

You have Downloaded, yet Another Great Resource to assist you with your Studies ©

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

PREPARATORY EXAMINATION 2022 MARKING GUIDELINES

MATHEMATICS (PAPER 1) (10611)

23 pages

INSTRUCTIONS AND INFORMATION

A – Accuracy

C.A. – Consistent Accuracy

NOTE:

- If a candidate answered a question TWICE, mark only the FIRST attempt.
- If a candidate crossed out an answer and did not redo it, mark the crossed-out answer.
- Consistent accuracy applies to ALL aspects of the marking guidelines.
- It is unacceptable for candidates to use adopted values/answers in solving questions.

1.1	1.1.1	$2x(x^{2}-1) = 0$ $2x(x-1)(x+1) = 0$	✓ factors	
		x = 0 or $x = 1$ or $x = -1$	✓ answers	
		NOTE: Any other valid method		(2)
	1.1.2			
	1.1.2	$x-6+\frac{2}{x}=0$		
		$x^2 - 6x + 2 = 0$	✓ standard form	
		$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$		
		$x = \frac{-(-6) \pm \sqrt{(-6)^2 - 4(1)(2)}}{2(1)}$	✓ substitution into correct formula	
		$x = \frac{6 \pm \sqrt{28}}{2}$		
		$\therefore x = 5,65 \dots or \dots x = 0,35$	✓✓ answers	
		NOTE: Penalise for rounding-off in this question ONLY.		
		Any other valid method		(4)
	1.1.3	$(x-1)(x+4) \ge 6$		
	1.1.5	$\therefore x^2 + 3x - 4 \ge 6$		
		$\therefore x^{2} + 3x - 4 \ge 0$ $\therefore x^{2} + 3x - 10 \ge 0$	✓ standard form	
		$\therefore (x+5)(x-2) \ge 0$	✓ factors	
		$\therefore x \le -5 \text{ OR } x \ge 2$	✓ answers	(3)

1.1.4	10			
	$\sqrt{x-2} + 3 = \frac{10}{\sqrt{x-2}}$			
	Let $k = \sqrt{x-2}$			
	$k+3=\frac{10}{k}$			
	k			
	$k^2 + 3k - 10 = 0$	✓	standard form	
	(k+5)(k-2) = 0	✓	factors	
	k = -5 or $k = 2$	✓	both answers for k	
	$\sqrt{x-2} \neq -5 \text{or} \sqrt{x-2} = 2$	✓	selection	
	$\left(\sqrt{x-2}\right)^2 = \left(2\right)^2$			
	$\therefore x = 6$	✓	answer	
	OR			
	$\sqrt{x-2} + 3 = \frac{10}{\sqrt{x-2}}$			
	$\left(\sqrt{x-2}\right)\left(\sqrt{x-2}\right) + 3\sqrt{x-2} = 10$			
	$x-2+3\sqrt{x-2}=10$			
	$3\sqrt{x-2} = 12 - x$	✓	simplified both sides	
	$\left(3\sqrt{x-2}\right)^2 = \left(12-x\right)^2$	✓	squaring both sides	
	$9x - 18 = 144 - 24x + x^2$			
	$x^2 - 33x + 162 = 0$	✓	standard form	
	(x-6)(x-27) = 0	✓	factors	
	$x = 6$ or $x \neq 27$	✓	selection	(5)

