SA's Leading Past Year

Exam Paper Portal

STUD.Y

You have Downloaded, yet Another Great Resource to assist you with your Studies :

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

> SAEAMM RADPERES

Education
 KwaZulu-Natal Department of Education REPUBLIC OF SOUTH AFRICA

PHYSICAL SCIENCES P1

MEMORANDUM

PREPARATORY EXAMINATION

SEPTEMBER 2017

NATIONAL
 SENIOR CERTIFICATE

GRADE 12

N.B. This memorandum consists of 8 pages including this page.

QUESTION 1

$1.1 \quad C \checkmark \checkmark$
$1.2 \mathrm{C} \checkmark \checkmark$
$1.3 \mathrm{C} \checkmark \checkmark$
$1.4 \mathrm{~B} \checkmark \checkmark$
$1.5 \mathrm{~B} \checkmark \checkmark$
$1.6 \mathrm{D} \checkmark \checkmark$
$1.7 \quad B \checkmark \checkmark$
1.8 C $\checkmark \checkmark$
1.9 A $\checkmark \checkmark$
$1.10 \mathrm{D} \checkmark \checkmark$

QUESTION 2

2.1.1 When a net force acts on an object, the object will accelerate in the direction of the net force with an acceleration that is directly proportional to the net force and inversely proportional to the mass of the object.

OR

Net force is equal to a rate of change in momentum. $\checkmark \checkmark$
2.1.2

$$
\text { 2.1.3 } \begin{align*}
\mathrm{T}_{2} & -\mathrm{m}_{2} \mathrm{~g}=0 \\
\overrightarrow{\mathrm{~T}}_{2} & =\mathrm{m}_{2} \mathrm{~g} \\
\overrightarrow{\mathrm{~T}}_{2} & =(5)(9,8) \checkmark \\
\mathrm{T}_{2} & =49 \mathrm{~N} \checkmark \tag{2}
\end{align*}
$$

2.1.4 $\overrightarrow{\mathrm{F}}_{\text {net }}=0$ (on box mass 2 kg)
$\mathrm{T}_{1 \mathrm{x}}=49 \mathrm{~N}$ to the left \checkmark

Using trigonometry to work out $\mathrm{T}_{1 \mathrm{y}}$:
$\frac{\mathrm{T}_{1 \mathrm{x}}}{\mathrm{T}_{1 \mathrm{y}}}=\tan \alpha$
$\mathrm{T}_{1 \mathrm{y}}=\frac{\mathrm{T}_{1 \mathrm{x}}}{\tan \alpha}$
$\mathrm{T}_{1 \mathrm{y}}=\frac{49}{\tan 70^{\circ}}$
$\mathrm{T}_{1 \mathrm{y}}=17,83 \mathrm{~N} \checkmark$
Working with vertical forces (up as positive):
$\overrightarrow{\mathrm{F}}_{\mathrm{net}, \mathrm{y}}=0$
$\mathrm{T}_{1 \mathrm{y}}+\mathrm{N}-\mathrm{F}_{\mathrm{g}}=0$
$17,83+N-(2)(9,8)=0 \checkmark$
$\mathrm{N}=1,77 \mathrm{~N} \checkmark$ (i.e. the magnitude of the normal force is $1,77 \mathrm{~N}$)
2.2 $\quad W=m g \checkmark$
$152,28=94 \mathrm{~g} \checkmark$
$\mathrm{g}=1,62 \mathrm{~m} \cdot \mathrm{~s}^{-2}$ (downwards) \checkmark

QUESTION 3

3.1 An object upon which the only force acting is the force of gravity.
3.2 Upward is positive
$\mathrm{v}_{\mathrm{f}}=\mathrm{V}_{\mathrm{i}}+\mathrm{a} \Delta \mathrm{t} \checkmark$
$0=5+(-9,8) \Delta t \checkmark$ $\Delta t=0,51 \mathrm{~s} \checkmark$

> Downward is positive
> $\mathrm{V}_{\mathrm{f}}=\mathrm{v}_{\mathrm{i}}+\mathrm{a} \mathrm{\Delta t} \mathrm{t} \checkmark$
> $0=-5+(9,8) \Delta \mathrm{t} \checkmark$
> $\Delta \mathrm{t}=0,51 \mathrm{~s} \checkmark$

3.3 Upward is positive
 $v_{f}=v_{i}+a \Delta t \checkmark$
 $=8+(-9,8)(0,51)^{\checkmark}$
 $=3,00 \mathrm{~m} \cdot \mathrm{~s}^{-1}$, upwards \checkmark

$$
\begin{align*}
& \text { Downward is positive } \\
& \begin{aligned}
\mathrm{v}_{\mathrm{f}} & =\mathrm{v}_{\mathrm{i}}+\mathrm{a} \mathrm{\Delta t} \checkmark \\
& =-8+(9,8)(0,51) \checkmark \\
& =3,00 \mathrm{~m} \cdot \mathrm{~s}^{-1}, \text { upwards } \checkmark
\end{aligned}
\end{align*}
$$

