


You have Downloaded, yet Another Great Resource to assist you with your Studies ③

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

basic education

Department: Basic Education **REPUBLIC OF SOUTH AFRICA**

SENIOR CERTIFICATE EXAMINATIONS/ NATIONAL SENIOR CERTIFICATE EXAMINATIONS

MATHEMATICS P2

2022

MARKS: 150

TIME: 3 hours

This question paper consists of 14 pages and 1 information sheet.

Please turn over

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

- 1. This question paper consists of 10 questions.
- 2. Answer ALL the questions in the SPECIAL ANSWER BOOK provided.
- 3. Clearly show ALL calculations, diagrams, graphs, etc. that you have used in determining your answers.
- 4. Answers only will NOT necessarily be awarded full marks.
- 5. You may use an approved scientific calculator (non-programmable and non-graphical), unless stated otherwise.
- 6. If necessary, round off answers correct to TWO decimal places, unless stated otherwise.
- 7. Diagrams are NOT necessarily drawn to scale.
- 8. An information sheet with formulae is included at the end of the question paper.
- 9. Write neatly and legibly.

3 SC/NSC

QUESTION 1

MASS (in kg)	FREQUENCY
$5 < m \leq 7$	6
$7 < m \leq 9$	18
$9 < m \leq 11$	21
$11 < m \leq 13$	19
$13 < m \leq 15$	11
$15 < m \leq 17$	4
$17 < m \leq 19$	1

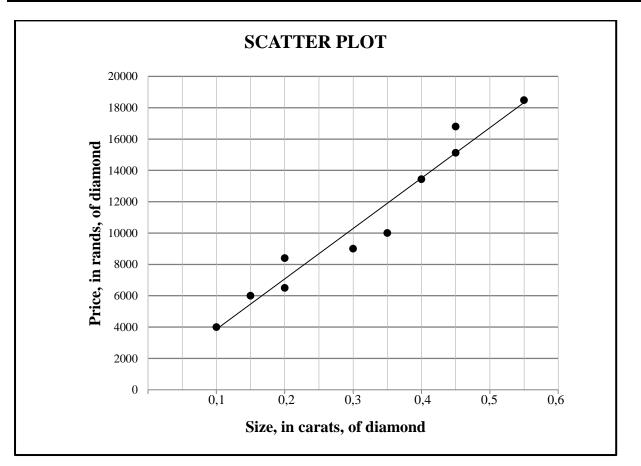
The table below shows the mass (in kg) of the school bags of 80 learners.

1.2 Complete the cumulative frequency column in the table in the ANSWER BOOK. (2)

- 1.3 Draw a cumulative frequency graph (ogive) for the given data on the grid provided in the ANSWER BOOK. (3)
- 1.4 Use the graph to determine the median mass for this data.
- 1.5 The international guideline for the mass of a school bag is that it should not exceed 10% of a learner's body mass.

1.5.1 Calculate the estimated mean mass of the school bags.	(2)
---	-----

1.5.2 The mean mass of this group of learners was found to be 80 kg. On average, are these school bags satisfying the international guideline with regard to mass? Motivate your answer.

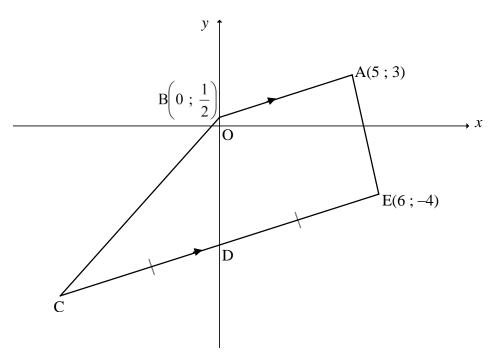

(2) [**12**]

(1)

(2)

