You have Downloaded, yet Another Great Resource to assist you with your Studies © Thank You for Supporting SA Exam Papers Your Leading Past Year Exam Paper Resource Portal Visit us @ www.saexampapers.co.za # NATIONAL SENIOR CERTIFICATE **GRADE 12** # MATHEMATICS P2 PREPARATORY EXAMINATION SEPTEMBER 2022 MARKS: 150 TIME: 3 hours This question paper consists of 13 pages, 1 information sheet and an answer book with 22 pages. #### INSTRUCTIONS AND INFORMATION Read the following instructions carefully before answering the questions. - 1. This question paper consists of 11 questions. - 2. Read the questions carefully. - Answer ALL the questions. - 4. Number your answers exactly as the questions are numbered. - 5. Clearly show ALL calculations, diagrams, graphs, etc. which you have used in determining your answers. - 6. Answers only will NOT necessarily be awarded full marks. - 7. You may use an approved scientific calculator (non-programmable and non-graphical), unless stated otherwise. - 8. If necessary, round off answers correct to TWO decimal places, unless stated otherwise. - 9. Diagrams are NOT necessarily drawn to scale. - 10. An information sheet with formulae is included at the end of the question paper. - 11. Write neatly and legibly. The weight (in kg) of 20 boys in the soccer squad of school A are given below: | [| 40 | 47 | 48 | 51 | 53 | 57 | 58 | 58 | 59 | 59 | |---|----|----|----|----|----|----|----|----|----|----| | | 60 | 60 | 60 | 60 | 61 | 62 | 63 | 64 | 66 | 69 | - 1.1 Calculate: - 1.1.1 the mean weight of the boys in this soccer squad. (2) - 1.1.2 the standard deviation of this data. (1) - Determine the number of boys that have a weight within one standard deviation of the mean. (2) - 1.3 The following information was obtained from the coach of the soccer squad of school B: $$\sum_{n=1}^{22} x_n = 1320$$ - 1.3.1 How many boys are in the school B squad? - 1.3.2 Calculate the mean weight of a boy in the soccer squad of school B. (1) - Assume that the mean weight or the boys in the soccer squad at school B is 60 kg. Five boys of equal weight are added to the school A squad so that the means of both school squads are the same. Calculate the weight of each of these five boys. (4) (1) A survey was done on 250 people to determine the distances they travel to work daily. The results are shown in the table below. | DISTANCE, d (in km) | FREQUENCY | CUMULATIVE
FREQUENCY | |---------------------|-----------|--| | 0 < d ≤ 5 | 8 | | | $5 < d \le 10$ | 41 | | | 10 < d ≤ 15 | 63 | Comments and report in the purple of a field specific and the second states and a commentation of the second states and the second states and the second states are state | | $15 < d \le 20$ | 52 | | | 20 < d ≤ 25 | 41 | | | $25 < d \le 30$ | 38 | | | $30 < d \le 35$ | 7 | | | TOTAL | | | - 2.1 Complete the cumulative frequency column, on the attached ANSWER SHEET. (3) - Draw a cumulative frequency graph (ogive) for the given data on the grid provided on the attached ANSWER SHEET. (4) - Use the graph to determine the median distance travelled. Indicate on your graph the median distance.