

You have Downloaded, yet Another Great Resource to assist you with your Studies ©

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

NATIONAL SENIOR CERTIFICATE

GRADE 12

SEPTEMBER 2022

MECHANICAL TECHNOLOGY: AUTOMOTIVE MARKING GUIDELINE

MARKS: 200

This marking guideline consists of 11 pages.

SECTION A: COMPULSORY

QUESTION 1: MULTIPLE-CHOICE QUESTIONS (GENERIC)

- 1.1 D ✓
- 1.2 B ✓
- 1.3 A ✓
- 1.4 C ✓
- 1.5 C ✓
- 1.6 B ✓

(6 x 1) **[6]**

QUESTION 2: SAFETY (GENERIC)

2.1 Personal protective equipment

- Welding helmet ✓
- Leather apron ✓
- Leather hand gloves ✓
- Overall/work suit ✓
- Safety boot ✓ (Any 3 x 1) (3)

2.2 Arc welding safety precautions

- Wear correct PPE ✓
- The welding cables and electrode holder must be well insulated ✓
- Your eyes must be protected with a welding helmet before attempting any strike √
- Ensure that there is no water in the environment √
- Keep away combustible materials from the welding area ✓ (Any 3 x 1)

2.3 Reason why you must not force drill bit into the workpiece

It can cause a broken drill bit and possible injuries. ✓

2.4 Reason for clamping a small workpiece before drilling

- To avoid slipping ✓
- Prevent drill bit from getting broken ✓
- To ensure smooth and straight drilling √ (Any 1 x 1)

2.5 Safety precautions to be observed when handling gas cylinders

- Store or transport cylinders in an upright position ✓
- Avoid oil or grease from coming in contact with oxygen fittings √
- Never stack cylinders on top of one another ✓
- Do not bang or work on cylinders ✓
- Never allow cylinders to fall √ (Any 2 x 1)

[10]

QUESTION 3: MATERIALS (GENERIC)

3.1 3.1.1 Test required to determine the carbon content of a metal Sound test ✓ Spark test ✓ (Any 1 x 1) (1) Test required to determine the ductility of metal 3.1.2 Bending test ✓ (1) 3.2 Cutting colour coded metals from unmarked end In order to keep its identity ✓ (1) 3.3 Types of case-hardening Carburising ✓ Nitriding ✓ Cyaniding ✓ (3)3.4 Effect of medium or high carbon steel on case-hardening The hardness will penetrate the core of the steel ✓ (1) 3.5 Heat treatment process of metal It has to do with heating metal to the required temperature, ✓ allow to soak in that temperature for a given period of time, \checkmark then cool in the appropriate medium. ✓ (3)3.6 Factors that determine the hardness of steel during heat treatment Work size ✓ Quenching rate ✓ Carbon content ✓ (3)

3.7 Properties achieved from an annealed steel

 Softness √ Ductility ✓

(Any 1 x 1) (1) [14]

(14 x 1) **[14]**

QUESTION 4: MULTIPLE-CHOICE QUESTIONS (SPECIFIC)

- 4.1 C ✓
- 4.2 A ✓
- 4.3 B ✓
- 4.4 B ✓
- 4.5 D ✓
- 4.6 D ✓
- 4.7 A ✓
- 4.8 C ✓
- 4.9 C ✓
- 4.10 A ✓
- 4.11 B ✓ 4.12 A ✓
- 4.12 A ✓ 4.13 D ✓
- 4.13 D √ 4.14 C √

QUESTION 5: TOOLS AND EQUIPMENT (SPECIFIC)

5.1 5.1.1 Equipment identification

Bubble gauge √ (1)

5.1.2 Parts labelling

- A King pin inclination scale ✓
- B Caster angle ✓
- C Camber angle ✓
- D Mounting equipment on wheel ✓ (4)

5.1.3 Purpose of a bubble gauge

It is used to test caster, ✓ camber ✓ and king pin inclination angles of a motor vehicle. ✓ (3)

5.2 Parts labelling of periscopic optical alignment tool

- 1 Contact ✓
- 2 Mirror gauge ✓
- 3 Periscope ✓
- 4 Periscope gauge ✓
- 5 Height slot/Height bar ✓
- 6 Toe gauge ✓
- 7 Calculator ✓
- $8 Stand \checkmark$ (8)

