

You have Downloaded, yet Another Great Resource to assist you with your Studies ©

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

SEKHUKHUNE SOUTH DISTRICT

NATIONAL SENIOR CERTIFICATE

GRADE 12

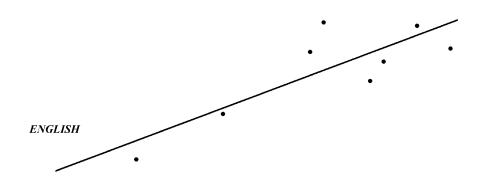
MATHEMATICS P2
MEMORANDUM
PRE-TRIAL 2021

MARKS: 150

This memorandum consists of 12 pages.

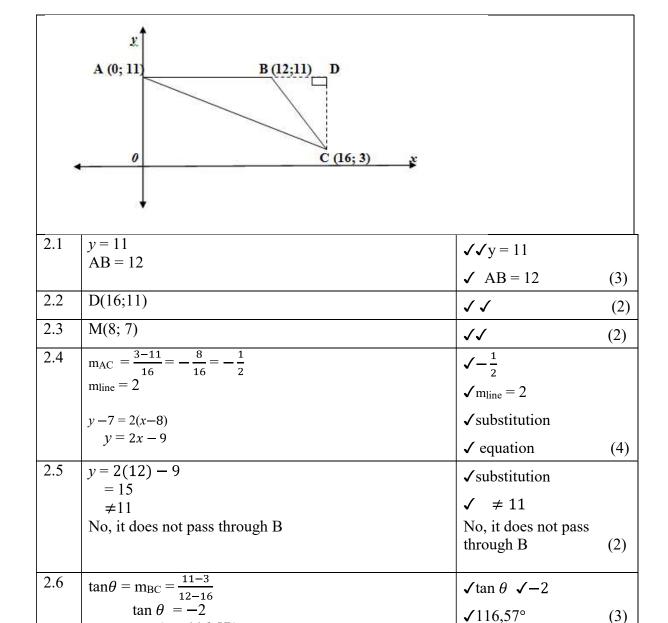
MATHS LIT VS ENGLISH

1.1



MATHS LIT

1.1.1	$\bar{\chi} = \frac{324}{8}$	$\sqrt{\frac{324}{8}}$	
	= 40,5	√ 40,5 (2))
1.1.2	$\delta = 14,5688$ = 14,57	✓ ✓ accuracy (2))
1.2	(40,5−14,57; 40,5 + 14,57) (25,93; 55,07) ∴ 5 learners.	✓method ✓(25,93; 55,07)	
		√ 5 (3))
1.3	See scatter plot above	✓ 2-4 points	
		✓✓ 5-7pts correct	
		$\checkmark\checkmark\checkmark$ all pts correct (3))
1.4	a = 16.89 $b = 0.75y = 16.89 + 0.75x$	$\checkmark a \checkmark b $ \checkmark equation (3))
1.5	See above	✓ positive gradient	
		✓c-value betw 15 and 20 (2)	
1.6	r = 0.82 It is a strong positive relationship	$\checkmark r = 0.82$	
	It is a strong positive relationship	√strong	
		✓positive (3	()
1.7	54,81%	✓	
		✓accuracy (2	2)
		[20)]



	$\tan \theta = -2$ $\theta = 116,57^{\circ}$	√ 116,57°
2.7	$m_{\text{new line}} = -\frac{1}{2}$	$\sqrt{-\frac{8}{13}}$

$$y-11 = -\frac{1}{2}(x-16)$$

$$y = -\frac{1}{2}x + 19$$
Substitution
Substitution

$$y = -\frac{1}{2}x + 19$$

$$2.8 \quad \text{Area } \Delta ABC = \frac{1}{2}base \ height$$

$$= \frac{1}{2} \times 12 \times 8$$

$$4 \quad \text{Substitution}$$

✓ **s**ubstitution =48 sq units**√**answer (3) [22]

Copyright reserved

(3)

