✓		
	v _i = <u>2,45 m·s⁻¹ upwards</u> √	$v_i = -2.45 \text{ m} \cdot \text{s}^{-1}$	$V_i = -\frac{2.45 \text{ m}\cdot\text{s}^{-1}}{2.45 \text{ m}\cdot\text{s}^{-1}}$	
		$v_i = 2.45 \text{ m}\cdot\text{s}^{-1} \text{ upwards} \checkmark$	$v_i = 2,45 \text{ m} \cdot \text{s}^{-1} \text{ upwards} \checkmark$	(3)

4.4 **POSITIVE MARKING FROM Q 4.3**

OPTION 1	OPTION 2	OPTION 3]
v _f = v _i + a∆t✓	v _f = v _i + a∆t√	Grad = 9,8 $\checkmark = \frac{v_f - 0}{4 - 0.25} \checkmark$	
v _f = 0 + (9,8)(4 − 0,25) ✓	$v_f = -2,45 + (9,8)(4) \checkmark$		
$v_i = 36,75 \text{ m} \cdot \text{s}^{-1} \text{ downward} \checkmark$	$v_i = 36,75 \text{ m}\cdot\text{s}^{-1} \text{ downward} \checkmark$	$v_i = 36,75 \text{ m}\cdot\text{s}^{-1} \text{ downward} \checkmark$	(3)

4.5

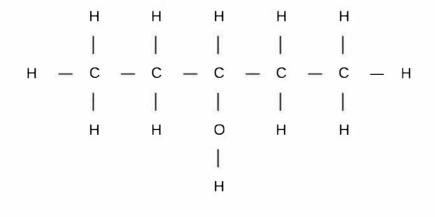
CRITERIA	MARK
Correct shape	1
Indications of the times	1
Graph starts from origin	\checkmark

(3)

[14]

March 2022 Common Test

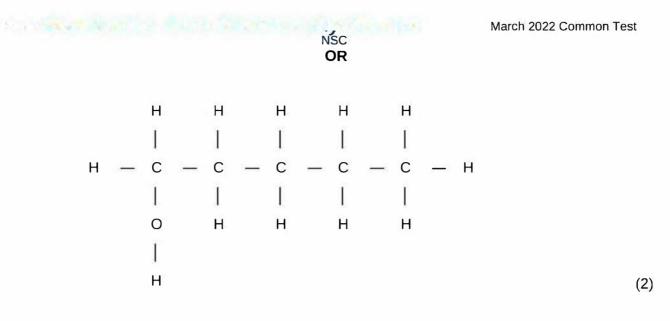
QUESTION 5 5.1.1. ester√; accept alkyl alkanoate (1)5.1.2 Propyl√ butanoate√ (2)Carboxylic acid√; accept alkanoic acid 5.1.3 (1)5.2 A bond or an atom or a group of atoms \checkmark that determine(s) the physical and chemical properties of a group of organic compounds. (2) 5.3 Carboxyl (group) ✓ (1)5.4 1 1 C = С 1 (1)


NSC

5.5 Organic molecules with the same molecular \checkmark formula but different structural formula. \checkmark (2)

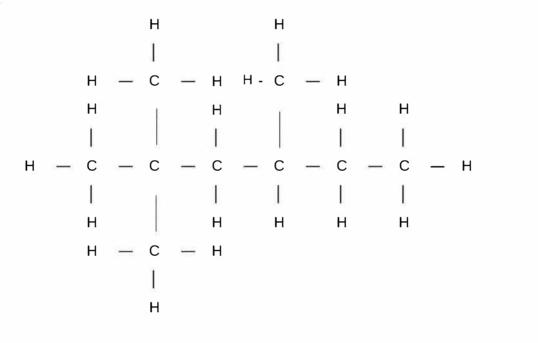
5.6.1 Secondary ✓

The carbon to which the hydroxyl group is bonded, is bonded to TWO other carbons \checkmark (2)


5.6.2

Functional group on correct carbon \checkmark Whole structure correct \checkmark

Copyright Reserved


Please turn over

5.7.1 Organic compounds that consist of <u>carbon and hydrogen</u> \checkmark ONLY \checkmark

(2)

5.7.2

MARKING CRITERIA		
6 Carbon parent chain	~	
3 methyl groups on parent	~	
chain		
Whole structure correct	✓	(3)

Please turn over

	March 2022 Common Te	st
	NSC	[19]
QUES	TION 6	
6.1	The temperature at which the vapour pressure equals atmospheric/external pressure. $\checkmark\checkmark$ (2 or 0)	(2)
6.2	Z✓	
	Z has the highest boiling point. \checkmark	(2)
6.3	X ✓	(1)
6.4	What is the relationship between boiling point and type of functional group/ homologous series? Identify dependent variable ✓	
	Identify independent variable \checkmark (If answer not stated as question -1 mark)	(2)
6.5	To ensure a fair test. / to control the variable	(1)
	/ to ensure there is only one independent variable \checkmark	
6.6.1	(DO NOT MARK)	

6.6.2 (DO NOT MARK)

UPSCALE MARKS TO BE OUT OF 13 USING TABLE:

Mark out of 8	Conversion out of 13
1	2
2	3
3	5
4	7
5	8
6	10
7	11
8	13

QUESTION 7

7.1.1	Addition/hydrogenation \checkmark	(1)
7.1.2	Elimination/dehydrohalogenation \checkmark	(1)
7.2.1	Dehydration 🗸	(1)
7.2.2	Hydrohalogenation \checkmark	(1)
7.3.1	Hydrolysis ✓	(1)
7.3.2	(Mild) heat ✓	

Copyright Reserved

Please turn over

[13]

	March 2022 Common	Test
	Dilute strong base/NaOH/KOH ✓	(2)
7.4	Concentrated strong base/NaOH/KOH✓	(1)
7.5	CH ₃ CHCHCH ₃ ✓ + H ₂ O ✓ CH ₃ CHOHCH ₂ CH ₃ ✓ BAL ✓	
	OR	
	CH ₂ CHCH ₂ CH ₃ ✓ + H ₂ O ✓ CH ₃ CHOHCH ₂ CH ₃ ✓ BAL ✓	(4)
		[12]