

You have Downloaded, yet Another Great Resource to assist you with your Studies ③

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

NATIONAL SENIOR CERTIFICATE

GRADE 12

SEPTEMBER 2018

MATHEMATICS P2

MARKS: 150

TIME: 3 hours

This question paper consists of 14 pages, including 1 page information sheet, and an answer book of 21 pages.

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

- 1. This question paper consists of 10 questions.
- 2. Answer ALL the questions in the ANSWER BOOK provided.
- 3. Clearly show ALL calculations, diagrams, graphs, et cetera that you have used in determining your answers.
- 4. Answers only will NOT necessarily be awarded full marks.
- 5. You may use an approved scientific calculator (non-programmable and non-graphical), unless stated otherwise.
- 6. If necessary, round off answers to TWO decimal places, unless stated otherwise.
- 7. Diagrams are NOT necessarily drawn to scale.
- 8. An information sheet with formulae is included at the end of the question paper.
- 9. Write neatly and legibly.

Every year the Grade 9s have to choose whether to take Mathematics or Mathematical Literacy. 15 learners were selected at random and their marks as a percentage for their Grade 9 report and their Grade 12 final exam are recorded in a table.

Grade 9	27	40	53	55	65	67	68	76	79	79	80	83	88	94	94
Grade 12	34	36	42	42	57	71	68	42	70	85	76	93	95	99	91

1.1	Determine the equation of the least squares regression line.	(3)
1.2	If a learner in Grade 9 final exams obtains 41%, estimate what mark in percentage did he get in Grade 12. [Round off your answer to the nearest integer]	(2)
1.3	Draw the least squares regression line on the scatter plot	(2)
1.4	Calculate the correlation coefficient.	(2)
1.5	Is the Grade 9 report mark a good predictor of the final matric mark? Motivate your answer.	(2) [11]

The number of learners absent from 11 weekend classes in a year were recorded as follows.

10 13 15 17 18 23 24 26 28 28 29

2.1	Determine the range of the above data.	(1)
2.2	Calculate the average number of the learners absent from a weekend class.	(2)
2.3	Calculate the standard deviation of the above data	(3)
2.4	Determine the number of weeks where the attendance of the learners lies outside one standard deviation from the mean.	(2) [8]

In the diagram below, points A (*p*; 3), B(-3; -3) and C(*t*; 5) are the vertices of triangle ABC. The length of BC = $\sqrt{89}$ units. The equation of line AB is y = -3x - 12. E is the *x*-intercept of line AB.

3.1	Calculate the value of t	(5)
3.2	Calculate the value of <i>p</i>	(4)
3.3	Determine the coordinates of E	(2)
3.4	Determine the coordinates of M, the midpoint of AC if the value of $t = 2$ and $p = -5$.	(2)
3.5	Why is EM $\ BC $?	(4)
3.6	Calculate the size of $A\hat{B}C$	(4)
		[21]

In the diagram below, P(0;-3), Q(9;-6) and R(8;-9) are the vertices of a triangle in the Cartesian plane.

- 5.1 If $\sin A = -\frac{3}{7}$, where $A \in [90^\circ; 270^\circ]$ determine, using a diagram, without the use of a calculator, the value of $\sin (A + 30^\circ)$.
- 5.2 Simplify fully to one trigonometric ratio of x: $-\sin^{2}(90^{\circ} - x) - \tan x \cdot \cos(-x) \cdot \sin(-x - 360^{\circ})$ (6)
- 5.3 Show that, for any given value of \hat{A} , the roots of the equation $x^2 2x \sin A = \cos^2 A$ are real and rational. (3)
- 5.4 Prove the identity:

$$\frac{\cos 3x}{\sin x} + \frac{\sin 3x}{\cos x} = \frac{2}{\tan 2x}$$
(3)

- 5.5 If $\cos 22^\circ = p$ and $\sin 38^\circ = q$, without the use of a calculator, determine the following in terms of p and q.
 - 5.5.1 $\sin 68^{\circ}$ (2)

$$5.5.2 \quad \cos 16^{\circ}$$
 (4)

Copyright reserved

(4)

[22]

(2)

QUESTION 6

- 6.1 A function is defined as $f(x) = a \cos (x p) + 1$. The function satisfies the following conditions:
 - The period is 360 °
 - The range is $y \in [-1;3]$
 - The co-ordinates of a maximum point are [210[°]; 3]

Write down the values of *a* and *p*.

6.2 In the diagram below, the functions $f(x) = \cos(x - 60^\circ)$ and $g(x) = \sin 3x$ are drawn for $x \in [-90^\circ; 180^\circ]$.

For what value(s) of *x* is

6.2.1
$$f'(x) = 0$$
, where $x \in \left[-90^{\circ}; 180^{\circ}\right]$? (1)

6.2.2
$$f(x) = g(x)$$
, where $x \in [-90^\circ; 30^\circ]$? Show all relevant calculations. (6)

6.2.3
$$f(x) > g(x)$$
, where $x \in [-90^\circ; 30^\circ]$? (2)

[11]

In the diagram below AD is a vertical structure. B, C and D are three points in the same horizontal plane. The angle of elevation of A from C is θ . BC = k metres, AB = 2BC and $A\hat{B}C = 2\theta$

7.1	Prove that AC = $k \sqrt{1 + 8 \sin^2 \theta}$	(5)
-----	--	-----

7.2 Calculate the value of AC rounded off to the nearest metre, if k = 139, 5 metres and (2) $\theta = 42^{0}$ [7]

Give reasons for your statements in QUESTIONS 8, 9, 10 and 11.

QUESTION 8

In the diagram below, E is the centre of the circle passing through A, B and C. AE is produced to D so that DCEB is a cyclic quadrilateral of the larger circle such that CD = EB. CA is joined. $C\hat{E}D = 28^{\circ}$

	0.4.2 BAC	[12]
	842 p.î.c	(3)
	8.4.1 \hat{B}_{2}	(4)
8.4	Calculate, with reasons, the size of:	
8.3	Show that $CD = EC$	(2)
8.2	Give a reason why CE BD	(1)
8.1	Determine the size of \hat{D}_2	(2)

In the diagram below, WXYZ is a trapezium, with xy $\|$ UV $\|$ WZ . UZ : YZ = 4 : 7 . $\hat{V}_3 = \hat{V}_4$

9.1 Prove that
$$\frac{YV}{VW} = \frac{XV}{VZ}$$
 (3)

9.2 Determine the numerical value of
$$\frac{\text{Area of } \Delta XVY}{\text{Area of } \Delta WVZ}$$
 in a simplified form. (4)

9.4 Prove that UV is a tangent to the circle passing through X, V and Y. (2) [12]

Complete the proof of the theorem in the answer book, that states that if in \triangle ABC and \triangle PQR, $\hat{A} = \hat{P}$, $\hat{B} = \hat{Q}$ and $\hat{C} = \hat{R}$.

10.2 SPQ is a common tangent for both circles. M is the centre of the bigger circle. PM is the diameter of the smaller circle. $RQ \perp PQ$. $P\hat{M}N = x$

Prove that:

		[=0]
10.3.2	value of <i>x</i>	(4) [26]
10.3.1	length of LR.	(5)
If it is g	given that, $PR = 30$ cm and $QR = 15$, calculate the:	
10.2.3	Δ PNM Δ PQR	(4)
10.2.2	PR bisects QRL	(4)
10.2.1	LN = NP	(3)

TOTAL: 150

10.3

INFORMATION SHEET: MATHEMATICS