5.3 Function of optical alignment tool

It makes it possible to check toe-in and toe-out of a vehicle. ✓ (1)

5.4 Card type compression testing procedure

- Remove the spark plug ✓
- Put a new card in the tester ✓
- Turn the ignition on, depress the throttle and crank the engine up to four revolutions √
- Activate the tester and move to the next cylinder ✓
- Repeat the process in the other cylinders ✓
- Remove the card and compare with specifications √

[23]

QUE	STION	6: ENGINES (SPECIFIC)	
6.1	Function of a crankshaft To convert the reciprocating motion of the piston ✓ into a rotary motion to the transmission system. ✓		(2)
6.2	Action	s of vibrations in crankshaft on of unbalance forces upon the crankshaft ✓ sional effect of the power stroke on the crankshaft ✓	(2)
6.3	 Types of balancing done on crankshaft Static balancing ✓ Dynamic balancing ✓ 		(2)
6.4	 Functions of balance mass pieces It is used to balance the mass of piston, connecting rod, web and crank journal ✓ It is used to provide an opposing centrifugal force to that of the piston, connecting rod, web and crank journal ✓ It used to counteract the initial loads of the moving parts during acceleration and retardation processes ✓ 		(3)
6.5	6.5.1	Connecting rod and piston They are kept as light as possible ✓ to reduce reciprocating mass and force ✓	(2)
	6.5.2	Flywheel They are carefully balanced and fitted to the crankshaft flange ✓ in one position only ✓	(2)
	6.5.3	Vibration damper They are fitted to the front end of the crankshaft ✓ to smoothen out engine vibrations ✓	(2)
6.6	Vibration damper parts labeling A – Crankshaft ✓ B – Crankshaft flange ✓ C – Secondary flywheel ✓ D – Friction disc ✓ E – Friction spring ✓ F – Spring plate ✓		(6)
6.7	 Factors that determine firing order The position of the crank on the crankshaft ✓ The arrangement of cams on the camshaft ✓ 		(2)

6.8 Procedure to determine firing order if no specifications available

- Remove the tapper cover and determine the intake and exhaust valves. ✓
- Rotate the engine in the direction in which it turns ✓
- Watch the direction in which the valves operate ✓
- This will give the order in which the inlet and exhaust stroke occurs ✓
- The power stroke occurs in the same order ✓ (5)

[28]

QUESTION 7: FORCES (SPECIFIC)

7.1 Swept volume

It is the volume displaced by the piston \checkmark as it moves from bottom dead centre (BDC) to the top dead centre (TDC). \checkmark (2)

7.2 Methods of increasing compression ratio

- Remove shims from between crankcase and cylinder block √
- Fit thinner gasket between cylinder block and cylinder head √
- Machine metal from cylinder head ✓
- Skim metal from cylinder block √
- Fit piston with suitable higher crowns √
- Fit crankshaft with longer stroke ✓
- Increase cylinder bore √

(Any 2 x 1) (2)

7.3 7.3.1 **Swept volume**

Bore = 86 mm = 8,6 cm Stroke = 98 mm = 9,8 cm

$$SV = \frac{D^{2}}{4} \times L \checkmark$$

$$= \frac{\pi \times 8.6^{2}}{4} \times 9.8 \checkmark$$

$$SV = 569,26 \text{ cm}^{3} \checkmark$$
(3)

7.3.2 Clearance volume

Compression ratio =
$$\frac{SV + CV}{CV}$$
 \checkmark

$$10 = \frac{569,26 + CV}{CV}$$
 \checkmark

$$CV = 63,25 \text{ cm}^3 \checkmark$$
 (3)

7.3.3 New bore diameter

Compression ratio =
$$\frac{SV + CV}{CV}$$
 \checkmark

$$10.8 = \frac{SV + 63.25}{63.25}$$
 \checkmark

$$SV = 619.85 \text{ cm}^3 \checkmark$$

But

$$SV = \frac{D^{2}}{4} \times L \checkmark$$

$$619,85 = \frac{D^{2}}{4} \times 9,8 \checkmark$$

$$D = 8,94 \text{ cm}$$

$$= 89,4 \text{ mm} \checkmark$$
(6)