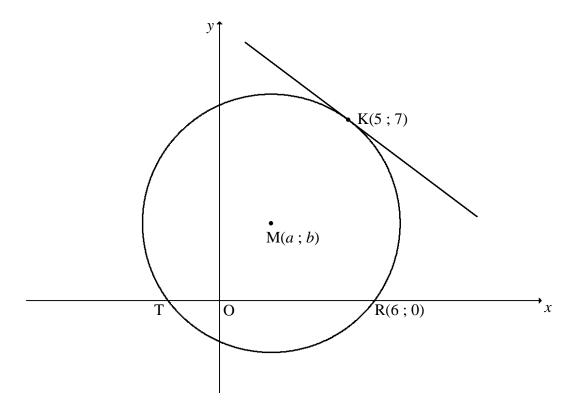
The table below shows the size (in carats) and the price (in rands) of 10 diamonds that were sold by a diamond trader. This information is also presented in the scatter plot below. The least squares regression line for the data is drawn.

Size, in carats, of diamond (<i>x</i>)	0,1	0,15	0,2	0,2	0,3	0,35	0,4	0,45	0,45	0,55
Price, in rands, of diamond (y)	4 000	6 000	6 500	8 400	9 000	10 000	13 440	15 120	16 800	18 480


- 2.1 Determine the equation of the least squares regression line for the data. (3)
- 2.2 If the trader sold a diamond that was 0,25 carats in size, predict the selling price of this diamond in rands. (2)
- 2.3 Calculate the average price increase per 0,05 carat of the diamonds. (2)
- 2.4 It was later found that the selling price of the 0,35 carat diamond was recorded incorrectly. The correct price is R11 500. When this correction is made to the data set, the correlation between the size and price of these diamonds gets stronger. Explain the reason for this by referring to the given scatter plot.

(1) [**8**]

5 SC/NSC


QUESTION 3

In the diagram, A(5; 3), B $\left(0; \frac{1}{2}\right)$, C and E(6; -4) are the vertices of a trapezium having BA || CE. D is the *y*-intercept of CE and CD = DE.

		(b) Size of KĈE	(3) [21]					
		(a) Perimeter of ΔKEC	(4)					
	3.4.2	Calculate the:						
	3.4.1	Write down the coordinates of K	(2)					
3.4	If point	K is the reflection of E in the y-axis:						
	3.3.2	Area of quadrilateral ABCD	(4)					
	3.3.1	Coordinates of C	(3)					
3.3	Calculat	Calculate the:						
3.2	Determine the equation of CE in the form $y = mx + c$.							
3.1	Calculat	e the gradient of AB.	(2)					

In the diagram, the circle centred at M(a; b) is drawn. T and R(6; 0) are the *x*-intercepts of the circle. A tangent is drawn to the circle at K(5; 7).

4.1	Μ	is a	point on	the line	y = x + 1.
-----	---	------	----------	----------	------------

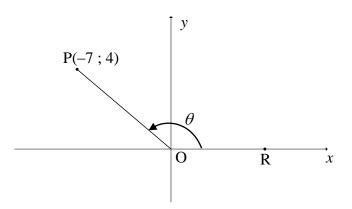
White I in towns of

1 1 1

4.2

4.1.1	write b in terms of a.	(1)
4.1.2	Calculate the coordinates of M.	(5)
If the coo	ordinates of M are (2; 3), calculate the length of:	
4.2.1	The radius of the circle	(2)

4.3 Determine the equation of the tangent to the circle at K. Write your answer in the form y = mx + c. (5)


4.4 A horizontal line is drawn as a tangent to the circle M at the point N(c; d), where d < 0.

- 4.4.1 Write down the coordinates of N. (2)
- 4.4.2 Determine the equation of the circle centred at N and passing through T. Write your answer in the form $(x-a)^2 + (y-b)^2 = r^2$. (3)

[20]

(1)