(2)[9] In the diagram below, A(-5; 2), B(-3; 8) and C are vertices of $\triangle ABC$. E(1;0) is the midpoint of AC. D is a point on the x-axis such that AD is a line perpendicular to the x-axis. α is the angle of inclination of AC. | 3.1 | Determine the coordinates of M | , the midpoint of AB. (2 | 2) | |-----|--------------------------------|--------------------------|----| | | | | | - 3.2 Write down the coordinates of point D. (1) - 3.3 Show that the coordinates of C are (7; -2) (2) - 3.4 Calculate the length of line AC. (Leave answer in simplest surd form) (2) - 3.5 Determine the coordinates of F, if F lies in the first quadrant and CABF is a parallelogram. (2) - 3.6 Determine the equation of the perpendicular bisector of AB. (4) - 3.7 Calculate the size of α , the angle of inclination of line AC. (3) - 3.8 Determine the equation of the line parallel to AB passing through E. (2) - 3.9 Calculate the size of angle θ . (2) - 3.10 Calculate the area of $\triangle ABC$. (4) Copyright Reserved [24] In the diagram, the circle TS centred at C(3;-1) has a radius CT of 10 units. PTR, where R(k;21), is a tangent to the circle at T. PS is a tangent to the circle at S and PS || x-axis. PC, TC and CR are drawn. TR = 20 units. 4.1 Give a reason why $CT \perp TR$. (1) 4.2 Calculate the value of k, where R is in the first quadrant. (4) 4.3 Write down the equation of the given circle. (2) 4.4 Write down the equation of PS. (1) 4.5 The equation of tangent PTR is 3y = 4x + 35. 4.5.1 Calculate the coordinates of P. (2) 4.5.2 Calculate the length of PT. (3) [13] Copyright Reserved Please turn over 5.1 If $5\cos A = 2\sqrt{6}$ where $A \in [90^\circ; 360^\circ]$, calculate, without using a calculator and with the aid of a diagram, the values in simplest form of: 5.1.1 $$-\sqrt{6}$$ tanA (4) $$5.1.2 \qquad \sin 2A \tag{4}$$ 5.2 Given: $\sin 18^\circ = p$ Without using a calculator, determine each of the following in terms of p. $$5.2.1 \cos 18^{\circ}$$ (2) $$5.2.2 \quad \cos 48^{\circ}$$ (5) $$5.2.3 \sin 9^{\circ}$$ (3) [18] #### **QUESTION 6** 6.1 Without using a calculator, simplify the following expression fully: $$\frac{\sin(180^{\circ} - x).\tan(x - 180^{\circ}).\cos(360^{\circ} + x)}{\sin^{2}(180^{\circ} + x) + \sin^{2}(90^{\circ} - x)}$$ (6) 6.2 Without using a calculator, determine the value of: $$\frac{\cos 330^{\circ}. \tan 150^{\circ}. \sin 12^{\circ}}{\tan 675^{\circ}. \cos 258^{\circ}}$$ (7) 6.3 Given the identity: $$\frac{\cos \alpha + \cos 2\alpha}{\sin 2\alpha - \sin \alpha} = \frac{\cos \alpha + 1}{\sin \alpha}$$ 6.3.2 For which other values of $$\alpha$$ is the identity undefined? (5) [22] Given: $f(x) = \sin 2x$ and $g(x) = \cos(x+a)$ where $x \in [-180^\circ; 180^\circ]$ The graphs of f and g intersect at B and D. E is the y-intercept of g, and C is a turning point of g. A is a turning point of both f and g. 7.1 Write down the value of $$a$$. (1) 7.2 State the period of $$f$$. (1) 7.4 Write down the amplitude of $$h$$ if $h(x) = 3f(x)$. (1) 7.5 Determine for which value(s) of x, if $x \in [0^{\circ}; 180^{\circ}]$, will: $$7.5.1 g(x) > f(x) (2)$$ 7.5.2 $$g'(x) \cdot f'(x) \ge 0$$ (2) 7.6 **Without solving the equation,** use the above graphs to show how you would solve the following equation: $$\sqrt{2}\sin 2x = \cos x + \sin x \tag{3}$$ [13] 8.1 Complete the following statement: The line