7.4 Torque

It is the twisting effort transmitted ✓ by a rotating shaft or wheel ✓ **OR**

A turning force applied ✓ over the centre of a circular object. ✓ (2)

7.5 7.5.1 Indicated power

$$A = \frac{\pi \times 0.084^{2}}{4} \checkmark$$
= 5.54 ×10⁻³ m² \(\sqrt{}

$$N = \frac{3600}{60 \times 2}$$
= 30r/s \checkmark
N = 4 cylinders

Indicated power = 1 400 000 × 0,092 × 5,54 ×
$$10^{-3}$$
 × 30 × 4 \checkmark
= 83 462.40 W
= 83.5 kW \checkmark (6)

7.5.2 **Torque**

T= f × r
But f= mg = 30 × 10
= 300 N
$$\checkmark$$

$$T = 300 \times 0.65 \checkmark$$

= 195 Nm \checkmark (3)

7.5.3 Brake power

BP =
$$2\pi NT \checkmark$$

= $2 \times \pi \times 60 \times 195 \checkmark$
= $7.3513,27 W$
= $73,5 kW \checkmark$ (3)

7.5.4 Mechanical efficiency

Mechanical efficiency =
$$\frac{BP}{IP} \times 100\%$$

= $\frac{73.5}{83.5} \times 100\% \checkmark$
= $88,02\% \checkmark$ (2)

(2)

QUESTION 8: MAINTENANCE (SPECIFIC)

8.1 Exhaust gases

- Hydrocarbon ✓
- Carbon monoxide ✓
- Carbon dioxide ✓
- Nitrogen oxide ✓
- Sulphur dioxide ✓
- Oxygen ✓ (Any 4 x 1) (4)

8.2 8.2.1 Hissing sound from inlet manifold

- Leaking inlet valves. ✓
- Replace the inlet valves √

8.2.2 Hissing sound from exhaust manifold

- Leaking exhaust valves ✓
- Replace the exhaust valves √

8.2.3 Bubbles in radiator water

- Blown cylinder head gasket or cracked cylinder block. ✓
- Skim the cylinder head and replace the gasket or replace the block √ (2)

8.3 Low oil pressure reading (possible causes)

- Worn oil pump ✓
- Blocked pick-up screen in the oil sump ✓
- Warn main big-end and camshaft bearings ✓
- Blocked oil filter ✓
- Dirty or contaminated oil ✓
- Oil leaks ✓
- Too little oil in the engine √
- Incorrect oil viscosity ✓
- Defective oil pressure relief valve ✓ (Any 3 x 1) (3)

8.4 Oil pressure test manufactural specifications

- Oil pressure when engine is idling ✓
- Oil pressure when engine is cold ✓
- Oil pressure when engine is hot √
- Oil pressure on high revolutions ✓ (Any 3 x 1) (3)

8.5 Reason for conducting pressure test in cooling system

To check for possible leakage in the cooling system √

8.6 Possible engine cooling system components to find leakage

- Hosepipe √
- Water pump ✓
- Radiator ✓
- Core plugs √
- Interior heater radiator √
- Heater caps ✓ (Any 2 x 1) (2)

8.7 Functions of a radiator cap

- Regulates the pressure in the cooling system ✓
- Allows coolant to return to the radiator ✓
- It seals the cooling system to ensure a closed system √ (Any 2 x 1)

8.8 Possible causes of engine overheat

- Leakage along the line resulting to air trapped in the cooling system ✓
- Cooling fan failure ✓
- Thermostat √
- Insulated radiator (poor cooling efficiency) √
- Water pump failure ✓
- Bad top gasket ✓

(Any 2 x 1) (2)

[23]

QUESTION 9: SYSTEM AND CONTROL (AUTOMATIC GEARBOX) (SPECIFIC)

9.1 Advantages of using an automatic gearbox

- It reduces driving fatigue ✓
- A vehicle can stop suddenly without the engine stalling ✓
- The system dampens all engine vibrations √
- It ensure great reduction of wheel spin ✓