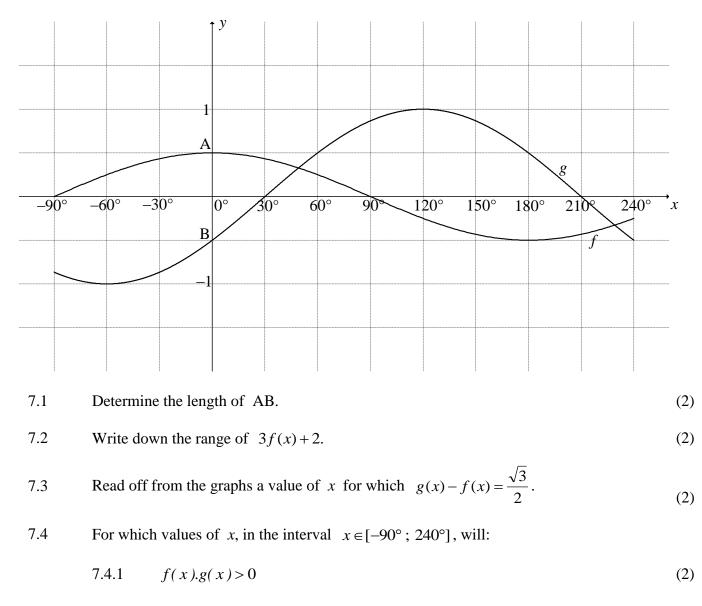
5.1 In the diagram below, P(-7; 4) is a point in the Cartesian plane. R is a point on the positive *x*-axis such that obtuse $\hat{POR} = \theta$.

Calculate, without using a calculator, the:

	5.1.1	Length OP	(2)		
	5.1.2	Value of:			
		(a) $\tan \theta$	(1)		
		(b) $\cos(\theta - 180^{\circ})$	(2)		
5.2	Determin	he the general solution of: $\sin x \cos x + \sin x = 3\cos^2 x + 3\cos x$	(7)		
5.3	Given th	he identity: $\frac{\sin 3x}{1 - \cos 3x} = \frac{1 + \cos 3x}{\sin 3x}$			
	5.3.1	Prove the identity given above.	(3)		
	5.3.2	Determine the values of x, in the interval $x \in [0^\circ; 60^\circ]$, for which the			
		identity will be undefined.	(3) [18]		

8 SC/NSC

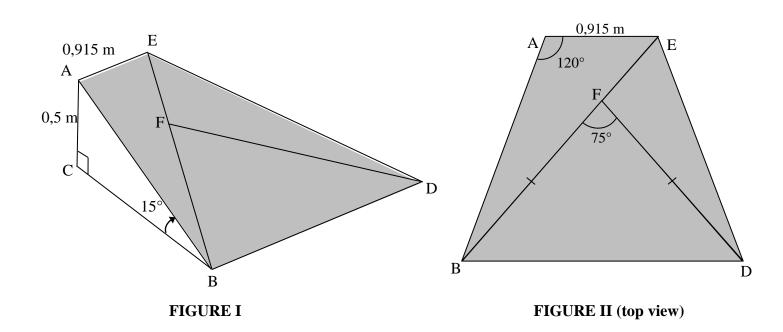
QUESTION 6


6.1 **Without using a calculator**, simplify the following expression to a single trigonometric term:

$$\frac{\sin 10^{\circ}}{\cos 440^{\circ}} + \tan(360^{\circ} - \theta).\sin 2\theta \tag{6}$$

- 6.2 Given: $\sin(60^\circ + 2x) + \sin(60^\circ 2x)$
 - 6.2.1 Calculate the value of k if $\sin(60^\circ + 2x) + \sin(60^\circ 2x) = k \cos 2x$. (3)
 - 6.2.2 If $\cos x = \sqrt{t}$, without using a calculator, determine the value of $\tan 60^{\circ} [\sin(60^{\circ} + 2x) + \sin(60^{\circ} 2x)]$ in terms of t. (3)

[12]


In the diagram below, the graphs of $f(x) = \frac{1}{2}\cos x$ and $g(x) = \sin(x - 30^\circ)$ are drawn for the interval $x \in [-90^\circ; 240^\circ]$. A and B are the y-intercepts of f and g respectively.

