


You have Downloaded, yet Another Great Resource to assist you with your Studies ©

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za





# NATIONAL SENIOR CERTIFICATE

**GRADE 12** 

**MATHEMATICS P2** 

September 2018

**MARKS: 150** 

TIME: 3 hours

This question paper consists of 15 pages an information sheet and an answer book of 20 pages

(3)

### **QUESTION 1**

Consider the following characteristics of a set of data:

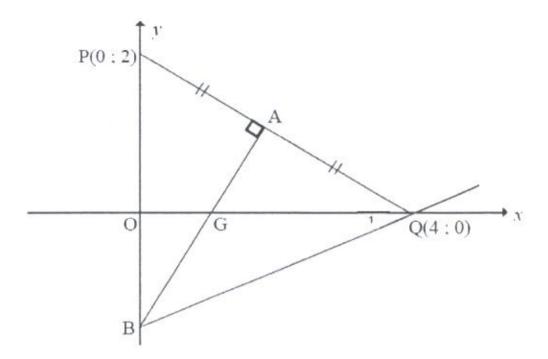
- Median is 14
- · Upper quartile is 20
- Lower quartile is 11
- Maximum value is 30
- Range is 20
- (2) Calculate the interquartile range of the data. 1.1
- Draw a box and whisker diagram on the number line in the answer book 1.2 that represents the data.
- (1)Comment on the skewness of the data. 1.3 [6]

2.1 A training manager wants to know if there is a link between the hours in training spent by a particular category of employee and their productivity (units produced per day) on the job. The data below was extracted from the files of 10 employees.

| Employee                                    | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 |
|---------------------------------------------|----|----|----|----|----|----|----|----|----|----|
| Hours in<br>training                        | 16 | 36 | 20 | 38 | 40 | 30 | 35 | 22 | 40 | 24 |
| Productivity<br>(units produced<br>per day) | 45 | 70 | 44 | 56 | 60 | 48 | 75 | 60 | 63 | 38 |

| 2.1.1 | Determine the equation of the least squares regression line.        | (3) |
|-------|---------------------------------------------------------------------|-----|
| 2.1.2 | Estimate the productivity level for a particular employee who has   |     |
|       | received only 32 hours of training (to the nearest integer).        | (2) |
| 2.1.3 | Comment on the strength of the correlation between the hours in     |     |
|       | training spent and the productivity. Motivate your answer.          | (2) |
| Consi | der the productivity of units produced per day above and calculate: |     |
| 2.2.1 | The average units produced per day by the 10 employees.             | (2) |

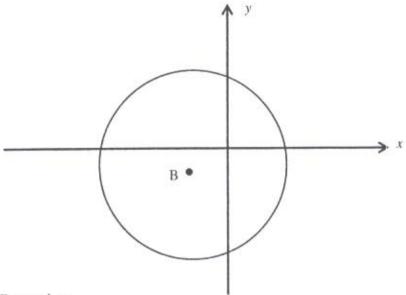
2.2.2 The number of employees whose productivity are above one standard


deviation from the mean.

[13]

(4)

2.2


The diagram below, shows the points P(0; 2) and Q(4; 0). Point A is the midpoint of PQ. The line AB is perpendicular to PQ and intersects the x-axis at G and the y-axis at B.



- 3.1 Write down the gradient of PQ. (1)
- 3.2 Calculate the coordinates of A. (2)
- 3.3 Determine the equation of the line AB in the form y = mx + c. (3)
- 3.4 Calculate the length of BQ if it is given that B(0; -3). (2)
- 3.5 If PBQR is a rhombus, with R in the first quadrant, calculate the coordinates of R.
  (4)
- 3.6 Calculate the size of angle ABQ. (5)
- 3.7 Determine:
  - 3.7.1 The equation of the circle passing through the points A, P and B. (6)
  - 3.7.2 The equation of the tangent to the circle in Question 3.7.1 at point P. (2)

[25]

In the diagram below,  $x^2 + y^2 + 8x + 4y - 28 = 0$ , is the equation of the circle centred at B.



