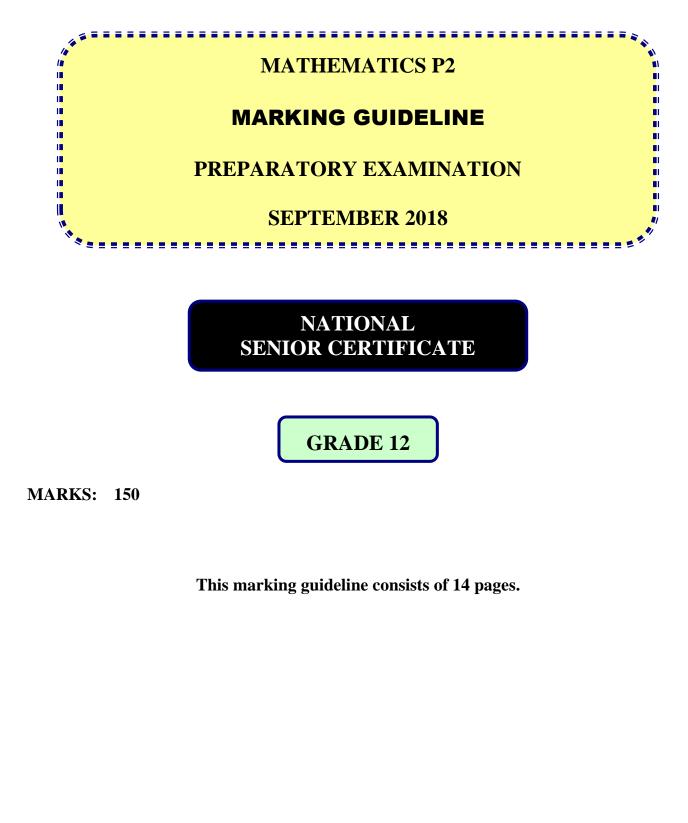


You have Downloaded, yet Another Great Resource to assist you with your Studies ③

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za



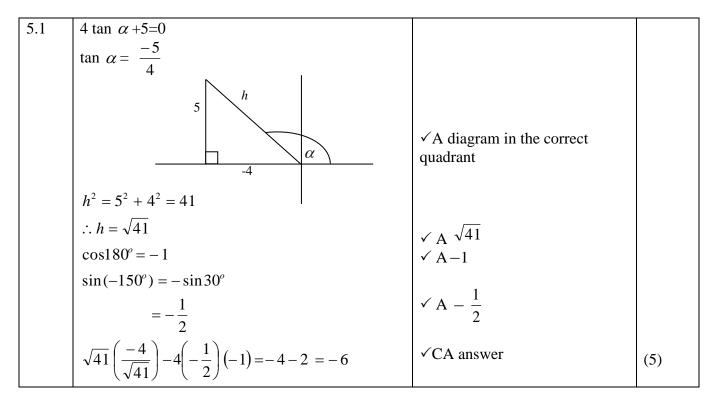
Education

KwaZulu-Natal Department of Education

1.1	strong positive trend	\checkmark A strong positive	(1)
1.2	(38; 127)	✓ A answer	(1)
1.3	a = 68,66b = 2,46y = 68,66x + 2,46x	$\checkmark A a = 68,66$ $\checkmark A b = 2,46$ $\checkmark CA equation$	(3)
1.4	y = 68,66 + 2,46 (24) = 127,7 = 127	✓ CA ✓ CA answer	(2)
			[7]