 $\sqrt{\tan \theta} \sqrt{-2}$

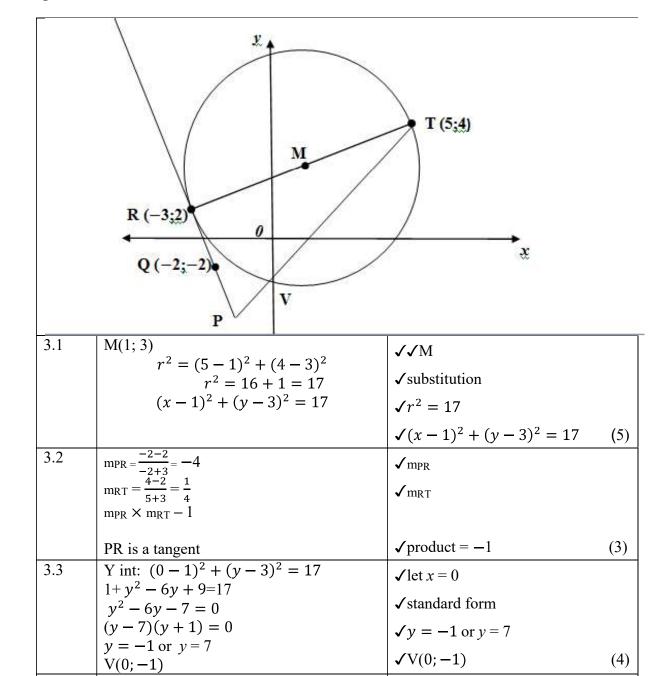
 $mPT = \frac{4+1}{5-0} = 1$

 $\alpha = 45^{\circ}$

 $\tan \beta = -4$ $\beta = 104^{\circ}$

 $\tan \alpha = 1$

3.4



 $\theta = 59^{\circ}$ $\sqrt{\beta} = 104^{\circ} \sqrt{\theta} = 59^{\circ}$ [18]

 $\sqrt{m_{PT}}$

 $\sqrt{\tan \alpha} = 1$

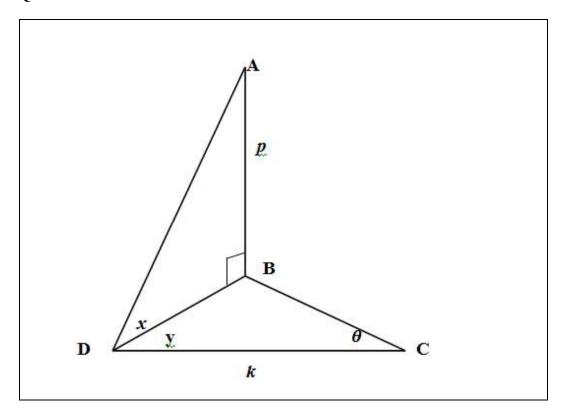
 $\sqrt{\alpha} = 45^{\circ}$

 $\sqrt{\tan\beta} = -4$

4.1.1	$2\sin(180^{\circ}+x)\sin(90^{\circ}+x)$	√ −2sin <i>x</i>
	$\cos^4 x - \sin^4 x$	√cosx
	-2sin <i>x</i> .cos <i>x</i>	✓ factorisation
	$= \frac{2\sin x \cos x}{(\cos^2 x - \sin^2 x)(\cos^2 x + \sin^2 x)}$	
		$\sqrt{-\sin 2x}$
	$=$ $\frac{-\sin 2x}{\cos x}$	$\sqrt{\cos 2x}$
	$\cos 2x.(1) = -\tan 2x$	(5)
4.1.2	$At \cos 2x = 0$	$ \sqrt{\cos 2x} = 0 $
	$2x = 90^{\circ} \text{ or } 2x = 270^{\circ}$ $x = 45^{\circ} \text{ or } x = 135^{\circ}$	$\sqrt{2x} = 90^{\circ} \text{ or } 2x = 270^{\circ}$
	$x = 45^{\circ} \text{ or } x = 135^{\circ}$	
4.2		(-)
4.2	(cos13°)(-sin13°)	√cos13°
	$={(-tan45^{\circ}).(cos64^{\circ})}$	√ -sin13°
		√−tan45°
	$=\frac{cos13^{\circ}sin13^{\circ}}{}$	✓multiply by 2 in
	-1.cos64°	numerator and denominator
	2×sin13°cos13°	
	$={2cos64^{\circ}}$	
		$\sqrt{\frac{\sin 26^{\circ}}{2\sin 26^{\circ}}}$
	$=\frac{\sin 26^{\circ}}{\cos 2}$	2511126
	2sin26° 1	(5)
	$=\frac{-}{2}$	
1.2	ana(2m1m)	
4.3	LHS: $\frac{\cos(2x+x)}{\cos x}$	
	$\frac{\cos x}{\cos 2x \cdot \cos x - \sin 2x \cdot \sin x}$	$\checkmark cos2x.cosx - sin2x.sinx$
	cosx	
	$=\frac{cos2x.cosx-2sinxcosx.sinx}{cosx}$	✓replacing sin2x
	cosx	
	$\cos x(\cos 2x - 2\sin^2 x)$	(for the mine
	$-{cosx}$	✓ factorise
	$= cos2x - 1 + 1 - 2sin^2x$ $= cos2x - 1 + cos2x$	✓ +1−1
	$= \frac{\cos 2x - 1 + \cos 2x}{\cos 2x - 1}$	✓ replacing $1 - 2sin^2x$ (5)
	OR	
L	I	<u>i</u>