7.4.2
$$g'(x-5^{\circ}) > 0$$
 (2)

FIGURE I shows a ramp leading to the entrance of a building. B, C and D lie on the same horizontal plane. The perpendicular height (AC) of the ramp is 0,5 m and the angle of elevation from B to A is 15° . The entrance of the building (AE) is 0,915 m wide.

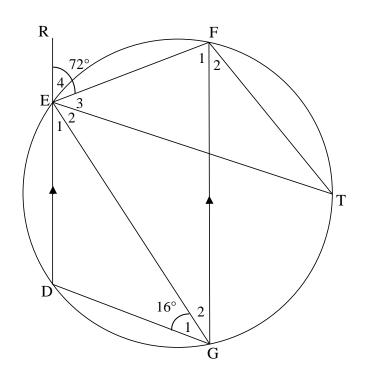
8.1 Calculate the length of AB.

8.2 Figure II shows the top view of the ramp. The area of the top of the ramp is divided into three triangles, as shown in the diagram.

If $\hat{BAE} = 120^\circ$, calculate the length of BE.

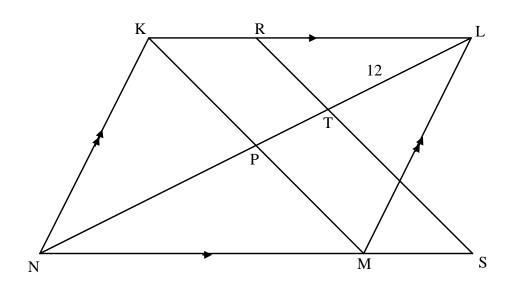
8.3 Calculate the area of
$$\triangle BFD$$
 if $\hat{BFD} = 75^{\circ}$, $BF = FD$ and $BF = \frac{5}{2}BE$

(3) [**8**]

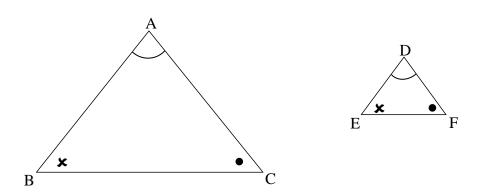

(3)

(2)

Copyright reserved


9.1 In the diagram, DEFG is a cyclic quadrilateral with DE || GF. DE is produced to R. T is another point on the circle. EG, FT and ET are drawn. $\hat{E}_4 = 72^\circ$ and $\hat{G}_1 = 16^\circ$.

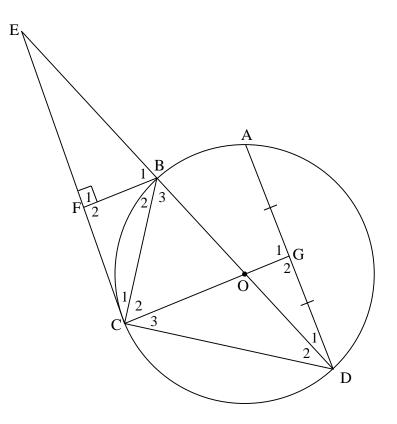
Determine, with reasons, the size of the following angles:


9.1.3	GÊF	(2)
9.1.2	Ϋ́Τ	(2)
9.1.1	DĜF	(2)

In the diagram, the diagonals of parallelogram KLMN intersect at P. NM is 9.2 produced to S. R is a point on KL and RS cuts PL at T. NM : MS = 4 : 1, NL = 32 units and TL = 12 units.

9.2.3	If $NM = 21$ units, determine, with reasons, the length of RL.	(4) [16]
9.2.2	Prove, with reasons, that $KM \parallel RS$.	(2)
9.2.1	Determine, with reasons, the value of the ratio NP: PT in simplest form.	(4)

10.1 In the diagram, $\triangle ABC$ and $\triangle DEF$ are drawn such that $\hat{A} = \hat{D}$, $\hat{B} = \hat{E}$ and $\hat{C} = \hat{F}$.



