SA's Leading Past Year

Exam Paper Portal

STUD.Y

You have Downloaded, yet Another Great Resource to assist you with your Studies :

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

> SAEAMM RADPERES

LIMPOPO

PROVINCIAL GOVERNMENT REPUBLIC OF SOUTH AFRICA

SEKHUKHUNE SOUTH DISTRICT

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICS P2

MEMORANDUM

PRE-TRIAL 2021

MARKS: 150

This memorandum consists of $\mathbf{1 2}$ pages.

QUESTION 1

1.1

MATHS LIT VS ENGLISH

MATHS LIT

1.1.1	$\begin{aligned} \bar{x} & =\frac{324}{8} \\ & =40,5 \end{aligned}$	$\sqrt{\frac{324}{8}}$ $\begin{equation*} \checkmark 40,5 \tag{2} \end{equation*}$
1.1.2	$\begin{aligned} \delta & =14,5688 \\ & =14,57 \end{aligned}$	$\checkmark \checkmark$ accuracy (2)
1.2	$\begin{aligned} & (40,5-14,57 ; 40,5+14,57) \\ & (25,93 ; 55,07) \\ & \therefore 5 \text { learners. } \end{aligned}$	\checkmark method $\begin{align*} & \checkmark(25,93 ; 55,07) \\ & \sqrt{ } 5 \tag{3} \end{align*}$
1.3	See scatter plot above	$\checkmark \quad$ 2-4 points $\checkmark \checkmark \quad 5-7$ pts correct $\checkmark \checkmark \checkmark$ all pts correct (3)
1.4	$\begin{array}{ll} a=16,89 \quad b=0,75 \\ y & =16,89+0,75 x \end{array}$	$\checkmark a \checkmark \mathrm{~b} \quad \checkmark$ equation (3)
1.5	See above	\checkmark positive gradient $\sqrt{ }$ c-value betw 15 and 20 (2)
1.6	$r=0,82$ It is a strong positive relationship	$\sqrt{ } r=0,82$ \checkmark strong \checkmark positive
1.7	54,81\%	\checkmark accuracy
		[20]

QUESTION 2

QUESTION 3

QUESTION 4

4.1.1	$\begin{aligned} & \frac{2 \sin \left(180^{\circ}+x\right) \sin \left(90^{\circ}+x\right)}{\cos ^{4} x-\sin ^{4} x} \\ = & \frac{-2 \sin x \cdot \cos x}{\left(\cos ^{2} x-\sin ^{2} x\right)\left(\cos ^{2} x+\sin ^{2} x\right)} \\ = & \frac{-\sin 2 x}{\cos 2 x \cdot(1)} \\ = & -\tan 2 x \end{aligned}$	$\begin{aligned} & \sqrt{ }-2 \sin x \\ & \checkmark \cos x \\ & \sqrt{ } \text { factorisation } \\ & \sqrt{ }-\sin 2 x \\ & \sqrt{\cos 2 x} \end{aligned}$
4.1.2	$\begin{aligned} & \text { At } \cos 2 x=0 \\ & 2 x=90^{\circ} \text { or } 2 x=270^{\circ} \\ & x=45^{\circ} \text { or } x=135^{\circ} \end{aligned}$	$\begin{align*} & \checkmark \cos 2 x=0 \\ & \checkmark 2 x=90^{\circ} \text { or } 2 x=270^{\circ} \\ & \checkmark x=45^{\circ} x=135^{\circ} \tag{3} \end{align*}$
4.2	$\begin{aligned} & =\frac{\left(\cos 13^{\circ}\right)\left(-\sin 13^{\circ}\right)}{\left(-\tan 45^{\circ}\right) \cdot\left(\cos 64^{\circ}\right)} \\ & =\frac{\cos 13^{\circ} \cdot-\sin 13^{\circ}}{-1 \cdot \cos 64^{\circ}} \\ & =\frac{2 \times \sin 13^{\circ} \cos 13^{\circ}}{2 \cos 64^{\circ}} \\ & =\frac{\sin 26^{\circ}}{2 \sin 26^{\circ}} \\ & =\frac{1}{2} \end{aligned}$	$\checkmark \cos 13^{\circ}$ $\checkmark-\sin 13^{\circ}$ $\checkmark-\tan 45^{\circ}$ $\sqrt{ }$ multiply by 2 in numerator and denominator $\sqrt{\sin 26^{\circ}} \frac{2 \sin 26^{\circ}}{}$
4.3	$\begin{align*} \text { LHS: } \begin{aligned} & \frac{\cos (2 x+x)}{\cos x} \\ & =\frac{\cos 2 x \cdot \cos x-\sin 2 x \cdot \sin x}{\cos x} \\ & =\frac{\cos 2 x \cdot \cos x-2 \sin x \cos x \cdot \sin x}{\cos x} \\ & =\frac{\cos x\left(\cos 2 x-2 \sin ^{2} x\right)}{\cos x} \\ & =\cos 2 x-1+1-2 \sin ^{2} x \\ & =\cos 2 x-1+\cos 2 x \\ & =2 \cos 2 x-1 \end{aligned} \\ \end{align*}$ OR	$\sqrt{\cos 2 x} \cdot \cos x-\sin 2 x \cdot \sin x$ $\sqrt{ }$ replacing $\sin 2 x$ \checkmark factorise $\checkmark+1-1$ $\sqrt{ }$ replacing $1-2 \sin ^{2} x$