$= \frac{\frac{\cos(2x+x)}{\cos x}}{\frac{\cos 2x \cdot \cos x - \sin 2x \cdot \sin x}{\cos x}}$	$\checkmark cos2x.cosx - sin2x.sinx$
$=\frac{cos2x.cosx-2sinxcosx.sinx}{cosx}$	✓ replacing $\sin 2x$
$= \frac{cosx(cos2x-2sin^2x)}{cosx}$ $= cos2x - 2sin^2x$	√ factorise
$ = 2\cos^2 x - 1 - 2\sin^2 x = 2(\cos^2 x - \sin^2 x) - 1 = 2\cos^2 x - 1 $	✓ replacing cos2x
$= 2\cos 2x - 1$	✓ replacing $\cos^2 x - \sin^2 x$ (5)
	[18]

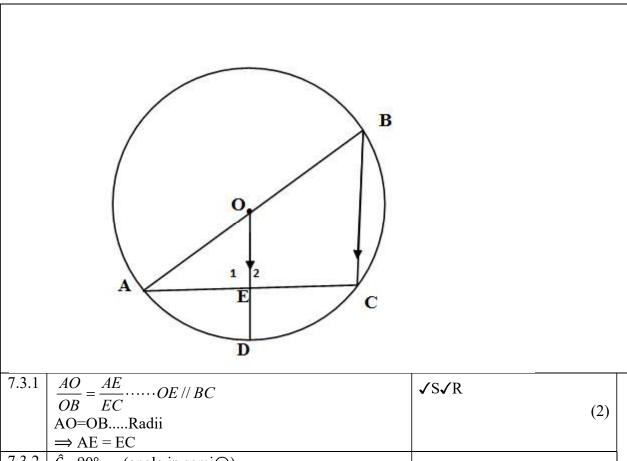
5.1	360°	✓	(1)
5.2	$si n(x + 30^\circ) = -2cosx$	✓equating f and g	
	$sinxcos30^{\circ} + cosxsin30^{\circ} = -2cosx$	\checkmark expanding $sin(x + 30^\circ)$	
	$\sin x \left(\frac{\sqrt{3}}{2}\right) + \cos x \left(\frac{1}{2}\right) = -2\cos x$	✓special angle values	
	$\sqrt{3}\sin x + \cos x = -4\cos x$		
	$\sqrt{3}\sin x = -5\cos x$	5	
	$\tan x = -\frac{5}{\sqrt{3}}$	$ \sqrt{\tan x} = -\frac{5}{\sqrt{3}} $ $ \sqrt{x} = -70,89^{\circ} $	
	$x = 180^{\circ} - 70.89^{\circ} + k.180^{\circ}$	$\sqrt{x} = -70,89^{\circ}$	
	$x = 109.11^{\circ} + k.180^{\circ}, k \in \mathbb{Z}$ $x = -70.89^{\circ} \text{ or } x = 109.11^{\circ}$	$\sqrt{x} = 109.11^{\circ} + k.180^{\circ}$	
		✓ <i>x</i> =109,11°	(7)
5.3.1	$x \in [-90^\circ; -70,89^\circ] \cup [109,11^\circ;180^\circ]$	√ √boundaries	
		✓ correct notation	(3)
5.3.2	$x \in (-90^\circ; -30^\circ) \cup (90^\circ; 150^\circ)$	√ (-90°; -30°)	
		√ (90°; 150°)	
		✓ correct notation	(3)
			[14]



