SA's Leading Past Year

Exam Paper Portal

STUD.Y

You have Downloaded, yet Another Great Resource to assist you with your Studies :

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

> SAEAMM RADPERES

education

Department:
Education
PROVINCE OF KWAZULU-NATAL

NATIONAL SENIOR CERTIFICATE

GRADE 12

MARKS: 150
N.B. This marking guideline consists of 12 pages including this page.

QUESTION 1

1.1 A $\checkmark \checkmark$
$1.2 \mathrm{D} \checkmark \checkmark$
$1.3 \mathrm{D} \checkmark \checkmark$
1.4 $B \checkmark \checkmark$
$1.5 \quad B \checkmark \checkmark$
$1.6 \quad C \checkmark \checkmark$
1.7 C $\checkmark \checkmark$
1.8 B $\checkmark \checkmark$
1.9 A $\checkmark \checkmark$
$1.10 \mathrm{D} \checkmark \checkmark$

QUESTION 2

2.1 When one body exerts a force on a second body, the second body exerts a force of equal magnitude in the opposite direction on the first body.

OR
If body A exerts a force on body B, then body B exerts an equal and opposite force on body A

NOTE
If any of the underlined key words in the correct context is omitted deduct 1 mark.

2.2

Accepted Labels:	
T	$\mathrm{F}_{\mathrm{T}} /$ Tension / $\mathrm{F}_{\text {cord on } \mathrm{m} 1}$
w	weight $/ \mathrm{F}_{\mathrm{g}} /$ Gravitational force / Fearth on mA /mg/force of Earth on block.

Criteria

- Mark awarded for label and arrow.
- Do not penalize for length of arrow since drawing is not to scale
- Any other additional force(s): Max.: $1 / 2$
- If force(s) do not make contact with dot: Max: $1 / 2$

2.3 TAKE CLOCKWISE AS POSITIVE

$$
\Delta y=v_{i} \Delta t+1 / 2 a \Delta t^{2} \checkmark
$$

$0,5=0 . \Delta t+1 / 2 a(1,43)^{2} \checkmark$
$\mathrm{a}=0,49 \mathrm{~m} \cdot \mathrm{~s}^{-2} \checkmark$

Consider ma:

$F_{\text {net }}=\mathrm{ma} \quad$ Any one \checkmark
$T-m_{A g}=m_{A a}$
$T-(1,9) g=(1,9)(0,49)$
$\mathrm{T}-(1,9) \mathrm{g}=0,931$

Consider m_{B} :

$\mathrm{F}_{\text {net }}=\mathrm{ma}$
$\mathrm{mbg}-\mathrm{T}=\mathrm{mва}$
$(2,1) \mathrm{g}-\mathrm{T}=(2,1)(0,49)$
$(2,1) \mathrm{g}-\mathrm{T}=1,029$
Solving (1) and (2) :
$(2,1) \mathrm{g}-(1,9) \mathrm{g}=1,96$ (simplification)
$(0,2) g=1,96$
$\mathrm{g}=9,80 \mathrm{~m} \cdot \mathrm{~s}^{-2} \checkmark$

QUESTION 3

$3.1 \quad 10 \mathrm{~m} \checkmark$
3.2 1,2 (s)
3.3 An object upon which the only force acting is the force of gravity.
3.4 Take downward motion as NEGATIVE.
(Other option: take downwards as positive))
$v_{f}=v_{i}+a \Delta t \checkmark$
$0=v_{i}+(-9,8)(0,6) \vee$
$v_{i}=\underline{5,88 \mathrm{~m} \cdot \mathrm{~s}^{-1} \text {, upwards }} \checkmark$

3.5 Positive marking from QUESTION 3.4

OPTION 1

$$
\begin{aligned}
& \Delta y=v_{i} \Delta t+\frac{1}{2} a \Delta t^{2} \checkmark \\
& =(5,88)(0,6)+1 / 2(-9,8)(0,6)^{2} \checkmark \\
& =1,764 \mathrm{~m} \\
& \text { Maximum height }=\underline{10+\checkmark 1,764} \\
& =11,76 \mathrm{~m} \checkmark
\end{aligned}
$$

OPTION 2

$$
\begin{aligned}
& \Delta U+\Delta K=0 \\
& 1 / 2 \mathrm{mvi}^{2}+m g h_{i}=1 / 2 m \mathrm{ff}^{2}+m g h_{f} \checkmark \\
& \frac{1 / 2 \mathrm{~m}(5,88)^{2}+\mathrm{m}(9,8)(10)}{\mathrm{h}=}=11,76 \mathrm{~m}(9,8) \mathrm{h} \checkmark
\end{aligned}
$$