	$\frac{\cos (2 x+x)}{\cos x}$	
	$=\frac{\cos 2 x \cdot \cos x-\sin 2 x \cdot \sin x}{\cos x}$	$\checkmark \cos 2 x \cdot \cos x-\sin 2 x \cdot \sin x$
	$=\frac{\cos 2 x \cdot \cos x-2 \sin x \cos x \cdot \sin x}{\cos x}$	\checkmark replacing $\sin 2 x$
	$=\frac{\cos x\left(\cos 2 x-2 \sin ^{2} x\right)}{\cos ^{2} x}$	\checkmark factorise
$=\cos 2 x-2 \sin ^{2} x$		
$=2 \cos ^{2} x-1-2 \sin ^{2} x$		
$=2\left(\cos ^{2} x-\sin ^{2} x\right)-1$	\checkmark replacing $\cos 2 x$	
$=2 \cos 2 x-1$	Jreplacing $\cos ^{2} x-\sin ^{2} x$	
		(5)

QUESTION 5

5.1	360°	\checkmark	(1)
5.2	$\begin{aligned} & \sin \left(x+30^{\circ}\right)=-2 \cos x \\ & \sin x \cos 30^{\circ}+\cos x \sin 30^{\circ}=-2 \cos x \\ & \sin x\left(\frac{\sqrt{3}}{2}\right)+\cos x\left(\frac{1}{2}\right)=-2 \cos x \\ & \sqrt{3} \sin x+\cos x=-4 \cos x \\ & \sqrt{3} \sin x=-5 \cos x \\ & \tan x=-\frac{5}{\sqrt{3}} \\ & x=180^{\circ}-70,89^{\circ}+\mathrm{k} \cdot 180^{\circ} \\ & x=109.11^{\circ}+k \cdot 180^{\circ}, \mathrm{k} \in Z \\ & x=-70,89^{\circ} \text { or } x=109,11^{\circ} \end{aligned}$	\checkmark equating f and g \checkmark expanding $\sin \left(x+30^{\circ}\right)$ \checkmark special angle values $\begin{aligned} & \checkmark \tan x=-\frac{5}{\sqrt{3}} \\ & \checkmark x=-70,89^{\circ} \\ & \checkmark x=109.11^{\circ}+k .180^{\circ} \\ & \checkmark x=109,11^{\circ} \end{aligned}$	(7)
5.3.1	$x \in\left[-90^{\circ} ;-70,89^{\circ}\right] \cup\left[109,11^{\circ} ; 180^{\circ}\right]$	$\checkmark \sqrt{ }$ boundaries \checkmark correct notation	(3)
5.3.2	$x \in\left(-90^{\circ} ;-30^{\circ}\right) \cup\left(90^{\circ} ; 150^{\circ}\right)$	$\begin{aligned} & \sqrt{ }\left(-90^{\circ} ;-30^{\circ}\right) \\ & \checkmark\left(90^{\circ} ; 150^{\circ}\right) \\ & \sqrt{ } \text { correct notation } \end{aligned}$	(3)
			[14]