1.2	$x-2y=1$ and $2x^2-xy-5y-3y^2-2=0$		
	$x = 2y + 1 \cdots (1)$	\checkmark equation for x	
	$2x^2 - xy - 5y - 3y^2 - 2 = 0 \dots (2)$		
	Substitute (1) into (2):		
	$2(2y+1)^{2}-(2y+1)y-5y-3y^{2}-2=0$		
	$3y^2 + 2y = 0$	✓ standard form	
	y(3y+2)=0		
	$y = 0$ or $y = -\frac{2}{3}$	✓ y-values	
	$x=1$ or $x=-\frac{1}{3}$	✓ x-values	
	NOTE: Any other valid method		(4)
1.3	$2^{x+1} + 2^x = 3^{y+2} - 3^y$		
	$2^{x}(2^{1}+1) = 3^{y}(3^{2}-1)$	✓ factorise	
	$2^{x}(3) = 3^{y}(8)$		
	$\therefore \frac{2^x}{8} = \frac{3^y}{3}$		
	$\therefore \frac{2^x}{2^3} = \frac{3^y}{3}$		
	1 - 5	✓ simplified equated bases	
	$\therefore 2^{x-3} = 3^{y-1}$ \therefore $x-3=0$ and $y-1=0$	simplified equated bases	
	$\therefore x = 3 \text{and} y = 1 = 0$ $\therefore x = 3 \text{and} y = 1$	✓ answers	
	OR		
	$2^{x+1} + 2^x = 3^{y+2} - 3^y$		
	$2^{x}(2^{1}+1) = 3^{y}(3^{2}-1)$	✓ factorise	
	$2^{x}(3) = 3^{y}(8)$	Tuotoriso	
	$2^{x}(3) = 3^{y}(2^{3})$	✓ simplified equated bases	
	$\therefore x = 3$ and $y = 1$	✓ answers	
			(2)
			(3)

1.4	$x^2 + rx + m = 0$ and $x^2 + mx + r = 0$		
	$x^2 + rx + m = 0$		
	For real and equal roots, $\Delta = 0$		
	$b^2 - 4ac = 0$		
	$(r)^2 - 4(1)(m) = 0$	✓ substitute into $\Delta = 0$	
	$r^2 - 4m = 0$		
	$r^2 = 4m$		
	$m = \frac{r^2}{4} \qquad \dots (1)$	\checkmark equation for m	
	$x^2 + mx + r = 0$		
	$b^2 - 4ac = 0$		
	$m^2 - 4(1)(r) = 0$		
	$m^2 - 4r = 0$ (2)	✓ equation 2	
	Substitute (1) in (2)		
	$\left(\frac{r^2}{4}\right)^2 - 4r = 0$ $\frac{r^4}{16} - 4r = 0$	\checkmark substitute for m	
	$\frac{r^4}{16} - 4r = 0$		
	$r^4 - 64r = 0$		
	$r(r^3 - 64) = 0$		
	$r(r-4)(r^2+4r+16) = 0$		
	$\therefore r = 4$	\checkmark value of r	
	$m = \frac{r^2}{4}$		
	$m = \frac{4^2}{4}$		
	$\therefore m = 4$	\checkmark value of m	

OR

OR

 $x^2 + rx + m = 0$ and $x^2 + mx + r = 0$

For real and equal roots quadratic must be a perfect square.

$$x^2 + rx + m = 0$$

$$\left(x + \sqrt{m}\right)^2 = 0$$

$$x^2 + 2\sqrt{m}x + m = 0$$

$$r = 2\sqrt{m}$$

$$r^2 = 4m$$

$$r = 4m$$

$$\frac{r^2}{4} = m \qquad \dots (1)$$

$$x^2 + mx + r = 0$$

$$\left(x + \sqrt{r}\right)^2 = 0$$

$$x^2 + 2\sqrt{r} + r = 0$$

$$m = 2\sqrt{r}$$

$$m^2 = 4r \qquad \cdots (2)$$

Substitute (1) in (2)

$$\left(\frac{r^2}{4}\right)^2 - 4r = 0$$

$$\frac{r^4}{16} - 4r = 0$$

$$r^4 - 64r = 0$$

$$r(r^3-64)=0$$

$$r(r-4)(r^2+4r+16)=0$$

$$\therefore r = 4$$

$$m = \frac{r^2}{4}$$

$$m = \frac{4^2}{4}$$

$$\therefore m = 4$$

 $\checkmark \quad \left(x + \sqrt{m}\right)^2 = 0$

 \checkmark equation for m

equation 2

✓ substitute for m

 \checkmark value of r

✓ value of m

[27]