3.4 Ball A

$$
\begin{align*}
\mathrm{Vf}_{\mathrm{f}} & =\mathrm{v}_{\mathrm{i}}+\mathrm{a} \mathrm{\Delta t} \mathrm{t} \checkmark \\
& =5+(-9,8) \Delta \mathrm{t} \\
& =5-9,8 \Delta \mathrm{t} \ldots . \tag{1}
\end{align*}
$$

(1)

$$
\begin{aligned}
\mathrm{V}_{\mathrm{f}} & =\mathrm{v}_{\mathrm{i}}+\mathrm{a} \mathrm{\Delta t} \\
& =8+(-9,8) \Delta \mathrm{t} \\
& =8-9,8 \Delta \mathrm{t} \ldots \ldots \ldots \ldots(2) \checkmark
\end{aligned}
$$

But Ball A is moving downwards

Solving (1) and (2)

$$
\begin{align*}
-(5-9,8 \Delta t) & =(8-9,8 \Delta t) \checkmark \\
\Delta t & =0,66 \mathrm{~s} \checkmark \tag{5}
\end{align*} \quad(\Delta t=0,6633 \mathrm{~s})
$$

Positive marking from Question 3.4

$3.5 \quad \Delta y=v_{i} \Delta t+1 / 2$ a $\Delta t^{2} \checkmark$
$=(5)(0,66)+1 / 2(-9,8)(0,66)^{2} \quad \checkmark$
$=1,17 \mathrm{~m} \checkmark \quad$ (using $\Delta t=0,6633 \mathrm{~s}, \Delta \mathrm{y}=1,16 \mathrm{~m})$

QUESTION 4

4.1 Principle of Conservation of linear momentum. \checkmark The total linear momentum of an isolated system remains constant.

4.2 To the left is positive

Total ${ }^{\text {before }}=$ total $p_{\text {atter }} \checkmark$
$(340)(2.4)=(340)(0.8)+\mathrm{mzvz}^{\checkmark}$
$\mathrm{MzVz}=544 \mathrm{~kg} . \mathrm{m} . \mathrm{s}^{-1} \checkmark$

$E_{K b e f o r e}=E_{\text {Kafter }} \checkmark$

$1 / 2(340)(2.4)^{2} \checkmark=1 / 2(340)(0.8)^{2}+1 / 2 \mathrm{mzvz}^{2} \downarrow 1 / 2(340)(-2.4)^{2}=\checkmark 1 / 2(340)(-0.8)^{2}+1 / 2 \mathrm{mzvz}^{2} \checkmark$
$870.4=1 / 2(\mathrm{mzvz}) \mathrm{Vz}=1 / 2(544) \mathrm{Vz} \downarrow$
$\mathrm{vz}=3.2 \mathrm{~m} . \mathrm{s}^{-1}$ (to the left)
$\mathrm{mz}=170 \mathrm{~kg} \checkmark$

$$
\begin{aligned}
\text { Total pbefore }= & \text { total } \text { pafter } \checkmark \\
(340)(-2.4)= & (340)(-0.8)+\mathrm{mzvz}^{\checkmark} \checkmark \\
& \mathrm{Mzvz}=-544 \mathrm{~kg} \cdot \mathrm{~m} \cdot \mathrm{~s}^{-1} \checkmark
\end{aligned}
$$

$$
\text { Ekbefore }=\text { Ekafter } \text {) }
$$

$$
870.4=1 / 2(\mathrm{mzvz}) \mathrm{vz}=1 / 2(-544) \mathrm{vz} \downarrow
$$

$$
\begin{align*}
& \mathrm{vz}=3.2 \mathrm{~m} \cdot \mathrm{~s}^{-1} \text { (to the left) } \\
& \mathrm{mz}=170 \mathrm{~kg} \checkmark \tag{8}
\end{align*}
$$

QUESTION 5

5.1

$\mathrm{F}_{\mathrm{g}}=$ gravitational force or weight \checkmark
$\mathrm{F}_{\mathrm{N}}=$ Normal force \checkmark
$F_{f}=$ frictional force \checkmark
5.2 $W_{\text {net }}=F_{\text {net }} \Delta x \cos \theta \checkmark=\left(F_{g \|} \|+\left(-F_{f}\right)\right) \Delta x=(343 \checkmark-150 \checkmark)(120 \checkmark)=23160 \mathrm{~J} \checkmark$
5.3 The work done by a net force \checkmark on an object is equal to the change in the kinetic energy \checkmark of the object.

OR
Net work done \checkmark on an object is equal to the change in the kinetic energy $\sqrt{ }$ of the object.