OPTION 4

$$
\begin{aligned}
\Delta y & =\left(\frac{v_{f}+v_{i}}{2}\right) \Delta t \checkmark \\
& =1 / 2(0+5,88)(0,6) \checkmark \\
& =1,764 \mathrm{~m} \checkmark \\
\text { Maximum height } & =10+1,764 \\
& =11,76 \mathrm{~m} \checkmark
\end{aligned}
$$

3.6 Positive marking from QUESTION 3.4 and 3.5

From maximum height downwards

$$
\begin{aligned}
v_{f}^{2} & =v_{i}^{2}+2 a \Delta y \checkmark \\
& =(0)^{2}+2(-9,8)(-11,76) \checkmark \\
v_{f} & =15,18 \mathrm{~m} \cdot \mathrm{~s}^{-1}
\end{aligned}
$$

OR

From the balcony upwards
$v_{f}{ }^{2}=v_{i}^{2}+2 a \Delta y \checkmark$
$=(5,88)^{2}+2(-9,8)(-10)$
$\mathrm{V}_{\mathrm{f}}=15,18 \mathrm{~m} \cdot \mathrm{~s}^{-1} \checkmark$

3.7 Positive marking from QUESTION 3.4 and 3.6

QUESTION 4

4.1 The total linear momentum in a closed/isolated system remains constant / is conserved. $\checkmark \checkmark$

NOTE

If any of the underlined key words in the correct context is omitted deduct 1 mark.
4.2 Right as positive
$\Sigma p_{i}=\Sigma p_{f} \checkmark$
$\left(m v_{i}\right) 1+\left(m v_{i}\right) 2=\left(m v_{f}\right) 1+\left(m v_{f}\right) 2$
(5500)v+(2000)(-30) $\checkmark=(5500)(6)+(2000)(10) \checkmark$

$$
v=20,55 \mathrm{~m} \cdot \mathrm{~s}^{-1} \checkmark
$$

Left as positive
$\Sigma p_{i}=\Sigma p_{f} \checkmark$
$\left(m v_{i}\right) 1+\left(m v_{i}\right) 2=\left(m v_{f}\right) 1+\left(m v_{f}\right)_{2}$
$(5500) v+(2000)(30) \quad \checkmark=(5500)(-6)+(2000)(-10) \checkmark$
$\mathrm{V}_{\mathrm{i}}=-20,5455 \mathrm{~m} \cdot \mathrm{~s}^{-1}$
magnitude of velocity $=20,55 \mathrm{~m} \cdot \mathrm{~s}^{-1} \checkmark$
4.3 $\quad F_{\text {net }} \Delta t=m v_{f}-m v_{i} \checkmark$
$F_{\text {net }}(0,2) \checkmark=(2000)(10)-(2000)(-30) \checkmark$
$F_{\text {net }}=400000 \mathrm{~N}$
$F_{\text {net }}=400000 \mathrm{~N}$ to the left
OR
$F_{\text {net }} \Delta t=m v_{f}-m v_{i} \checkmark$
$F_{\text {net }}(0,2) \checkmark=(5500)(6)-(5500)(20,5455) \checkmark$
$F_{\text {net }}=-400001,25 \mathrm{~N}$
$F_{\text {net }}=400001,25 \mathrm{~N}$ to the left \checkmark

QUESTION 5

5.1 The total mechanical energy in an isolated (closed) system \checkmark remains constant (is conserved).

NOTE

If any of the underlined key words in the correct context is omitted deduct 1 mark.
5.2

OPTION 1

$E_{\text {mech }}$ at $P=E_{\text {mech }}$ at $Q \checkmark$
$\left(m g h+1 / 2 m v^{2}\right) P=\left(m g h+1 / 2 m v^{2}\right) Q$
$\begin{aligned} & 4\left[(9,8)(3)+1 / 2(0)^{2}\right] \\ & v=4\left[(9,8)(1,25)+1 / 2 v^{2}\right] \checkmark \\ & v=5,86 m \cdot \mathrm{~s}^{-1} \checkmark\end{aligned}$

$$
\begin{equation*}
v=5,86 \mathrm{~m} \cdot \mathrm{~s}^{-1} \checkmark \tag{4}
\end{equation*}
$$

