

You have Downloaded, yet Another Great Resource to assist you with your Studies ③

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za









Department of Education FREE STATE PROVINCE

# **PREPARATORY EXAMINATION**

# GRADE 12

# **MATHEMATICS P2**

**SEPTEMBER 2019** 

## **TIME: 3 HOURS**

# **MARKS: 150**

This question paper consists of 14 pages and 1 information sheet.

Copyright reserved

NORTHERN CAPE

Please turn over

Read the following instructions carefully before answering the questions.

- 1. This paper consists of 11 questions.
- 2. Answer ALL the questions in the SPECIAL ANSWER BOOK provided.
- 3. Number the answers correctly according to the numbering system used in this question paper.

2

- 4. Clearly show ALL calculations, diagrams, graphs, et cetera, which you have used in determining the answers.
- 5. Answers only will NOT necessarily be awarded full marks.
- 6. You may use an approved scientific calculator (non-programmable and non-graphical), unless stated otherwise.
- 7. If necessary, answers should be rounded off to TWO decimal places, unless stated otherwise.
- 8. Diagrams are NOT necessarily drawn to scale.
- 9. An information sheet with formulae is included at the end of the question paper.
- 10. Write neatly and legibly.

The following table shows the test marks (in %) of Grade 11 learners in Frances Baard High School.

| INTERVAL OF<br>TEST MARKS | NUMBER OF<br>LEARNERS |
|---------------------------|-----------------------|
| $0 \le x < 20$            | 4                     |
| $20 \le x < 40$           | 5                     |
| $40 \le x < 60$           | 9                     |
| $60 \le x < 80$           | 13                    |
| $80 \le x < 100$          | 10                    |
| Totals                    | 41                    |

|     |                                                                                                          | [12] |
|-----|----------------------------------------------------------------------------------------------------------|------|
| 1.5 | Use the cumulative frequency curve (ogive) to determine the interquartile range for the data.            | (3)  |
| 1.4 | Draw a cumulative frequency curve (ogive) to represent the data on the grid provided in the ANSWER BOOK. | (3)  |
| 1.3 | Complete the cumulative frequency table provided in the ANSWER BOOK.                                     | (2)  |
| 1.2 | Calculate the estimated mean.                                                                            | (3)  |
| 1.1 | Write down the modal class.                                                                              | (1)  |

Research is done to determine if the number of hours reading over a certain period of time has an effect on the results of a candidate's mark in a general knowledge test (out of 120).

| Number of hours                                                                                                                  |  | 15 | 20 | 22 | 25 | 32 | 40       | 44  | 50  | 55 | 58 |  |
|----------------------------------------------------------------------------------------------------------------------------------|--|----|----|----|----|----|----------|-----|-----|----|----|--|
| Mark out of 120                                                                                                                  |  | 40 | 30 | 55 | 80 | 70 | 75       | 100 | 105 | 98 | 79 |  |
| 2.1 Determine the equation of the least squares regression line.                                                                 |  |    |    |    |    |    | (2       | 3)  |     |    |    |  |
| 2.2 Estimate the mark that a person that reads 36 hours in that same period will obtain in the test.                             |  |    |    |    |    |    |          | 2)  |     |    |    |  |
| 2.3 What is the correlation between the number of hours reading and the mark a person scores for the test? Motivate your answer. |  |    |    |    |    | (3 | 3)<br>8] |     |     |    |    |  |

In the diagram below, A (1; 4), B (-3; -4), C (2; k) and D (x; y) are the vertices of a rectangle. AB and DC cuts the x-axis at G and H respectively. GD is drawn.  $\hat{GHC} = \beta$ .



| 3.1 | Calcula | Calculate the gradient of BG.                           |                      |  |  |  |  |
|-----|---------|---------------------------------------------------------|----------------------|--|--|--|--|
| 3.2 | Determ  | Determine the equation of AB in the form $y = mx + c$ . |                      |  |  |  |  |
| 3.3 | Calcula | ate the:                                                |                      |  |  |  |  |
|     | 3.3.1   | Value of <i>k</i> ( <i>y</i> -coordinate of C).         | (4)                  |  |  |  |  |
|     | 3.3.2   | Coordinates of D.                                       | (3)                  |  |  |  |  |
|     | 3.3.3   | Size of $\beta$ .                                       | (3)                  |  |  |  |  |
|     | 3.3.4   | Area of $\triangle$ DHG.                                | (7)<br>[ <b>21</b> ] |  |  |  |  |

Mathematics P2 Grade 12 Prep. Exam.

#### **QUESTION 4**

In the diagram below, the circle centred at E(3;1) passes through point P(5;-5).