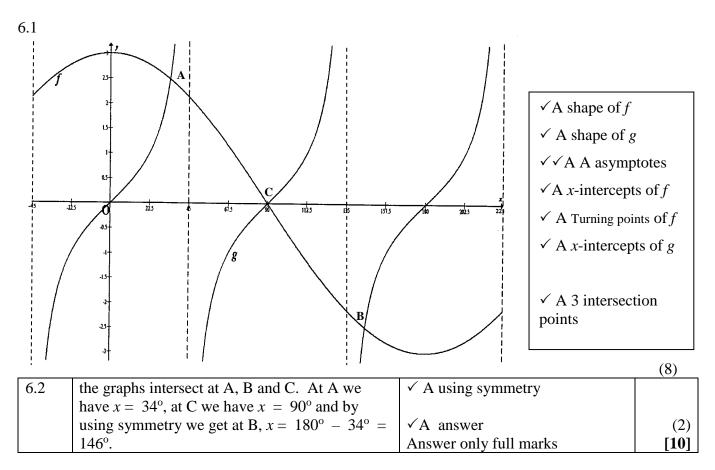
2.1	Mean weight $= \overline{x} = \frac{1443}{15}$ = 96,2 kg	 ✓ A sum divided by 15 ✓ CA answer (only if dividing by 15) 	(2)
2.2	σ = standard deviation = 11,27	✓✓AA answer	(2)
2.3	$(\bar{x} - \sigma; \bar{x} + \sigma)$ = (84,93; 107,47) Therefore 2 scores are less than the standard deviation	✓CA identify range✓CA answer	(2)
2.4	Image: Point of the second	$\checkmark A \min \text{ value 79}$ $\checkmark A Q_1 = 89$ $\checkmark A Q_2 = 94$ $\checkmark A Q_3 = 107$ $\checkmark A \max \text{ value = 113}$	(5)
2.5	$IQR = Q_3 - Q_1$ = 107 - 89 = 18 \bar{x} - median = 96,2 - 94,00	✓ CA difference✓ CA answer	(2)
2.6	$ \begin{array}{l} x = \text{Inedian} = 90, 2 = 94,00 \\ = 2,2 \\ \text{Data is positively skewed.} \end{array} $	✓ CA answer	(1) [14]

3 NSC


3.1.1	$m_{AB} = \frac{y_2 - y_1}{x_2 - x_1}$		
	$= \frac{1-5}{4-(-4)}$	\checkmark A substitution into gradient	
		formula	
	$=$ $\frac{-4}{8}$		
	$= \frac{-1}{2}$	✓CA answer	(2)
		(provided – answer)	
3.1.2	y = mx + c		
	$5 = -\frac{1}{2}(-4) + c$	\checkmark CA substituting point and	
	c = 3	gradient of line AB	
		\checkmark CA answer	(2)
	$y = -\frac{1}{2}x + 3$		(=)
3.1.3	$m_{CD} = 2$ $CD \perp AB$	✓ CA CD⊥ AB	
	y = mx + c		
	-4 = 2(-1) + c $c = -2$	✓ A substituting point (-1;-4)	
	c = -2 y = 2x - 2	✓ CA answer	(3)
		• CA answer	(3)
3.1.4	1	✓ CA Equating	
5.1.4	$\therefore 2x - 2 = -\frac{1}{2}x + 3$	CA Equating	
	$\frac{5}{2}x = 5$		
	$\frac{2}{x} = 2$	\checkmark CA $x = 2$	
	$\therefore y = 2(2) - 2$		
	= 2 $\therefore E(2; 2)$	✓ CA $y = 2$ (CA if both co-ordinates are	(3)
	· · /	positive)	

Mathematics P2

	NSC		
3.1.5	$m_{CB} = \frac{1 - (-4)}{4 - (-1)}$	 ✓ A substitution into gradient formula 	
	= 1 Equation of line passing through A parallel to BC = 1	\checkmark CA gradient value	
	y = mx + c	✓ CA gradient of Line parallel	
	5 = 1(-4) + c	\checkmark A substitution of	
	c = 9	point (- 4 ; 5)	
	y = x + 9	✓ CA answer	(5)
3.2	$\tan \theta = 1$	\checkmark CA tan $\theta = 1$	
	$\theta = 45^{\circ}$	✓ CA answer	(2)
3.3	$CE = \sqrt{\left(2 - (-1)^2\right) + \left(2 - (-4)\right)^2}$		
	$= \sqrt{9+36}$		
	$=\sqrt{45}$		
	$= 3\sqrt{5}$	✓CA answer	
	$AE = \sqrt{(2 - (-4))^2 + (2 - 5)^2}$		
	$= \sqrt{36+9}$		
	$=\sqrt{45}$		
	$= 3\sqrt{5}$	✓ CA answer	
	Area of $\triangle AEC = \frac{1}{2}$ base x height		
	$= \frac{1}{2} \cdot 3\sqrt{5} \times 3\sqrt{5}$	 ✓ CA Correct substitution into Area formula 	
	$=\frac{1}{2}.9 \pm 5$		
	$=\frac{45}{2}$		
	$= 22,5 \text{ units}^2$	✓ CA Answer	(4) [21]