OPTION 2

Emech at $P=E_{\text {mech }}$ at $Q \checkmark$
$\left(m g h+1 / 2 m v^{2}\right) P=\left(m g h+1 / 2 m v^{2}\right) Q$
$4\left[(9,8)(1,75)+1 / 2(0)^{2}\right] \quad \underline{4\left[(9,8)(0)+1 / 2 v^{2}\right]} \downarrow$ $v=5,86 \mathrm{~m}^{-\mathrm{s}^{-1} \checkmark}$
5.3.1 The net/total work done on an object is equal to the change in the object's kinetic energy. $\checkmark \checkmark$

OR
The work done on an object by a resultant/net force is equal to the change in the object's kinetic energy.

NOTE
If any of the underlined key words in the correct context is omitted deduct 1 mark. If the word "work" is omitted then 0 marks.

5.3.2

5.4 REMAIN THE SAME.

QUESTION 6

6.1 Doppler Effect.

The change in frequency (or pitch), of the sound detected by a listener because the sound source and the listener have different velocities relative to the medium of sound propagation. $\checkmark \checkmark$

OR

An (apparent) change in observed/detected frequency (pitch), as a result of the relative motion between a source and an observer $\checkmark \checkmark$ (listener).

NOTE
If any of the underlined key words in the correct context is omitted deduct 1 mark.
6.2

$$
\begin{align*}
& f_{L}=\frac{v \pm v_{L}}{v \pm v_{s}} f_{s} \checkmark / f_{L}=\frac{v}{v-v_{s}} f_{s} \\
& \frac{110}{100} f_{s} \checkmark=\left(\frac{340}{340-v_{s}}\right) v f_{s} \checkmark \\
& v_{s}=30,91 m \cdot s^{-1} \checkmark \tag{5}
\end{align*}
$$

6.3 Increase \checkmark

QUESTION 7

7.1 The magnitude of the electrostatic force exerted by one point charge (Q_{1}) on another point charge (Q_{2}) is directly proportional to the product of the magnitudes of the charges and inversely proportional to the square of the distance (r) between them. $\checkmark \checkmark$

NOTE

If any of the underlined key words in the correct context is omitted deduct 1 mark.
7.2

7.3

$$
\begin{aligned}
& \begin{aligned}
\mathrm{F}_{\mathrm{g}} & =\mathrm{mg} \checkmark \\
& =(0,004)(9,8) \checkmark \\
& =0,04 \mathrm{~N}
\end{aligned} \\
& \begin{aligned}
\text { Frepulsion } & =\mathrm{F}_{g} \times \tan 5^{0} \\
& =0,04 \times \tan 5^{\circ} \checkmark \\
& =3,43 \times 10^{-3} \mathrm{~N} \checkmark
\end{aligned}
\end{aligned}
$$

7.4 Positive Marking from 7.3

$$
\begin{align*}
& \mathrm{F}=\frac{k Q_{1} Q_{2}}{r^{2}} \checkmark \\
& 3,43 \times 10^{-3} \stackrel{\checkmark}{=} \frac{\left(9 \times 10^{9}\right)\left(1 \times 10^{-6}\right)\left(9 \times 10^{-6}\right)}{r^{2}} \\
& \quad \mathrm{r}=4,86 \mathrm{~m} \checkmark \tag{4}
\end{align*}
$$

7.5

Criteria

- Shape (pattern) \checkmark
- Direction of field lines \checkmark
- Field lines not touching each other \checkmark
- If field lines are not touching the spheres: Max 2/3
7.6

$$
\begin{aligned}
Q_{\text {new }}= & \frac{Q_{1}+Q_{2}}{2} \\
& =\frac{\left(1 \times 10^{-6}\right)+\left(9 \times 10^{-6}\right)}{2} \\
& =+5 \times 10^{-6} \mathrm{C} \checkmark
\end{aligned}
$$

7.7 A to B \checkmark

7.8 Positive marking from 7.6

$$
\begin{align*}
\mathrm{n} & =\frac{\mathrm{Q}_{\text {new }}-\mathrm{Q}_{1}}{\mathrm{e}} \\
& =\frac{\left(5 \times 10^{-6}\right)-\left(1 \times 10^{-6}\right)}{1,6 \times 10^{-19}} \\
& =2,5 \times 10^{13} \text { (electrons) } \tag{2}
\end{align*}
$$