(Any 3 x 1) (3)

9.2 Function of a torque converter

To gradually engage the engine torque with the transmission system ✓ and to multiply the torque automatically according to road and engine speed ✓

(2)

9.3 Principle of operations of lockup torque converters when lockup clutch is applied

- The activation and deactivation of the lockup clutch is done by oil pressure ✓
- When the turbine and impeller are up to speed, the fluid is channeled to the clutch piston √
- The pressure is guided to the backside of the friction plate where it will
 press against the impeller, thereby connecting the turbine √
- The impeller and the turbine begin to run as one body ✓
- The system improves efficiency and prevents slippage √

9.4 Advantages of using torque converters

- Torque increases automatically ✓
- Shocks to gearbox, chassis and wheels are reduced ✓
- Minimum servicing is required √

(Any 2 x 1) (2)

(3)

9.5 Transmission control unit (TCU)

It is a device that controls modern electronic automatic transmissions. It uses vehicle sensors and data from electronic control unit \checkmark to calculate how and when to change gears in the vehicle \checkmark for optimum performance and fuel economy \checkmark

10 MECHANICAL TECHNOLOGY (AUTOMOTIVE) (EC/SEPTEMBER 2022) 9.6 Cause of transmission fluid heating up Fluid friction in the torque converter ✓ (1) 9.7 Methods of cooling oil in automatic transmission By placing special oil cooler alongside the engine cooling radiator √ By using the bottom of engine cooling radiator tank ✓ (2) [18] SYSTEM AND CONTROL (AXLES, STEERING GEOMETRY QUESTION 10: AND ELECTRONICS) (SPECIFIC) 10.1 **Camber** It is the tilting inward or outward of a vehicle wheel from its vertical position ✓ in order to meetup with the design specifications of the vehicle model ✓ (2) 10.2 **Disadvantages of camber** Reduces lifespan of tyres ✓ Uneven contact with road ✓ You will not know when your tyre is due for replacement (negative camber). ✓ (3)10.3 Identification of diagrams A – Positive Camber ✓ B – Negative Camber ✓ (2)10.4 Advantages of positive camber Effective grip on a cambered road surface ✓ Easier steering ✓ Advantages of negative camber It prevents a car from rolling outward from a traffic circle ✓ It reduces road contact (less wear seen from outside) √ (4)10.5 Purpose of kingpin inclination in a car front wheels To bring the car front wheels back to the straight-ahead position ✓ after rounding a corner without any driver effort ✓ (2)

10.6 Kingpin inclination labelling

A – Offset ✓

B - 90° ✓

C – Wheel centre line ✓

D – Kingpin inclination angle ✓

E – Steering axis centre line/kingpin centre line ✓ (5)

10.7 Factors to be considered before attempting wheel alignment adjustment

- Kerb mass √
- Uneven wear on tyres ✓
- Tyre pressure ✓
- Run-out on the wheels ✓
- Correct pre-load on the wheel bearing ✓
- Kingpins and bushes ✓
- Suspension ball joints for wears ✓
- Suspension bushes for excessive free movement ✓
- Steering box play ✓
- Tie-rod ends ✓
- Sagged springs ✓
- Shock absorber ✓
- Spring U-bolts ✓
- Chassis for possible cracks and loose cross members ✓ (Any 5 x 1) (5)

10.8 Car wheel alignment identification

• Toe-out ✓ (1)

10.9 Purpose of toe-out in a car suspension system

To give a true rolling motion ✓ on the front wheels in a corner without scuffing. ✓

10.10 10.10.1 Static balance

It is the equal distribution of all weight \checkmark around the axis of rotation in a single plane of rotation. \checkmark (2)

10.10.2 **Dynamic balancing**

It is the equal distribution of all weight \checkmark around the axis of rotation in all rotational planes. \checkmark (2)

10.11 Pre-checks on a wheel before balancing

- Check the tyres for bruises, cracks and damaged side walls ✓
- Check the rim for any damages √
- Check for any foreign matter on the rim and tyre √ (Any 2 x 1)

[32]

TOTAL: 200