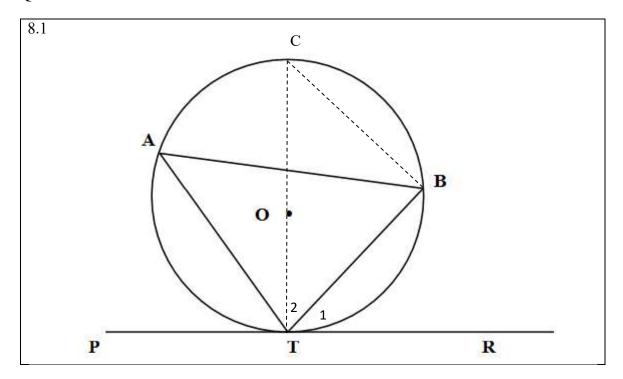
6.1.1	In $\triangle ABD$: $\tan x = \frac{p}{DB}$	$ \sqrt{\tan x} = \frac{p}{DB} $
	p = DB.tanx	$ \int \tan x = \frac{p}{DB} $ $ \int p = DB \tan x \tag{2} $
6.1.2	$\frac{DB}{\sin\theta} = \frac{k}{\sin(180 - (y + \theta))}$ $DB = \frac{k.\sin\theta}{\sin(y + \theta)}$	$ \sqrt{B\widehat{D}C} = 180 - (y + \theta) $ $ \sqrt{\frac{DB}{\sin\theta}} = \frac{k}{\sin(180 - (y + \theta))} $ $ \sqrt{\text{reduction formula}} $
	$p = \frac{k.\sin\theta}{\sin(y+\theta)} \times \tan x$ $= \frac{k\sin\theta.\tan x}{\sin y \cos\theta + \cos y.\sin\theta}$	✓replacing DB ✓expanding sin(y+θ) (5)
6.2	$tan51,7^{\circ} = \frac{80}{DB}$ $DB = \frac{80}{tan51,7^{\circ}} = 63,18 m$ $BC^{2} = (63,18)^{2} + 95^{2} - 2(63,18)(95)cos62,5^{\circ}$ $= 7473,789697$ $\therefore BC = 86,45 \approx 86 m$	$ √tan51,7° = \frac{80}{DB} $ $ √DB = 63,18 m $ $ ✓application of cosine formula. $ $ √86m (4)$
		[11]

7.1	is perpendicular to the chord	✓		(1)
7.2	The line from the centre of the circle perpendicular to the chord, bisects the chord	the	The line from the cent circle perpendicular chord	
		✓	bisects the chord	(2)