	STION			
2.1	2.1.1	20 12 10 14		
		-8 $\sqrt{-2}$ $\sqrt{4}$		
		6 6	\checkmark 2 nd diff.	
		2a = 6 $3a + b = -8$ $a + b + c = 20$		
		a = 3 $3(3) + b = -8$ $3 - 17 + c = 20$	$\checkmark a = 3$	
		$b = -17 \qquad c = 34$		
			V C – 34	
		$T_n = 3n^2 - 17n + 34$		(4)
	212	T = 1 (v 1) 1		
	2.1.2	$T_n = a + (n-1)d$	✓ substitution into	
		148 = -8 + (n-1)(6)	correct formula	
		148 = 6n - 14	(1 6	
		n = 27 Between 27^{th} and 28^{th} terms.	✓ value for <i>n</i> ✓ conclusion	
		Between 27 and 20 terms.	Conclusion	
				(3)
		n _		
	2.1.3	$S_n = \frac{n}{2} \left[2a + (n-1)d \right]$		
		$\frac{n}{2}[2(-8) + (n-1)6] > 10140$	✓ substitution	
		$3n^2 - 11n > 10140$		
		$3n^2 - 11n - 10140 > 0$	✓ standard form	
		(3n+169)(n-60)>0	✓ factors	
		$\therefore n > 60$	✓ selection, $n > 60$	
		n = 61		(5)
	1	n - 01	✓ answer	(5)
2.2		(a+b) = (1+b)+(2+b)+(3+b)+(4+b)+(5+b)	✓ expansion	
		+b)=15+5b		
	$\therefore \sum_{i=1}^{5} ($	(r+b) = 10a		
			✓ equating	
		-5b = 10a		
		=10a-15	✓ answer	(2)
	∴ b =	<u>2a-3</u>	· answer	(3) [15]
				LTOJ

	T			
3.1	$a = \frac{24}{x}$			
	$r = \frac{6x}{12} \text{ or } \frac{3x^2}{6x} \text{ or } \frac{x}{2}$			
		✓	value of r	
	$S_{\infty} = \frac{a}{1-r}$			
	24	✓	substitution in correct	
	$\mathbf{S}_{\infty} = \frac{\frac{24}{x}}{1 - \frac{x}{2}}$		formula	
	$S_{\infty} = \frac{48}{2x - x^2}$	√	correct numerator correct denominator	(4)
3.2	It exists when:			
	$-1 < \frac{x}{2} < 1$ i.e.: $-1 < r < 1$	✓	-1 < r < 1	
	2			
	$\therefore -2 < x < 2$	✓	answer	
	ANSWER ONLY: Award full marks.			(2)
3.3	r > 1	√	<i>r</i> > 1	
	$\therefore \frac{x}{2} > 1$			
	2			
	$\therefore x > 2$	✓	answer	
	ANSWER ONLY: Award full marks.			(2)
				. /
3.4	$a = \frac{24}{4}$			
	$\begin{array}{c} 4 \\ \therefore a = 6 \end{array}$	✓	value of a	
	$r=\frac{x}{2}=2$	√	value of r	
	n = 15			
	$\therefore S_n = \frac{a(r^n - 1)}{r - 1}$			
		✓	substitution into correct	
	$\therefore S_{15} = \frac{6(2^{15} - 1)}{2 - 1}$		formula	
	$\therefore S_{15} = 196\ 602$./	onewar	(4)
		•	answer	(4) [12]