Mark positively from 5.2

5.4 $\quad W_{\text {net }}=\Delta E_{k} \checkmark=1 / 2 \mathrm{mvi}^{2}-1 / 2 \mathrm{mvi}^{2}$

$$
23160 \checkmark=\underline{1 / 2}(70) v_{t}^{2}-0 v
$$

$$
\begin{equation*}
\mathrm{v}_{\mathrm{f}}=25,72 \mathrm{~m} \cdot \mathrm{~s}^{-1} \downarrow \tag{4}
\end{equation*}
$$

QUESTION 6

6.1 Doppler Effect. \checkmark It is the change in frequency (or pitch) of the sound detected by a listener because the sound source and the listener have different velocities relative to the medium of sound propagation. $\checkmark \checkmark$

OR

Doppler Effect. \checkmark It is the change in the observed frequency of a sound wave when the source of sound is moving relative to the listener. $\checkmark \checkmark$
$6.256,56 \mathrm{~m} . \mathrm{s}^{-1} \checkmark \checkmark$
6.3

$$
\begin{align*}
f_{\mathrm{L}} & =\frac{\mathrm{v}}{\mathrm{v}-\mathrm{v}_{\mathrm{S}}} \mathrm{f}_{\mathrm{S}} \quad \checkmark \\
298,84 & =\frac{340 \quad \checkmark}{340-56,56} \mathrm{f}_{\mathrm{S}} \tag{5}
\end{align*}
$$

$$
\mathrm{f}_{\mathrm{s}}=250 \mathrm{~Hz}
$$

$\begin{array}{ll}\text { 6.4 } & \text { Determine whether arteries are clogged/narrowed } \checkmark \\ & \text { Determine heartbeat of foetus } \checkmark\end{array}$

QUESTION 7

7.1 Force experienced per unit positive charge placed at a point $\checkmark \checkmark$

Accept more lines on the 5nC

Checklist Criteria for electric field	Marks
Direction	\checkmark
Shape	\checkmark
Field lines not touching each other or entering the spheres	\checkmark

7.3

$$
\begin{align*}
\mathrm{E}_{3} & =\frac{\mathrm{kQ}}{\mathrm{r}^{2}} \tag{3}\\
& =\frac{\left(9 \times 10^{9}\right)\left(3 \times 10^{9}\right)}{\left(10 \times 10^{-3}\right)^{2}} \\
& =270000 \mathrm{~N}^{-1} \mathrm{C}^{-1} \checkmark \text { (to right) } \\
\mathrm{E}_{\text {net }} & =270000+(-50000) \\
& =220000 \mathrm{NC}^{-1} \checkmark \tag{6}
\end{align*}
$$

$$
E_{5}=\frac{k Q}{r^{2}}
$$

$$
=\frac{\left(9 \times 10^{9}\right)\left(5 \times 10^{9}\right)^{\checkmark}}{\left(30 \times 10^{-3}\right)^{2}}
$$

$$
=50000 \text { N.C-1 } \checkmark \text { (to left) }
$$

Mark positively from 7.3

$$
7.4 \quad \begin{align*}
\mathrm{F} & =\mathrm{qE} \checkmark \\
& =\left(1,6 \times 10^{-19}\right)(220000) \checkmark \\
& =3,52 \times 10^{-14} \mathrm{~N} \checkmark \text { (to the right) } \checkmark \tag{4}
\end{align*}
$$

QUESTION 8

8.1.1 The current through a conductor is directly proportional to the potential difference across the conductor at constant temperature $\checkmark \checkmark$
8.1.2 $\frac{1}{R_{p}}=\frac{1}{R 1}+\frac{1}{R 2}$

$$
\begin{align*}
\frac{1}{R_{p}}= & \frac{1}{2}+\frac{1}{6} \checkmark \\
\therefore R_{p} & =1,5 \Omega \\
R_{T} & =1,5+3,5 \checkmark \\
& =5 \Omega \tag{3}
\end{align*}
$$

Mark positively from 8.1.2
8.1.3 $\mathrm{emf}=\mathrm{l}\left(\mathrm{R}_{\mathrm{T}}+\mathrm{r}\right)$

$$
\begin{aligned}
& 12 \checkmark=\frac{2,2(5+r)}{0,45 \Omega \checkmark} \\
& \therefore r=
\end{aligned}
$$

OR

$$
\begin{array}{cl}
\text { emf }-V_{\text {ext }} & =V_{\text {int }} \checkmark \\
(12-11) \checkmark & =(2,2) r \checkmark \tag{4}\\
\therefore r & =0,45 \Omega \checkmark
\end{array}
$$

8.1.4

V_{2}	$=I \mathrm{R}_{1} \checkmark$
	$=(2,2)(3,5) \checkmark$
	$=7,7 \mathrm{~V} \checkmark$