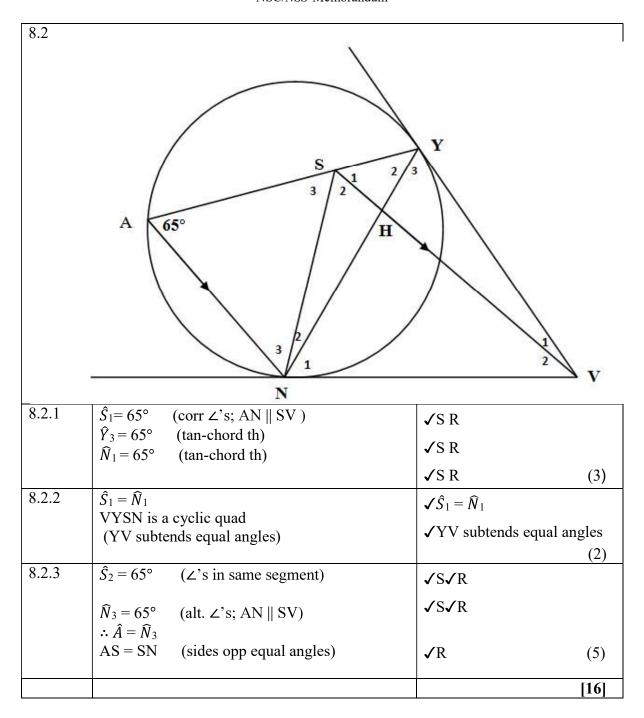
7.3



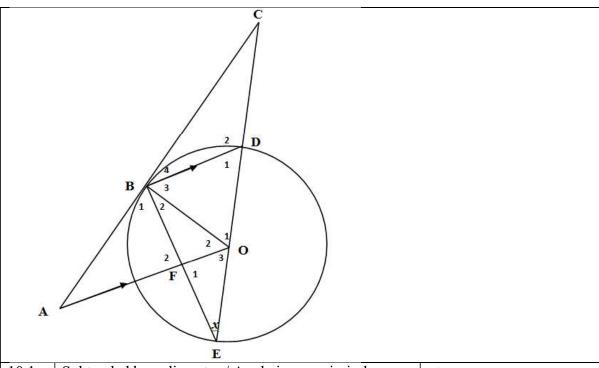
7.3.1	$\frac{AO}{OB} = \frac{AE}{EC} \cdots OE // BC$ $AO = OB \dots Radii$ $\Rightarrow AE = EC$	✓S√R (2)
7.3.2	$\hat{C} = 90^{\circ}$ (angle in semi \odot) $\hat{E}_1 = 90^{\circ}$ (corr. angles; OD BC)	✓S/R
	$E_1 = 90^{\circ}$ (corr. angles; OD BC)	√ R (2)
7.3.3	$OE^2 = 10^2 - 8^2$ (theorem of Pyth) $OE^2 = 100 - 64 = 36$	√S
	OE = 100 - 04 - 30 OE = 6 cm	√ OE = 6 cm
	∴ED = 4 cm	✓answer (3)
		[10]



8.1	Construction: Draw diameter TC and join BC.	✓construction
	$C\hat{B}T = 90^{\circ} (\angle \text{ in semi } \bigcirc)$	✓S / R
	$\hat{C} + \hat{T}_2 = 90^{\circ} (\angle'sof \Delta)$	√S
	$\hat{T}_1 + \hat{T}_2 = 90^{\circ}$ (tangent $\perp r$) $\therefore \hat{C} = \hat{T}_1$	✓S/ R
	But $\hat{C} = \hat{A}$ (\angle 's in same segment)	✓S/ R
	$\therefore \hat{T}_1 = \hat{A}$	✓ conclusion (6)



Use the diagram below to prove the theorem which states that if	
DE BC then $\frac{BD}{AD} = \frac{EC}{AE}.$	
D E C	√Construction
Construction: In $\triangle ADE$ draw altitudes h and k	
$\frac{area \Delta BDE}{area \Delta ADE} = \frac{\frac{1}{2}BD \times k}{\frac{1}{2}AD \times k}$	√ S
$=\frac{BD}{AD}$	√ S
$\frac{area \ \Delta CED}{area \ \Delta ADE} = \frac{\frac{1}{2}EC \times h}{\frac{1}{2}AE \times h}$	√ S
$= \frac{EC}{AE}$	
But area $\triangle BDE = area \triangle CED$ Same base, same height	√S & R
$\therefore \frac{area \ \Delta BDE}{area \ \Delta ADE} = \frac{area \ \Delta CED}{area \ \Delta ADE}$	√ S
$\therefore \frac{BD}{AD} = \frac{EC}{AE}$	[6]



	<u>r</u>		
10.1	Subtended by a diameter / Angle in a semi-circle	✓ Answer	(1)
10.2	$\hat{B}_2 = x$ (radii =)	√S	
	$\hat{B}_4 = x$ (tan-chord th	√SR	
	$\hat{A} = x$ (corr \angle 's; BD AO)	√S	(3)
10.3	$\hat{A} = \hat{E} = x$ Converse $\angle's$ subtended by the same cord	✓ Answer	(1)
10.4	$\hat{B}_2 + \hat{B}_3 = 90^\circ (\angle \text{ in semi } \bigcirc)$	√ R	
	$C\widehat{B}E = 90^{\circ} + x$	√90° + x	(2)
10.5.1	In \triangle CBD and \triangle CEB:		
	$egin{aligned} \hat{C} = \hat{C} \ \hat{B}_4 = \hat{E} = x \end{aligned}$	✓S	
	$\widehat{D}_2 = C\widehat{B}E$	√S	(2)
	$\therefore \triangle CBD \parallel \triangle CEB (\angle \angle \angle)$		(=)
10.5.2	$\frac{CB}{CE} = \frac{BD}{EB}$ (triangles)	√S√R	
	EB.CB = CE. BD	✓SR	
	$\hat{F}_1 = 90^{\circ}$ (corr \angle 's; BD AO) BF = FE (line from centre to mdpt of chord)	✓SR	
	$\therefore BE = 2EF$		
	$\therefore 2EF.CB = CE.BD$	✓replacing BE (5)	
10.5.3	$\frac{2EF}{CE} = \frac{BD}{BC}$ out of 10.4	√S	
	But \triangle BCD $\parallel \triangle$ ACO ($\angle \angle \angle$)	√SR	
	$\therefore \frac{BD}{AB} = \frac{BC}{AB}$	√S	
	$\frac{AO}{BD} = \frac{AO}{AC}$		
	BC AC	√S	
	$\left \frac{2EF}{GE} \right = \frac{AO}{AG}$	(4)	
	CE AC		