4.1	$y = \frac{a}{x-1} + 2$			
		√	substitute b and c	
	$0 = \frac{a}{0-1} + 2$	•	substitute point (0; 0)	
	$ \begin{array}{l} 0 = -a + 2 \\ a = 2 \end{array} $	·	value for a	
		•	value for a	
	$y = \frac{2}{x - 1} + 2$			(3)
4.2	$f(x) = (x+p)^2 + q$			
			1	
	$0 = (\frac{5}{2} - 1)^2 + q$	•	substitute <i>p</i> and point A	
	$q = -\frac{9}{4}$	✓	$q = -\frac{9}{4}$	
	·		4	
	Turning Point : $\left(1; -\frac{9}{4}\right)$	✓	correct x-value of turning	
	OR		point	
	1 5			
	$y = a(x + \frac{1}{2})(x - \frac{5}{2})$			
	$y = 1(x + \frac{1}{2})(x - \frac{5}{2})$	✓	substitute <i>a</i> and both roots	
	$y = x^2 - 2x - \frac{5}{4}$			
	$x = \frac{-(-2)}{2(1)}$			
	$\begin{array}{c} z(1) \\ x = 1 \end{array}$	✓	value for x	
	$y = -\frac{9}{4}$	✓	value for y	
	NOTE: Answer does not have to be in coordinate			
	form.			(3)
4.3	x = 2	√	answer	
	NOTE: Answer only, award FULL marks			(1)
4.4	$y - y_1 = m(x - x_1)$			
	y-2=-1(x-1)	✓	substitute $m = -1$ and pt. (1;2)	
	y = -x + 3	✓	answer	(2)
	NOTE: Answer only, award FULL marks			(2)

4.5	k(x) = -g(x)	$\checkmark k(x) = -g(x)$	
	$\therefore k(x) = -(\frac{2}{x-1} + 2)$		
	$k(x) = g(x)$ $k(x) = -(\frac{2}{x-1} + 2)$ $k(x) = \frac{-2}{x-1} - 2$	✓ answer	
			(2)
4.6	x > 1 or $0 < x < 1$	✓ answer	
		✓ answer	
	OR		
	$x \in (1, \infty)$ or $(0 < x < 1)$	✓ answer	
		✓ answer	
	OR		
	$x > 0$; $x \neq 1$	✓ answer	
	OR	✓ answer	
	OK .		
	$x \in (0, \infty)$; $x \neq 1$	✓ answer	
		✓ answer	(2)
4.7	k>0	✓ answer	(1)
7./	N / U	· answer	[14]

5.1	(0;1)	✓ answer	
	NOTE: Answer MUST be in coordinate form.		(1)
5.2	$a^{-1} = \frac{1}{2}$	✓ substitute	
	$\frac{1}{a} = \frac{1}{2}$	point ✓ answer	(2)
5.3	$a = 2$ $2^{y} = x$	✓ interchange	(2)
	$y = \log_2 x$	x and y \checkmark answer	
	NOTE: Answer only, award FULL marks		(2)
5.4			
3.4		✓ shape ✓ <i>x</i> -intercept	(2)
5.5	x > 0	✓ answer	(1)
5.6	x > 2	✓ answer	(1)

5.7	$g(x) = 100.3^x \dots h(x) = 2^x$			
	$if \dots g(x) = h(x)$			
	$\therefore 100.3^x = 2^x$			
	$\therefore 100 = \frac{2^x}{3^x}$			
	$\therefore 100 = (\frac{2}{3})^x$	✓	simplification	
	$\therefore x = \log_{\frac{2}{3}} 100$	✓	x as subject	
	$\therefore x = -11,36$	✓	answer	
	OR	OF	1	
	\mathbf{OR} $2 + x \log 3 = x \cdot \log 2$	OF	2	
		OF	X	
	$2 + x \log 3 = x \cdot \log 2$	OF ✓	equating simplified	
	$2 + x \log 3 = x \cdot \log 2$ $\therefore 2 = x \cdot \log 2 - x \log 3$ $\therefore 2 = x \cdot \log \frac{2}{3}$		equating simplified sides	
	$2 + x \log 3 = x \cdot \log 2$ $\therefore 2 = x \cdot \log 2 - x \log 3$	√	equating simplified	
	$2 + x \log 3 = x \cdot \log 2$ $\therefore 2 = x \cdot \log 2 - x \log 3$ $\therefore 2 = x \cdot \log \frac{2}{3}$	√	equating simplified sides	(3)