4.1 Determine the equation of:

| 4.1.1 | The circle in the form $x^2 + y^2 + Ax + By + C = 0$ . | (4) |
|-------|--------------------------------------------------------|-----|
|-------|--------------------------------------------------------|-----|

4.1.2 The tangent to the circle at P (5; -5) in the form y = mx + c. (5)

# 4.2 A smaller circle is drawn inside the circle. Line EP is a diameter of the small circle. Determine the:

| 4.2.1 | Coordinates of the centre of the smaller circle. | (3) |
|-------|--------------------------------------------------|-----|
| 4.2.2 | Length of the radius.                            | (3) |

4.3 Hence, or otherwise, determine whether point C (9;3) lies inside or outside the circle centre at E.
(3) [18]

5.1 In the Cartesian plane below, the point  $B(3; -3\sqrt{3})$  and the reflex angle,  $\alpha$ , are shown.



Determine (without using a calculator) the value of:

5.1.2 
$$\cos\left(\alpha + 30^{\circ}\right)$$
 (4)

5.2 Simplify:

$$\frac{\sin^2(90^\circ - x)\tan(360^\circ - x)}{\sin(-x)}$$
(4)

5.3 Prove that:

 $\cos\left(60^{\circ} + \theta\right) - \cos\left(60^{\circ} - \theta\right) = -\sqrt{3}\sin\theta \tag{3}$ 

5.4 Consider the identity: 
$$\frac{1 - \sin 2A}{\sin A - \cos A} = \sin A - \cos A$$

5.4.2 For which values of A in the interval  $0^{\circ} < A < 180^{\circ}$  will the identity be undefined? (2) [19]

- Determine the general solution for  $\sin 2x = \cos(x 30^{\circ})$ . 6.1 (5)
- The diagram below shows the graph of  $g(x) = \cos(x 30^{\circ})$  for the interval 6.2  $x \in [-180^{\circ}; 180^{\circ}].$



| 6.2.1 | Write down the period of $g$ .                                                                                                         | (1)                  |
|-------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 6.2.2 | Determine the values of $x$ for which the graph of $g$ increasing.                                                                     | (2)                  |
| 6.2.3 | On the same system of axes draw the graph of $f(x) = \sin 2x$ for $x \in [-180^\circ; 180^\circ]$ in your ANSWER BOOK.                 | (3)                  |
| 6.2.4 | Hence or otherwise, determine the values of $x$ in the interval $-180^{\circ} \le x \le 180^{\circ}$ for which $f(x) \cdot g(x) < 0$ . | (3)<br>[ <b>14</b> ] |

In the diagram below, B, C and D are three points on the same horizontal plane such that BD = DC = y.  $C\hat{B}D = \alpha$  and  $A\hat{B}D = \theta$ . Line BC = x.

9



Prove that  $AB = \frac{x}{2\cos\alpha\cos\theta}$ 

[7]

DF is a tangent to the circle at E. EKHG is a cyclic quadrilateral.  $\hat{\text{KEF}} = 35^{\circ}$ . O is the centre of the circle. OK  $\perp$  EH and EK = HK.



8.1 Determine, with reasons, the size of each of the following:

| 8.1.1 | $\hat{\mathrm{E}}_{_4}$ | (3) |
|-------|-------------------------|-----|
| 8.1.2 | EĤ                      | (2) |
| 8.1.3 | Ĝ                       | (2) |
| 8.1.4 | Ô                       | (2) |

8.2 It is further given that EH = 24 units. KM = 4 units and the radius of the circle EKHG is *x*. Determine the value of *x*. (4) [13]

9.1 A circle with centre O is given below. Lines CD and AF are produced to E.  $\hat{AOD} = 2x$  and BD is the diameter. AC||FD.



|   | 9.1.1      | Determine, with reasons, four other angles that are each equal to $x$ .       | (6)                  |
|---|------------|-------------------------------------------------------------------------------|----------------------|
|   | 9.1.2      | Express $\hat{E}$ in terms of x.                                              | (2)                  |
|   | 9.1.3      | Prove that AODE is a cyclic quadrilateral.                                    | (2)                  |
| 2 | It is furt | her given that $ED : DC = 8 : 12$ and $FE = 10$ . Calculate the length of AF. | (3)<br>[ <b>13</b> ] |

9.2

10.1 In the diagram below,  $\triangle ABC$  and  $\triangle DEF$  are drawn with  $\hat{A} = \hat{D}$ ;  $\hat{B} = \hat{E}$  and  $\hat{C} = \hat{F}$ .