4.1 Determine:

4.2 Another circle, with centre A, is drawn. The equation of the circle is  $(x-4)^2 + (y-6)^2 = 26$ .

Show by calculations that these two circles intersect each other. (6)

4.3 The two circles centred at A and B intersect each other at C and D.
 Determine the gradient of CD if AB passes through the midpoint of CD. (3)


- Consider:  $\frac{1-\tan^2\theta}{1+\tan^2\theta}$ 
  - 5.1.1 Calculate the value of the expression if  $\theta = 20^{\circ}$ . (2)
  - 5.1.2 Prove without using a calculator, that  $\frac{1 \tan^2 \theta}{1 + \tan^2 \theta} = \cos 2\theta$ . (5)
  - 5.1.3 Hence, determine the general solution, without using a calculator if

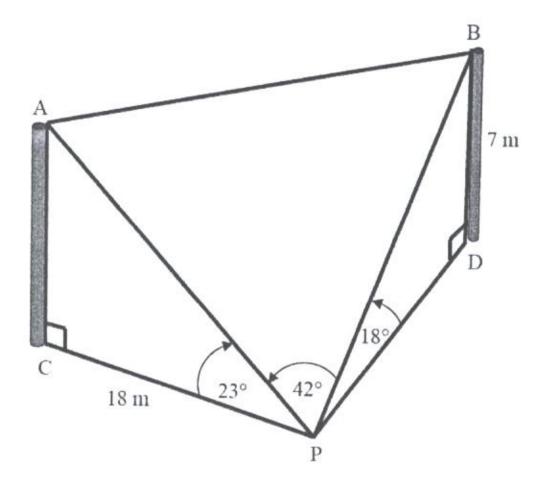
$$\frac{1-\tan^2\theta}{1+\tan^2\theta} = \frac{1}{2} \tag{5}$$

- 5.2 If  $\cos 25^{\circ} = k$ , express the following in terms of k:
  - 5.2.1 sin 245° (3)
  - 5.2.2 sin 25° (2)
  - $5.2.3 \cos 50^{\circ}$  (2)
- 5.3 Consider:  $\sqrt{3}\cos\beta + \sin\beta$ 
  - 5.3.1 Rewrite  $\sqrt{3}\cos\beta + \sin\beta$  in the form  $p\sin(\alpha + \beta)$ . (5)
  - 5.3.2 Determine the maximum value of  $\sqrt{3}\cos\beta + \sin\beta 5$ . (2)

[26]

In the diagram the graph of  $g(x) = -\cos x$  is drawn for the interval  $x \in [-90^\circ; 180^\circ]$ .




6.1 On the same set of axis in the answer book draw the graph of f(x) = sin(x+30°) for x∈[-90°; 180°]. Show clearly all the intercepts with the axes, as well as the turning points.
(4)

6.2 Write down the period of g(2x). (2)

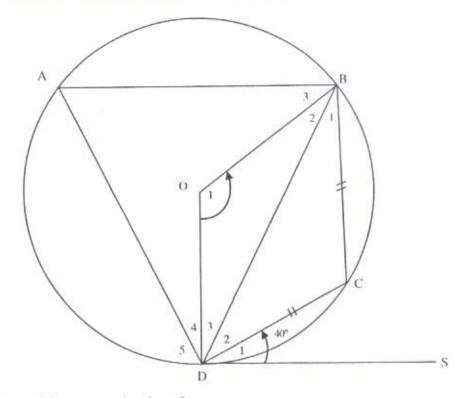
6.3 Determine for which values of x;  $x \in [-90^\circ; 180^\circ]$ , the graphs of f and g are both increasing. (2)

[8]

Thandi is standing at point P on the ground and observes two poles, AC and BD, of different heights. P, C and D are in the same horizontal plane. From P the angles of inclination to the top of the poles A and B are 23° and 18° respectively. Thandi is 18 m from the base of pole AC. The height of pole BD is 7 m.



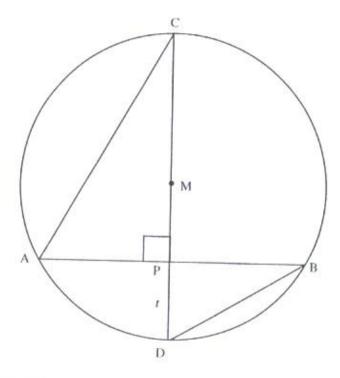
#### Calculate:


7.1 The distance from Thandi to the top of pole AC, in other words AP. (2)

7.2 The distance between the top of the poles, AB, if  $A\hat{P}B = 42^{\circ}$  and PB = 22.65 m.

(4)

[6]


8.1 In the figure below, ABCD is a cyclic quadrilateral in the circle centred at O and  $\Delta$  DOB is drawn. DS is a tangent to the circle at D, BC = DC and CDS = 40°.



Calculate, with reasons, the size of:

$$8.1.4 \quad \hat{O}_1$$
 (2)

8.2 In the diagram, M is the centre of circle and diameter CMPD is perpendicular to chord AB. AB = 4t, PD = t and CP = 15 cm.