6.1	$0 \le x \le 3$	✓	critical values	
	NOTE: The answer may be written as separate inequalities.	✓	notation	
	OR	✓	critical values	
	$x \in [0;3]$	✓	notation	(2)
6.2	Equation of f : $y = -\sqrt{27x}$ for $x \ge 0$ Equation of f^{-1} : $x = -\sqrt{27y}$ for $y \ge 0$ $\therefore y = \frac{x^2}{27}$ for $x \le 0$	\[\lambda \] \[\lambda \] \[\lambda \]	interchange x and y constraint of f^{-1} equation of y constraint of y	(4)
6.3	↑			
	y = x $y = x$ $P(3, -9)$ f	* * *	shape x-intercept point (-9; 3)	(3)
6.4	Reflection in the <i>x</i> -axis	✓	answer	(1)
				[10]

$NOTE: Incorrect \ formula, STOP \ marking, unless \ independent \ marks \ are \ being \ awarded.$

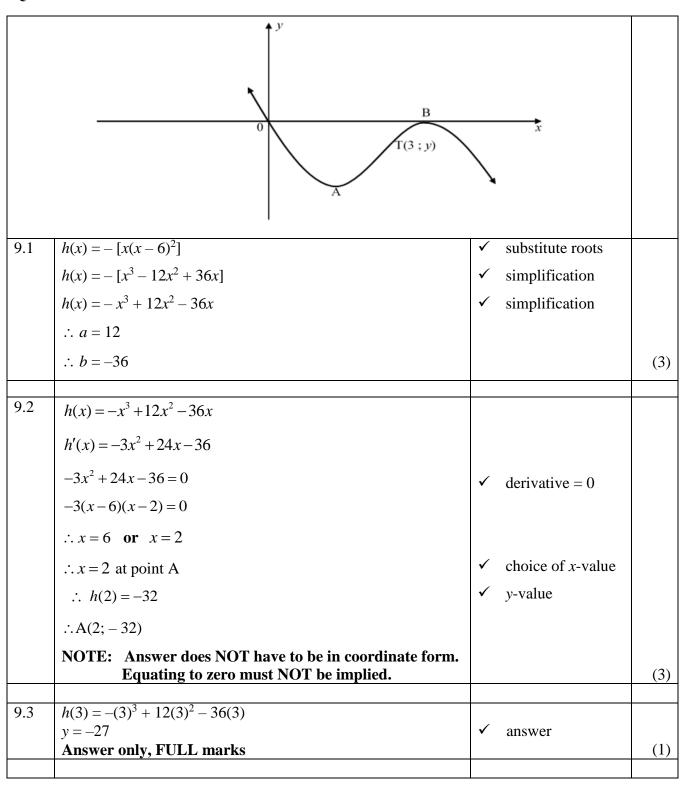
7.1	A = P	$(1+i)^n$		
	2x = x	$c(1+\frac{i}{4})^{24}$	✓ n = 24	
	∴ (1+	$(1+\frac{i}{4})^{24} = 2$ substitution		
	$\therefore 1 + \frac{i}{2}$	$\frac{4}{4} = \sqrt[24]{2}$		
		0,0293	✓ simplified sides	
	$\therefore i = 0$		\checkmark value of i	
	The ar	nnual interest rate ≅ 11,72%	✓ answer	
	NOTE	E: If a candidate substitutes in their own values for A and P, award 4/5 marks.		(5)
	7.2.1	$E = D (1 + i)^n$		
		$F_{\nu} = P_{\nu} (1+i)^n$		
		9,5		
		$F_{v} = 10\ 000\ (1 + \frac{9.5}{120})^{5}$	✓ substitution	
		$F_v = 10 \ 402,15$	✓ answer	
		NOTE: Any other valid method		(2)
	7.2.2	$P_{v} = \frac{x[1 - (1+i)^{-n}]}{i}$		
		$\therefore 10\ 402,15 = \frac{450[1 - (1,0079)^{-n}]}{0.0079}$	✓ substitution into the correct formula	
		$\therefore [1 - (1,0079)^{-n}] = 0,183$		
		$\therefore 1 - 0.183 = (1,0079)^{-n}$		
		$\therefore 0.8169 = (1.0079)^{-n}$	✓ simplified sides	
		$\therefore -n = \log_{1,0079} 0,8169$	✓ correct use of logs	
		$\therefore -n = -25,7008$		
		$\therefore n = 26 \text{ months}$	✓ answer	
		NOTE: Answer mark is for 26 months.		(4)