5 NSC

4.1	P(6 ; - 2)	\checkmark A <i>x</i> – value \checkmark A <i>y</i> - value	(2)
4.2	2x - 4 = 0 x = 2 S(2; 0)	✓ A equating to 0 ✓ A x – value	(2)
4.3	$A\hat{B}C = 90^{\circ}$ Angle in a semi-circle $m_{BC} = -\frac{1}{2}$ AB \perp BC y = mx + c	✓ A Statement✓ A gradient of BC	
	$2 = -\frac{1}{2}(3) + c$ $c = \frac{7}{2}$	✓ A substitution of point (3 ;2)	
	$y = -\frac{1}{2}x + \frac{7}{2}$	✓CA answer	(4)
4.4	R(7; 0) x int of BC $BR^2 = (7-3)^2 + (0-2)^2 = 20$ $(x-7)^2 \{+(y-0)^2 = 20$	 ✓CA for 7✓A for 0 coordinates of R ✓CA subst. into distance formula ✓CA radius value ✓CA answer 	(5)
4.5	$m_{PS} = -\frac{1}{2}$ $\therefore PS //CB$ equal gradients	✓ A✓ A gradient of PS ✓ A PS//CB	
	A(1; - 2) midpoint formula Since the y – coordinates of A and P is – 2 Therefore AC//SR	✓ A coordinates of A✓ A Reasoning	
	OR $m_{AC} = 0 \dots$ (both y values are the same) $m_{SR} = 0 \dots (x-axis)$ $\therefore m_{AC} = m_{SR}$ $\therefore AC//SP$	✓ A Statement ✓ A Reason ✓ A Statement ✓ A Reason ✓ A $m_{AC} = m_{SR}$	(5)
	∴ AC//SR		(5) [18]

Mathemat	ics P2	8 Preparatory Examination Septer NSC	nber 2018
5.2.1	$\frac{\cos 99^{\circ}}{\cos 33^{\circ}} \frac{-\sin 99^{\circ}}{\sin 33^{\circ}}$		
	$=\frac{\cos99^\circ\sin33^\circ-\sin99^\circ\cos33^\circ}{\cos33^\circ\sin33}$	\checkmark A Simplification	
	$\frac{-[\sin 99^{\circ} \cos 33^{\circ} - \cos 99^{\circ} \sin 33^{\circ}]}{\cos 33^{\circ} \sin 33^{\circ}}$	\checkmark A Taking negative sign out	
	$=\frac{-\sin(99^{\circ} - 33^{\circ})}{\cos 33^{\circ} \sin 33^{\circ}}$	✓ A sin (99° -33°)	
	$=\frac{-\sin 66^{\circ}}{\cos 33^{\circ} \sin 33^{\circ}}$	\checkmark A sin 66°	
	$=\frac{-2\sin 33^\circ\cos 33^\circ}{\cos 33^\circ\sin 33^\circ}$	\checkmark A 2 sin 33° cos 33°	
	= - 2	✓ A answer	(6)
5.2.2	$= \frac{-\cos 40^\circ - (\cos \theta)}{\sin 50^\circ + \cos \theta}$ $= \frac{-\cos 40^\circ - (\cos \theta)}{\cos 40^\circ + \cos \theta} = \frac{-(\cos 40^\circ + \cos \theta)}{(\cos 40^\circ + \cos \theta)}$	$\begin{array}{c} \checkmark A -\cos 40^{\circ} \\ \checkmark A \cos \theta (numerator) \\ \checkmark A \sin 50^{\circ} \\ \checkmark \cos \theta (denominator) \end{array}$	
	= -1	✓ CA answer	
			(5)
5.3	2		
5.5	$\frac{2\sin^2 x}{2\tan x - \sin 2x} = \frac{\cos x}{\sin x}$		
	$LHS = \frac{2\sin^2 x}{2\sin x}$	_	
	$\frac{2\sin x}{\cos x} - 2\sin x \cos x$ $2\sin^2 x$	$\checkmark_{\rm A} 2\sin x \cos x$	
	$=\frac{\frac{2\sin x}{x}}{\cos x-2\sin x\cos^2 x}$	$\checkmark A \frac{\sin x}{\cos x}$	
	$=\frac{2\sin^2 x \cdot \cos x}{2\sin x - 2\sin x \cos^2 x}$	_	
	$=\frac{2\sin^2 x \cos x}{2\sin^2 x \cos x}$	 ✓ A Simplification ✓ A removal of common 	
	$\frac{2\sin x \left[1 - \cos^2 x\right]}{2\sin x \cos x}$	factor of $2 \sin x$	
	$\frac{-\frac{1}{\sin^2 x}}{\cos x}$	$\checkmark A \frac{\sin x \cos x}{\sin^2 x}$	
	$= \frac{1}{\sin x}$ $= RHS$		(5)