Use the diagram in the ANSWER BOOK to prove the theorem which states that if two triangles are equiangular, then the corresponding sides are in proportion, i.e. $\frac{AB}{DE} = \frac{AC}{DF}$.

(6)

10.2 In the diagram, O is the centre of a circle passing through A, B, C and D. EC is a tangent to the circle at C. Diameter DB produced meets tangent EC at E. F is a point on EC such that $BF \perp EC$. Radius CO produced bisects AD at G. BC and CD are drawn.

	ΤΟΤΑΙ	150
10.2.4	Hence, prove that $DB = CG + FB$.	(5) [25]
10.2.3	Prove, with reasons, that $CD^2 = CG.DB$.	(5)
10.2.2	Give a reason why $\hat{G}_1 = 90^\circ$.	(1)
	(b) $\Delta FCB \parallel \Delta CDB$	(5)
	(a) FB CG	(3)
10.2.1	Prove, with reasons, that:	

TOTAL: 150

INFORMATION SHEET

$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$				
A = P(1+ni)	A = P(1 - ni)	$A = P(1-i)^n$	$A = P(1+i)^n$	
$T_n = a + (n-1)d$	$\mathbf{S}_n = \frac{n}{2} \big[2a + $	(n-1)d		
$T_n = ar^{n-1}$	$S_n = \frac{a(r^n - 1)}{r - 1}$	$1 $; $r \neq 1$	$S_{\infty} = \frac{a}{1-r}; -1 < r < 1$	
$F = \frac{x\left[(1+i)^n - 1\right]}{i}$	$P = \frac{x\left[1 - \left(1 + \frac{1}{i}\right)\right]}{i}$	$i)^{-n}$		
$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f}{h}$	$\frac{1}{2}(x)$			
$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \qquad M\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$				
y = mx + c	$y - y_1 = m(x - x_1)$	$m = \frac{y_2}{x_2} - \frac{y_2}{x_2$	$\frac{-y_1}{-x_1}$ $m = \tan \theta$	
$(x-a)^2 + (y-b)^2 = r^2$				
In $\triangle ABC: \frac{a}{\sin A} = \frac{b}{\sin B}$	$=\frac{c}{\sin C}$			
$a^2 = b^2 + c^2 $	$-2bc.\cos A$			
area $\triangle ABC =$	$=\frac{1}{2}ab.\sin C$			
$\sin(\alpha+\beta)=\sin\alpha.\cos\beta$	$+\cos\alpha.\sin\beta$	$\sin(\alpha - \beta) = \sin(\alpha - \beta)$	$\alpha . \cos \beta - \cos \alpha . \sin \beta$	
$\cos(\alpha + \beta) = \cos \alpha . \cos \beta - \sin \alpha . \sin \beta$		$\cos(\alpha - \beta) = \cos(\alpha - \beta)$	$\cos(\alpha - \beta) = \cos \alpha . \cos \beta + \sin \alpha . \sin \beta$	
$\int \cos^2 \alpha - \sin^2 \alpha$	r			
$\cos 2\alpha = \begin{cases} \cos^2 \alpha - \sin^2 \alpha \\ 1 - 2\sin^2 \alpha \\ 2\cos^2 \alpha - 1 \end{cases}$		$\sin 2\alpha = 2\sin \alpha.$	$\cos \alpha$	
$\left(2\cos^2\alpha-1\right)$				
$\overline{x} = \frac{\sum x}{n}$		$\sigma^2 = \frac{\sum_{i=1}^n (x_i - \overline{x})}{n}$	2	
$P(A) = \frac{n(A)}{n(S)}$		P(A or B) = P(A	+ P(B) - P(A and B)	
$\hat{y} = a + bx$		$b = \frac{\sum (x - \bar{x})(y)}{\sum (x - \bar{x})}$	$(\overline{y} - \overline{y})$	