7.2.3 Balance of loan after 25 th payment			
pujment			
= value of loan – value of annuity at that time			
$= 10 \ 402,15(1,0079 \dots)^{25} - \frac{450 \ [(1,0079\dots)^{25} - 1]}{0,0079}$	✓	substitution	
= 12 668,89 – 12 386,53			
= R282,36			
	✓	answer	
OR			
After the 25^{th} payment, the remaining number of payments = $25,63 - 25 = 0,63$			
$\therefore balance = \frac{450 \left[1 - \left(1 + \frac{0,095}{12}\right)^{-0,70}\right]}{\frac{0,095}{12}}$ $\therefore balance = R282,36$	~	substitution	
	✓	answer	(2)
			[13]

8.1
$$f(x) = 3x^2 + 2x$$

 $f(x+h) = 3(x+h)^2 + 2(x+h)$
 $f(x+h) = 3x^2 + 6xh + 3h^2 + 2x + 2h$
 $f(x+h) - f(x) = 3x^2 + 6xh + 3h^2 + 2x + 2h - 3x^2 - 2x$
 $= 6xh + 3h^2 + 2h$
 $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$
 $= \lim_{h \to 0} \frac{h(6x + 3h + 2)}{h}$
 $= \lim_{h \to 0} (6x + 3h + 2)$
 $= 6x + 2$ \checkmark answer
NOTE: Penalise 1 mark for notation error in this question. (4)

8.2	$y = 4\sqrt{x} - \frac{8}{\sqrt{x}} + \pi x^3$		
	$y = 4x^{\frac{1}{2}} - 8x^{-\frac{1}{2}} + \pi x^{3}$ $\frac{dy}{dx} = 2x^{-\frac{1}{2}} + 4x^{-\frac{3}{2}} + 3\pi x^{2}$	✓ change surds to rational exponents	
	NOTE: Accept $\frac{2}{x^{\frac{1}{2}}} + \frac{4}{x^{\frac{3}{2}}} + 3\pi x^2$	✓✓✓ answers	
	OR		
	$\frac{2}{\sqrt{x}} + \frac{4}{\sqrt{x^3}} + 3\pi x^2$		(4)
8.3	This question has been removed from the question paper.		
	Do not mark this question.		(0)
	-		[8]



9.4	$h(x) = -x^3 + 12x^2 - 36x$			
	$h'(x) = -3x^2 + 24x - 36$			
	h''(x) = -6x + 24	✓	h''(x)	
	h''(3) = -6(3) + 24			
	h''(3) = 6	✓	value of $h''(3)$	
	$\therefore h''(3) > 0$		varue of n (3)	
	$\therefore h$ is concave UP at point T.	✓	conclusion	
	OR			
	h''(x) = 0	✓	h''(x)	
	-6x + 24 = 0			
	x = 4 Point of Inflection is at $x = 4$	✓	point of inflection at $x = 4$	
	at Point T, the graph is CONCAVE UP	✓	conclusion	
	NOTE: Candidate must have a valid CALCULATION to reach a conclusion for full marks.			
	If only the conclusion is given, award 1 mark.			(3)
9.5	h''(x) = -6x + 24			` ′
	$\therefore 0 = -6x + 24$			
	$\therefore 6x = 24$			
	$\therefore x = 4$	✓	value of x	
	$\therefore h(4) = -16$	✓	value of y	
	Point of inflection is: (4; –16)			
	NOTE: Answer does not have to be in coordinate form.			(2)
	•			[12]