Mathematics P2		9 NSC	Preparatory Examination Septe	mber 2018
5.4	$8\sin\theta\cos\theta = -2\sqrt{3}$ $\frac{8\sin\theta\cos\theta}{4} = \frac{-2\sqrt{3}}{4}$		\checkmark A dividing by 4 both sides	
	$2\sin\theta\cos\theta = \frac{-\sqrt{3}}{2}$ $\sin2\theta = \frac{-\sqrt{3}}{2}$		\checkmark A 2 sin θ cos θ = sin 2 θ	
	reference angle = 60° $2 \theta = (180^{\circ} + 60^{\circ}) + k.360^{\circ}, k \in Z$ $2 \theta = 240^{\circ} + k.360^{\circ}, k \in Z$ $\theta = 120^{\circ} + k.180^{\circ}, k \in Z$		✓ A 60° ✓ CA 240° ✓ CA $\theta = 120^\circ + k. 180^\circ, k \in Z$	
	OR $2 \theta = (360^{\circ} - 60^{\circ}) + k \cdot 360^{\circ}, k \in \mathbb{Z}$ $2 \theta = 300^{\circ} + k \cdot 360^{\circ}, k \in \mathbb{Z}$ $\theta = 150^{\circ} + k \cdot 180^{\circ}, k \in \mathbb{Z}$		✓ CA 300° ✓ CA $\theta = 150^\circ + k . 180^\circ, k \in \mathbb{Z}$	(7)
				[29]

QUESTION 7 As a result of the typographical error in the question paper this question will not be marked – Total of paper will now be 144 marks but must be converted to 150 for recording purposes)

7.	In \triangle PQS		
	$\tan y = \frac{h}{PQ}$	\checkmark tan y = $\frac{h}{PQ}$	
	$\therefore PQ = \frac{h}{\tan y}$		
	$= \frac{h\cos y}{\sin y}$	\checkmark PQ = $\frac{h \cos y}{\sin y}$	
	In \triangle PQR		
	$P\hat{Q}R = \frac{180^{\circ} - 2y}{2}$ $= 90^{\circ} - y$		
	= 90° – y	$\checkmark \hat{PQR} = 90^{\circ} - 2y$	
	$\therefore \frac{PR}{\sin(90^\circ - y)} = \frac{PQ}{\sin 2y}$	✓ applying sine rule	
	$\therefore PR = \frac{PQ \cos y}{\sin 2y}$	✓ sin $(90^\circ - y) = \cos y$	
	$= \frac{h\cos y}{\sin y} \cdot \frac{\cos y}{\sin 2y}$	$\checkmark \text{ subt PQ} = \frac{h \cos y}{\sin y}$	
	$= \frac{h\cos^2 y}{\sin y \cdot \sin 2y}$		[6]

QUESTION 8

8.1	BC = 15 cm line from centre \perp chord	$\checkmark \checkmark A A S \& R$	(2)
8.2	OC = 2a	\checkmark A answer	(1)
8.3	OB = 3a	✓CA answer	(1)
8.4	:. $(3a)^2 = (2a)^2 + (15)^2$ (Pythagoras) :. $9a^2 = 4a^2 + 225$:. $5a^2 = 225$:. $a^2 = 45$	✓CA applying Pythagoras	
	$\therefore a = \sqrt{45}$ $AB^{2} = 15^{2} + (5a)^{2} \text{ (Pythagoras)}$ $= 225 + 25 \text{ (45)}$ $\therefore AB = \sqrt{1350} = 15\sqrt{6}$	\checkmark CA $a = \sqrt{45}$	

Copyright Reserved

Please Turn Over

Mathematics P2 11 NSC		Preparatory Examination Septem	ber 2018	
	=	36,7 cm	✓CA answer	(3)
8.5	$\hat{ACB} =$ $\therefore AB \text{ is a discussion}$	90° iameter of circle CAB [converse of angle in semi circle]	✓ A Reason	
	∴ Radius	$=$ $\frac{1}{2}$ diameter		
		$= \frac{1}{2} 36,7 \text{ cm} \\ = 18,4 \text{ cm}$	✓CA answer	(2) [9]