QUESTION 6

6.1.1	$\begin{array}{r} \text { In } \triangle A B D: \tan x=\frac{p}{D B} \\ p=\text { DB. } \tan x \tag{2} \end{array}$	$\begin{aligned} & \checkmark \tan x=\frac{p}{D B} \\ & \checkmark \mathrm{p}=\mathrm{DB} \tan x \end{aligned}$
6.1.2	$\begin{aligned} \frac{D B}{\sin \theta} & =\frac{k}{\sin (180-(y+\theta)} \\ \mathrm{DB} & =\frac{k \cdot \sin \theta}{\sin (y+\theta)} \\ \mathrm{p} & =\frac{k \cdot \sin \theta}{\sin (y+\theta)} \times \tan x \\ & =\frac{k \sin \theta \cdot \tan x}{\sin y \cos \theta+\cos y \cdot \sin \theta} \end{aligned}$	$\checkmark B \widehat{D} C=180-(y+\theta)$ $\checkmark \frac{D B}{\sin \theta}=\frac{k}{\sin (180-(y+\theta)}$ \checkmark reduction formula \checkmark replacing DB \checkmark expanding $\sin (\mathrm{y}+\theta)$ (5)
6.2	$\begin{align*} & \tan 51,7^{\circ}=\frac{80}{D B} \\ & D B=\frac{80}{\tan 51,7^{\circ}}=63,18 \mathrm{~m} \\ & B C^{2}=(63,18)^{2}+95^{2}-2(63,18)(95) \cos 62,5^{\circ} \\ & \quad=7473,789697 \ldots \\ & \therefore B C=86,45 \approx 86 \mathrm{~m} \tag{4} \end{align*}$	$\begin{aligned} & \checkmark \tan 51,7^{\circ}=\frac{80}{D B} \\ & \checkmark D B=63,18 \mathrm{~m} \end{aligned}$ \checkmark application of cosine formula. $\checkmark 86 m$
		[11]

QUESTION 7

7.1	is perpendicular to the chord	\checkmark
7.2	The line from the centre of the circle perpendicular to the chord, bisects the chord	\checkmark The line from the centre of the circle perpendicular to the chord $\checkmark \quad$ bisects the chord

7.3

QUESTION 8

8.1	Construction: Draw diameter TC and join BC.	\checkmark construction
	$\mathrm{C} \hat{B} \mathrm{~T}=90^{\circ} \quad(\angle$ in semi $\odot)$	$\checkmark \mathrm{S} / \mathrm{R}$
	$\hat{C}+\widehat{T}_{2}=90^{\circ} \quad(\angle '$ sof $\Delta)$	$\checkmark \mathrm{S}$
	$\hat{T}_{1}+\hat{T}_{2}=90^{\circ} \quad$ (tangent $\left.\perp \mathrm{r}\right)$	$\checkmark \mathrm{S} / \mathrm{R}$
$\therefore \therefore \hat{C}=\hat{T}_{1}$		$\checkmark \mathrm{~S} / \mathrm{R}$
	$\mathrm{But} \hat{C}=\hat{A} \quad(\angle '$ s in same segment $)$	\checkmark conclusion
$\therefore \hat{T}_{1}=\hat{A}$		