10.1	Rent Occupation (Rented) R500 72	Income R36 000		
	R600 72 – 2	K 30 000		
	Number of increases: $\frac{x-500}{100}$		$\checkmark \frac{x - 500}{100}$	
	Occupation (Rented): $72-2(\frac{x-500}{100})$		$\checkmark 72-2(\frac{x-500}{100})$	
	Income(I) = $x[72 - \frac{2x}{100} + \frac{1000}{100}]$ = $x[\frac{7200 - 2x + 1000}{100}]$		✓ substitution ✓ $x[\frac{7\ 200-2x+1\ 000}{100}]$	
	$=x\left[\frac{8\ 200-2x}{100}\right]$		$\checkmark = x \left[\frac{8200 - 2x}{100} \right]$	
	$=82x-\frac{x^2}{50}$			(5)
10.2	2			
10.2	$I = 82x - \frac{x^2}{50}$			
	$I = 82x - \frac{x^2}{50}$ $I' = 82 - \frac{2x}{50}$			
	$82 - \frac{2x}{50} = 0$		✓ derivative = 0	
	$82 = \frac{2x}{50}$			
	$x = R2\ 050$		✓ answer	
	NOTE: Equating to zero MAY be implied.			(2)
				[7]

11.1	P(A or B) = P(A) + P(B)				
	0.57 = P(A) + 2 P(A)			substitution	
	$\therefore 3P(A) = 0.57$				
	$\therefore P(A) = 0.19$			value of P(A)	
	$\therefore P(B) = 2 P(A)$				
	= 2(0,19)				
	P((B) = 0.38	✓	answer	(3)
11.2	11.2.1	Not Defective (ND)			
11.2	11.2.1	$\therefore P(ND) = \frac{35}{40} or \frac{7}{8} or 0.88$	✓	answer	
					(1)
	11.2.2	Not Defective (ND)/Defective (D)			
		P(ND and D) + P(D and ND)	✓	formula (may be implied)	
		$=(\frac{35}{40}.\frac{5}{39})+(\frac{5}{40}.\frac{35}{39})$		- '	
		$= \frac{35}{156} or 0,22$	✓	substitution	
		150	✓	answer	(3)
	11.2.3	Defective (D)			
	11.2.3	P(D and D)			
		5 4	✓	$\frac{5}{40}$	
		$=\frac{5}{40}\cdot\frac{4}{39}$		40 4	
		20 1	√	$\frac{4}{39}$	
		$=\frac{20}{1560}$ or $\frac{1}{78}$ or 0,01	✓	answer	(3)

11.3	11.3.1	7 x 6 x 5 x 4 x 3 x 2 x 1 OR 7! OR 5 040	✓ answer	(1)
	11.3.2	Total number of arrangements		
		$= 2! \times 6!$	✓ answer	
		OR	✓ answer	
		1 440		(1)
	11.3.3	Economics books = 4!		
		Life Sciences books = 3!	✓ combinations for	
		Life Sciences books – 3:		
		Economics and Life Sciences = 2!	all criteria	
		Total number = $4! \times 3! \times 2!$		
		OR		
		24 x 6 x 2	✓ answer	
		OR		
		288		(2)
			[14]	
			TOTAL	144
TOTAL:				

Note: The mark out of 144 MUST be converted to 150.

DETAILED EXPLANATION OF QUESTION 10

- For every R100 that the price of a room increases, 2 rooms less are let.
- To determine the amount of rooms that been let, the number of increases of R100 must be determined because that value must be multiplied by 2 to subtract from 72.
- Example: If the rooms are let for R800 per day, then the number of increases of R100 is 3.

Therefore: Number of increases
$$=\frac{800 - 500}{100}$$

Therefore, 72 - 2(3) = 66 rooms let.

Income will be: $R800 \times 66 = R52 \times 800$.

Now, the new price is not R800, but Rx, making the formula:

Number of increases =
$$\frac{x - 500}{100}$$

Therefore, the number of rooms let = $72 - 2\left(\frac{x - 500}{100}\right)$

Therefore, the income =
$$= x \left[72 - 2 \left(\frac{x - 500}{100} \right) \right]$$