drawn from the centre of the circle perpendicular to the chord (1) 8.2 The circle below with centre O has chord AB = 8 cm. OMT \perp AB with MT = 2 cm. The radius of the circle is r cm. 8.2.1 Write down, with a reason, the value of AM. (2) 8.2.2 Calculate the length of the radius of the circle. (4) [7] 9.1 In the diagram below, O is the centre of the circle. P, A and T are points on the circumference of the circle. PA, TA, PO and TO are drawn. Prove the theorem which states that $P\hat{O}T = 2P\hat{A}T$. (5) 9.2 AOB and COB are diameters of circle ACDBE with centre O. Chords AC , CB , AE , AD and DE are drawn. $\hat{D}=50^{\circ}$. 9.2.1 Calculate, with reasons, the size of the following angles: (a) $$\hat{O}_1$$ (b) $$\hat{E}_1$$ (3) In the diagram DRS is a tangent to the circle TMAR at R. AT bisects $M\hat{T}R$. AT intersects MR at P. AR is drawn. $\hat{T}_1 = x$. 10.1 Prove, giving reasons, that: 10.1.1 $$\hat{R}_3 = \hat{R}_4$$. (4) 10.1.2 $$\triangle APR \parallel \triangle MPT$$. (3) 10.2 If $$AR = \frac{3}{2}MT$$, then calculate the value of $\frac{PT}{PR}$. (3) Copyright Reserved Please turn over In the diagram below, $\triangle ABC$ has D and E on BC. BD = 6 cm and DC = 9 cm. AT: TC = 2:1 and AD || TE. 11.1 Write down the numerical value of $$\frac{CE}{ED}$$. (1) 11.3 If $$FD = 2$$ cm, calculate the length of TE . (2) 11.4 Calculate the numerical value of: $$\frac{\text{Area of } \Delta ADC}{\text{Area of } \Delta ABD}$$ (2) $$\frac{\text{Area of } \Delta \text{TEC}}{\text{Area of } \Delta \text{ABC}}$$ (3) TOTAL: 150 (1) [9] #### INFORMATION SHEET: MATHEMATICS $$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$ $$A = P(1+ni) \qquad A = P(1-ni) \qquad A = P(1-i)^n$$ $$T_n = a + (n-1)d \qquad S_n = \frac{n}{2} \{2a + (n-1)d\}$$ $$T_n = ar^{n-1} \qquad S_n = \frac{a(r^n - 1)}{r - 1}; r \neq 1 \qquad S_{\infty} = \frac{a}{1 - r}; -1 < r < 1$$ $$F = \frac{x[(1+i)^n - 1]}{i} \qquad P = \frac{x[1 - (1+i)^{-n}]}{i}$$ $$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$ $(x-a)^2 + (y-b)^2 = r^2$ $$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \qquad M\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right) \qquad m = \tan \theta$$ $$y = mx + c \qquad y - y_1 = m(x - x_1) \qquad m = \frac{y_2 - y_1}{x_2 - x_1}$$ In $$\triangle ABC$$: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ $$a^2 = b^2 + c^2 - 2bc \cdot \cos A$$ $$\operatorname{area} \Delta A B C = \frac{1}{2} ab. \sin C$$ $$\sin(\alpha + \beta) = \sin \alpha \cdot \cos \beta + \cos \alpha \cdot \sin \beta$$ $$\sin(\alpha - \beta) = \sin \alpha \cdot \cos \beta - \cos \alpha \cdot \sin \beta$$ $$\cos(\alpha + \beta) = \cos \alpha \cdot \cos \beta - \sin \alpha \cdot \sin \beta$$ $$\cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$ $$\cos 2\alpha = \begin{cases} \cos^2 \alpha - \sin^2 \alpha \\ 1 - 2\sin^2 \alpha \\ 2\cos^2 \alpha - 1 \end{cases} \qquad \sin 2\alpha = 2\sin \alpha \cdot \cos \alpha$$ $$\overline{x} = \frac{\sum fx}{n}$$ $$\sigma^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{n}$$ $$P(A) = \frac{n(A)}{n(S)}$$ $$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$ $$\hat{y} = a + bx$$ $$b = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sum (x - \overline{x})^{2}}$$