9.1			
	Construction: Draw AO and CO <u>Proof:</u> $\hat{O}_1 = 2\hat{B} \dots \angle$ at centre $= 2 \angle$ at circle $\hat{O}_2 = 2\hat{D} \dots \angle$ at centre $= 2 \angle$ at circle $\hat{O}_1 + \hat{O}_2 = 360^\circ$ $2\hat{B} + 2\hat{D} = 360^\circ$ $\hat{B} + \hat{D} = 180^\circ$	✓ A Construction ✓ A S/R ✓ A S/R ✓ A $\hat{O}_1 + \hat{O}_2 = 360^\circ$ (revolution) ✓ A Substitute for \hat{O}_1 and \hat{O}_2	(5)
9.2.1	$\hat{K}_{1} = x = \hat{K}_{2} \dots \text{KM bisects } L\hat{K}N$ $\hat{O}_{1} = 2x \text{angles opp = sides}$ $\therefore \hat{L} = x \angle \text{ at centre } = 2 \angle \text{ at circumference}$ $\therefore \hat{K}_{1} = \hat{L} = x$	 (All Accuracy Marks) ✓ S ✓ R ✓ S ✓ R 	
	\therefore TK = TL (sides opposite equal angles)	✓ R	(5)

9.2.2		✓ S ✓R	
	$\hat{T}_1 = 2x \dots \text{ext} \angle \text{ of } \Delta \text{ QKL}$		
	$\hat{T}_1 = \hat{O}_1 = 2x$		
	\therefore KOTP is a cyclic quadrilateral converse of \angle 's on	✓ R	(2)
	the same segment equal.	(All Accuracy Marks)	(3)
9.2.3	$\hat{P}_1 = L\hat{K}N$ Angles in the same segment	\checkmark S \checkmark R	
	= 2x		
	$\therefore \hat{\mathbf{P}}_1 = \hat{\mathbf{T}} = 2x$		(3)
	\therefore PN // MK alt \angle 's proved equal	✓ R (All Accuracy Marks)	
			[16]

10.1	$\frac{AS}{SP} = \frac{AR}{RB} \dots RS // BP$	✓ S/R	
	SP RB RS // DI		
	$=$ $\frac{3}{2}$	$\checkmark \frac{3}{2}$ $\checkmark \frac{3}{7}$	
		2	
	$\therefore \ \frac{\text{AS}}{\text{SC}} = \frac{3}{7}$	$\checkmark \frac{3}{2}$	
	SC 7		(3)
		(All Accuracy Marks)	
10.2			
10.2	$\frac{\mathrm{RT}}{\mathrm{TC}} = \frac{\mathrm{SP}}{\mathrm{PC}} \dots \mathrm{RS} //\mathrm{TP}$	✓ S/R	
		2	(2)
	$=\frac{2}{5}$	$\checkmark \frac{2}{5}$	(2)
	5	5	
10.3	AARS AARS AARC	✓ ratio of Δ 's	
1010	$\frac{\Delta ARS}{\Delta ABC} = \frac{\Delta ARS}{\Delta ARC} \times \frac{\Delta ARC}{\Delta ABC}$		
	$=\frac{3}{10}\times\frac{3}{5}$	✓ substitution	
	9		(2)
	$=\frac{9}{50}$	\checkmark CA answer (All A coursey Marks if	(3)
	50	(All Accuracy Marks if not indicated)	
		not maleuted)	[8]

11.1	In \triangle PAT and \triangle PCA	✓ S (identifying triangles)	
	1. P̂ is common	✓ S	
	2. $\hat{A}_1 = \hat{C}_1$ tan chord thrm.	✓ S	
	3 $P\hat{T}A = P\hat{A}C$ sum of angles in triangle		
	$\therefore \Delta \text{ PAT /// } \Delta \text{PCA} ((\angle \angle \angle)$	✓ S/R	
	$\therefore \frac{PA}{PC} = \frac{PT}{PA} (///\Delta's)$	✓ S	
	$\therefore \mathbf{PA}^2 = \mathbf{PC} \cdot \mathbf{PT}$		
		All accuracy marks	
			(5)
11.2	$PA^2 = PC \cdot PT$		
11.2	$\therefore 36 = (x + 5) x$	✓ A subst.	
	∴ $36 = x^2 + 5x$ ∴ $x^2 + 5x - 36 = 0$	✓ A simplifying	(2)
11.2			(2)
11.3	(x + 9)(x - 4) = 0 x = -9 or x = 4	\checkmark A factorising \checkmark A PT = 4	
	N/A $\therefore PT = 4$ units		(2)
11.4			(2)
11.4	$\frac{PD}{PA} = \frac{PT}{PC}$ (AC//DB; prop. theorem)	✓S ✓R	
	$DP = \frac{4}{9}.6$		
	$=\frac{8}{3}$	✓CA answer	(3)
	$-\frac{1}{3}$		[12]
L			[*#]

TOTAL MARKS: 150

14 NSC