OR

$$
\begin{align*}
& \mathrm{V}_{/ /}=\mathrm{I} \mathrm{R} / /=2,2 \times 1,5 \checkmark=3,30 \mathrm{~V} \\
& \mathrm{~V}_{2}=\mathrm{V}_{\mathrm{T}}-\mathrm{V}_{/ /}=11-3,3 \checkmark=7,70 \mathrm{~V} \tag{3}
\end{align*}
$$

Mark positively from 8.1.4

8.1 .5
$Q=1 \mathrm{t} \checkmark=2,2 \times(5 \times 60) \quad \checkmark=660 \mathrm{C}$
$\mathrm{W}=\mathrm{V} Q=\underline{7,7 \times 660} \sqrt{7}=5082 \mathrm{~J} \checkmark$

OR

OR OR

$$
\begin{align*}
\mathrm{W} & =\mathrm{VI} \Delta \mathrm{t} \checkmark \\
& =(7,7)(2,2) \checkmark(5 \times 60) \checkmark \\
& =5082 \mathrm{~J} \checkmark \tag{4}
\end{align*}
$$

$$
\begin{align*}
& \mathrm{P}=\mathrm{I}^{2} \mathrm{R} \checkmark=(2,2)^{2}(3,5) \checkmark=16,94 \mathrm{~W} \tag{4}\\
& \mathrm{~W}
\end{aligned}=\mathrm{Pt}=(16,94)(5 \times 60) \checkmark=5082 \mathrm{~J} \checkmark ~ \begin{aligned}
& \mathrm{OR} \\
& \mathrm{~W}=\frac{\mathrm{v}^{2}}{\mathrm{R}} \Delta \mathrm{t} \checkmark \\
&=\frac{7,7^{2} \checkmark}{3,5}(5 \times 60) \checkmark \\
&=5082 \mathrm{~J} \checkmark
\end{align*}
$$

$$
\begin{aligned}
\mathrm{W} & =I^{2} R \Delta t \checkmark \\
& =(2,2)^{2}(3,5) \checkmark(5 \times 60) \\
& =5082 \mathrm{~J} \checkmark
\end{aligned}
$$

8.2 Decreases \checkmark

$$
\begin{align*}
8.3 & =P \times t \\
& =2 \times 2 \checkmark \\
& =4 \mathrm{kWh} \\
C & =\text { tariff } \times \mathrm{E} \\
& =1,25 \times 4 \checkmark \\
& =R 5,00 \checkmark \tag{3}
\end{align*}
$$

QUESTION 9

9.1 DC \checkmark - polarity of emf does not change \checkmark
9.2 Electromagnetic induction \checkmark
9.3 Mechanical energy to electrical energy \checkmark
9.4 Replace split-ring commutator \checkmark with slip rings \checkmark
9.5 A $\sqrt{ }$
9.6 Friction between moving parts \checkmark

Electrical resistance in wires \checkmark
9.7 Increase magnetic field strength \checkmark Increase number of turns on the coil \checkmark
9.8 Pave $=I^{2}{ }_{\text {rms }} \mathrm{R} \checkmark$
OR $\quad \mathrm{P}=\mathrm{I}^{2} \mathrm{R} \checkmark$
$\frac{1.035 \times 10^{6}=\mathrm{I}^{2} \mathrm{rms}(490)}{\mathrm{I}_{\mathrm{rms}}=45.96 \mathrm{~A} \checkmark} \checkmark \quad \frac{1.035 \times 10^{6}=\mathrm{I}^{2}(490)}{\mathrm{I}=45.96 \mathrm{~A} \checkmark}$

QUESTION 10

10.1 $E=h f \checkmark$

$$
\begin{aligned}
& =6.63 \times 10^{-34} \times 4.65 \times 10^{14} \checkmark \\
& =3.08 \times 10^{-19} \mathrm{~J} \checkmark
\end{aligned}
$$

$E<W_{0}$ for gold \quad OR $f<f_{0}$ for gold
$E>W_{0}$ for caesium $\checkmark \quad f>f_{0}$ for caesium
\therefore choose caesium $\checkmark \quad \therefore$ choose caesium
10.2 There will be a higher current reading on the ammeter.

Each photon ejects one electron, so more electrons per second will be ejected.

$$
\begin{align*}
\text { 10.3.1 } E & =W_{0}+E_{K} \checkmark \\
6.6 & \times 10^{-34} \times 1.21 \times 10^{15} \checkmark=3 \times 10^{-19} \checkmark+1 / 2\left(9.1 \times 10^{-31}\right) \mathrm{v}^{2} \checkmark \\
\therefore & v=1.05 \times 10^{6} \mathrm{~m} \cdot \mathrm{~s}^{-1} \checkmark \tag{5}
\end{align*}
$$

10.3.2 Remain the same \checkmark