Prove the theorem that states that if two triangles are similar, then the sides are proportional, i.e.  $\frac{DE}{AB} = \frac{EF}{BC} = \frac{DF}{AC}$ . (5)

10.2 In the diagram below, AB is the diameter of a circle with centre O. BD and BC are chords. BD = DE. BCE is a line.  $\hat{B}_1 = \hat{B}_2 = y$ .



Prove that:

| 10.2.1 | $\hat{D}_4 = 90^{\circ}$               | (5)                  |
|--------|----------------------------------------|----------------------|
| 10.2.2 | $\Delta BOD \parallel \mid \Delta BDE$ | (3)                  |
| 10.2.3 | $DE^2 = BE.OD$                         | (4)<br>[ <b>17</b> ] |

In the diagram below, RQSM is a quadrilateral. N and P are points on MR and RQ respectively such that MQ || NP. The diagonals intersect at T. P is a point on RQ such that TP || SQ. TR and NP intersect at V.



11.1 Prove that NT || MS. (4)

11.2 If 
$$RN = \frac{5}{5}$$
 NM and RS = 32, determine VT. (4)  
[8]

**TOTAL: 150** 

## **INFORMATION SHEET: MATHEMATICS**

$$\begin{aligned} x &= \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \quad A = P(1+ni) \qquad A = P(1-ni) \qquad A = P(1-i)^n \quad A = P(1+i)^n \\ \sum_{i=1}^n 1 = n \qquad \sum_{i=1}^n i = \frac{n(n+1)}{2} \qquad T_n = a + (n-1)d \qquad S_n = \frac{n}{2}(2a + (n-1)d) \\ T_n = ar^{n-1} \qquad S_n = \frac{a(r^n - 1)}{r-1} \quad ; \quad r \neq 1 \qquad S_\infty = \frac{a}{1-r} ; -1 < r < 1 \\ F = \frac{x[(1+i)^n - 1]}{i} \qquad P = \frac{x(1-(1+i)^{-n})}{i} \\ f^i(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \qquad d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \qquad M\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right) \\ y = mx + c \qquad y - y_1 = m(x - x_1) \qquad m = \frac{y_2 - y_1}{x_2 - x_1} \qquad m = \tan \theta \\ (x-a)^2 + (y-b)^2 = r^2 \\ ln \ AABC: \quad \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \qquad a^2 = b^2 + c^2 - 2bc .\cos A \\ area \ \Delta ABC = \frac{1}{2} ab .\sin C \\ \sin(\alpha + \beta) = \sin \alpha .\cos \beta + \cos \alpha .\sin \beta \qquad \cos(\alpha - \beta) = \sin \alpha .\cos \beta - \cos \alpha .\sin \beta \\ \cos(\alpha + \beta) = \cos \alpha .\cos \beta - \sin \alpha .\sin \beta \qquad \cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta \\ \cos(\alpha + \beta) = \cos \alpha .\cos \beta - \sin \alpha .\sin \beta \qquad \cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta \\ \cos(\alpha + \beta) = \cos \alpha .\cos \beta - \sin \alpha .\sin \beta \qquad \cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta \\ \cos(\alpha + \beta) = \cos \alpha .\cos \beta - \sin \alpha .\sin \beta \qquad \cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta \\ \cos(\alpha + \beta) = \cos \alpha .\cos \beta - \sin \alpha .\sin \beta \qquad \cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta \\ \cos(\alpha + \beta) = \cos \alpha .\cos \beta - \sin \alpha .\sin \beta \qquad \cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta \\ \cos(\alpha + \beta) = \cos \alpha .\cos \beta - \sin \alpha .\sin \beta \qquad \cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta \\ \cos(\alpha + \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta \qquad \cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta \\ \cos(\alpha + \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta \qquad \cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta \\ \cos(\alpha + \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta \qquad \cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta \\ \cos(\alpha + \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta \qquad \cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta \\ \cos(\alpha + \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta \qquad \cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta \\ \cos(\alpha + \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta \qquad \cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta \\ \cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta \qquad \cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta \\ (x; y) \to (x \cos \theta - y \sin \theta ; y \cos \theta - x \sin \theta) \\ (x; y) \to (x \cos \theta - y \sin \theta ; y \cos \theta + x \sin \theta) \\ (x; y) \to (x \cos \theta - y \sin \theta ; y \cos \theta + x \sin \theta) \\ (x; y) \to (x \cos \theta - y \sin \theta ; y \cos \theta + x \sin \theta) \end{cases}$$

$$\hat{y} = a + bx \qquad \qquad b = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sum (x - \bar{x})^2}$$