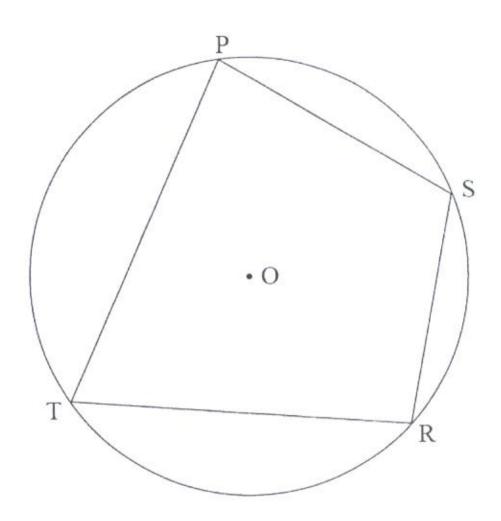
8.2.1 Give a reason why AP = 2t.

(1)

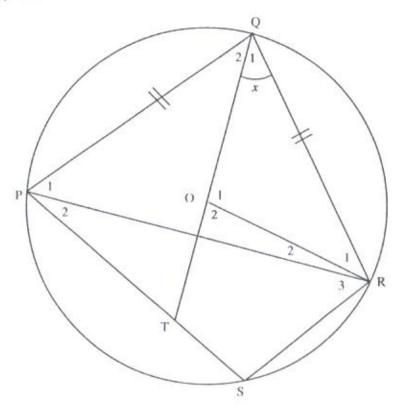
- 8.2.2 If it is further given that  $\triangle CAP \parallel \triangle BDP$ , calculate:
  - a) The value of t.

(4)

b) The length of the radius of the circle.


(2)

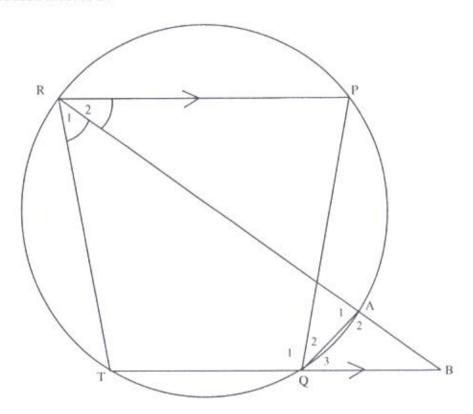
[16]


9.1 In the diagram below, O is the centre of the circle. PSRT is a cyclic quadrilateral. Prove the theorem that states that  $P\hat{T}R + P\hat{S}R = 180^{\circ}$ .

(5)

Please turn over




9.2 In the diagram below, O is the centre of the circle. P, Q, R and S are points on the circumference of the circle. TOQ is a straight line such that T lies on PS.
PQ = QR and Q<sub>1</sub> = x.

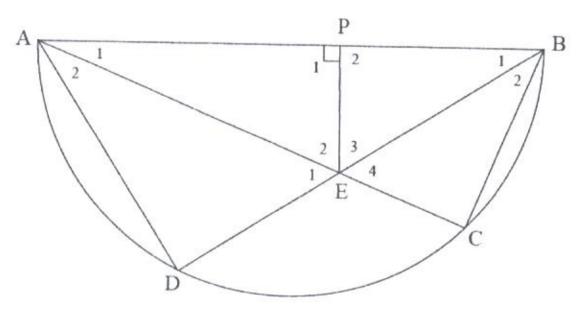


- 9.2.1 Calculate, with reasons,  $\hat{P}_1$  in terms of x. (4)
- 9.2.2 Prove that TQ bisects PQR. (3)
- 9.2.3 Prove that STOR is a cyclic quadrilateral. (5)

[17]

In the diagram below, points R, P, A, Q and T lie on a circle. RA bisects  $\hat{R}$  and RP  $\parallel$  TB. RA and TQ produced meet at B.




Prove that:

$$10.2 T\hat{R}P = \hat{A}_1 (4)$$

[9]

Copyright reserved Mpumalanga Please turn over

In the diagram below, AB is the diameter of semi-circle ADCB. Chords AC and BD intersect at E. EP is perpendicular to AB.



11.1 Prove that  $\triangle BPE \parallel \triangle BDA$ . (4)

11.2 Prove that 
$$AB^2 = BD^2 + \frac{BD^2 .PE^2}{BP^2}$$
 (6)

TOTAL: 150 MARKS