QUESTION 9

Use the diagram below to prove the theorem which states that if $\mathrm{DE} \mid \mathrm{BC}$ then $\frac{B D}{A D}=\frac{E C}{A E} .$	
	\checkmark Construction
Construction: In $\triangle A D E$ draw altitudes h and k $\begin{aligned} \frac{\text { area } \triangle B D E}{\text { area } \triangle A D E} & =\frac{\frac{1}{2} B D \times k}{\frac{1}{2} A D \times k} \\ & =\frac{B D}{A D} \\ \frac{\text { area } \triangle C E D}{\text { area } \triangle A D E} & =\frac{\frac{1}{2} E C \times h}{\frac{1}{2} A E \times h} \\ & =\frac{E C}{A E} \end{aligned}$ But area $\triangle B D E=$ area $\triangle C E D$ Same base, same height $\begin{aligned} & \therefore \frac{\text { area } \triangle B D E}{\text { area } \triangle A D E}=\frac{\text { area } \triangle C E D}{\text { area } \triangle A D E} \\ & \therefore \frac{B D}{A D}=\frac{E C}{A E} \end{aligned}$	\checkmark S \checkmark S \checkmark S \checkmark S \& R \checkmark S [6]

QUESTION 10

A					
10.1	Subtended by a diameter / Angle in a semi-circle	\checkmark Answer	(1)		
10.2	$\hat{B}_{2}=x$ (radii $=$) $\hat{B}_{4}=x$ (tan-chord th $\hat{A}=x$ (corr \angle 's; BD $\\| \mathrm{AO}$)	$\begin{aligned} & \checkmark \mathrm{S} \\ & \mathrm{~V} \text { SR } \\ & \checkmark S \end{aligned}$	(3)		
10.3	$\hat{A}=\hat{E}=x$ Converse $\iota^{\prime} s$ subtended by the same cord	\checkmark Answer	(1)		
10.4	$\begin{aligned} & \hat{B}_{2}+\widehat{B}_{3}=90^{\circ} \quad(\angle \text { in semi } \odot) \\ & \mathrm{C} \widehat{B} \mathrm{E}=90^{\circ}+x \end{aligned}$	$\begin{aligned} & \sqrt{ } \mathrm{R} \\ & \sqrt{ } 90^{\circ}+x \end{aligned}$	(2)		
10.5.1	$\begin{aligned} & \text { In } \Delta \mathrm{CBD} \text { and } \triangle \mathrm{CEB}: \\ & \hat{C}=\hat{C} \\ & \widehat{B}_{4}=\hat{E}=x \\ & \widehat{D}_{2}=\mathrm{C} \hat{B E} \\ & \therefore \Delta \mathrm{CBD}\\|\\| \operatorname{CEB}(\angle \angle \angle) \end{aligned}$	$\begin{aligned} & \sqrt{S} \\ & \sqrt{ } \end{aligned}$	(2)		
10.5.2	$\begin{aligned} & \frac{C B}{C E}=\frac{B D}{E B} \quad(\|\\|\| \text { triangles) } \\ & \mathrm{EB} \cdot \mathrm{CB}=\mathrm{CE} \cdot \mathrm{BD} \\ & \widehat{F}_{1}=90^{\circ} \quad(\text { corr } \angle \text { 's; } \mathrm{BD} \\| \mathrm{AO}) \\ & \mathrm{BF}=\mathrm{FE} \quad \text { (line from centre to mdpt of chord) } \\ & \therefore \mathrm{BE}=2 \mathrm{EF} \\ & \therefore 2 \mathrm{EF} . \mathrm{CB}=\mathrm{CE} . \mathrm{BD} \end{aligned}$	$\checkmark \mathrm{S} \sqrt{ } \mathrm{R}$ \checkmark SR \checkmark SR \checkmark replacing BE (5)			
10.5.3	$\frac{2 E F}{C E}=\frac{B D}{B C} \text { out of } 10.4$ But $\triangle \mathrm{BCD} \\| \mid \triangle \mathrm{ACO}(\angle \angle \angle)$ $\begin{aligned} & \therefore \frac{B D}{A O}=\frac{B C}{A C} \\ & \frac{B D}{B C}=\frac{A O}{A C} \\ & \frac{2 E F}{C E}=\frac{A O}{A C} \end{aligned}$	\checkmark S \checkmark SR \checkmark S \checkmark S (4)			