QUESTION 8

8.1
8.2 Positive marking from 8.1

$$
\text { OPTION } 1
$$

OPTION 2

$$
\begin{align*}
& \frac{1}{R_{p}}=\frac{1}{R_{1}}+\frac{1}{R_{2}} \\
& \frac{1}{R_{p}}=\frac{1}{12}+\frac{1}{24} \checkmark \\
& R_{p}=8 \Omega \\
& V=I R \\
& 18=I(8) \\
& I=2,25 A
\end{align*}
$$

$$
V=I R \checkmark
$$

$$
18=I(24) \checkmark
$$

$$
\mathrm{I}=0,75 \mathrm{~A}
$$

$$
V_{p}=I_{12} R
$$

$$
18=l_{12}(12) \checkmark
$$

$$
\mathrm{I}_{12}=1,5 \mathrm{~A}
$$

$$
\begin{aligned}
I_{\text {tot }} & =0,75+\checkmark 1,5 \\
& =2,25 \mathrm{~A} \checkmark
\end{aligned}
$$

8.3 Internal resistance is the opposition to the flow of charge within a cell/battery. \downarrow

8.4 Positive marking from 8.2

$$
\begin{align*}
V & =I R \checkmark \\
& =(2,25)(10) \checkmark \\
& =22,5 \mathrm{~V} \checkmark \tag{3}
\end{align*}
$$

8.5 OPTION 1

$$
\begin{aligned}
& \varepsilon=I(R+r) \checkmark \\
& 45,9 \checkmark=2,25 \checkmark(10+8 \checkmark+r) \\
& \quad r=2,40 \Omega \checkmark
\end{aligned}
$$

OPTION 2

$$
\begin{aligned}
V_{\text {ext }} & =V_{p}+V_{10} \\
& =18+22,5 \checkmark \\
& =40,5 \mathrm{~V}
\end{aligned}
$$

$$
\begin{align*}
\mathrm{V}_{\text {lost }} & =45,9-40,5 \checkmark \\
& =5,40 \mathrm{~V} \\
\mathrm{~V}_{\text {lost }} & =\operatorname{Ir} \checkmark \\
5,4 & =(2,25) \mathrm{r} \checkmark \\
\mathrm{r} & =2,40 \Omega \checkmark \tag{5}
\end{align*}
$$

8.6 Increase \checkmark

$$
\begin{align*}
& \text { OPTION } 1 \\
& P=\frac{V^{2}}{R} \checkmark \\
& \text { 13, } 5=\frac{18^{2}}{R} \checkmark \\
& R=24 \Omega \checkmark \\
& \mathrm{P}=\mathrm{VI} \checkmark \\
& 13,5=(18)! \\
& \mathrm{I}=0,75 \mathrm{~A} \\
& V=I R \\
& 18=(0,75) R \\
& R=24 \Omega \checkmark \tag{3}
\end{align*}
$$

QUESTION 9

9.1 Electromagnetic induction \checkmark
9.2 The rms value of the AC is the direct current which dissipates the same amount of energy as AC. $\checkmark \checkmark$

NOTE

If any of the underlined key words in the correct context is omitted deduct 1 mark.
$9.3 V_{1}$
9.4 $\quad \mathrm{V}_{1}=\frac{\mathrm{V}_{2}}{\sqrt{2}}$ OR $\quad \mathrm{V}_{2}=\sqrt{2} \mathrm{~V}_{1} \checkmark$
9.5 $\quad \mathrm{V}_{1}=\frac{\mathrm{V}_{2}}{\sqrt{2}} \quad$ or $\mathrm{V}_{\text {rms }}=\frac{\mathrm{V}_{\text {max }}}{\sqrt{2}} \checkmark$
$220=\frac{V_{2}}{\sqrt{2}} \checkmark$
$\mathrm{V}_{2}=311,13 \mathrm{~V} \checkmark$
9.6

OPTION 1

OPTION 2

$$
\begin{array}{ll}
P_{\text {ave }}=\frac{1}{2} V_{\max } \cdot I_{\max } \checkmark & P_{\text {ave }}=\frac{1}{\sqrt{2}} V_{\max } \cdot \frac{I_{\max }}{\sqrt{2}} \checkmark \\
1200=\frac{1}{2}(311,13) \cdot I_{\max } \checkmark & (\sqrt{2})(1200)=(220) \cdot I_{\max } \checkmark \\
I_{\max }=7,71 \mathrm{~A} \checkmark & I_{\max }=7,71 \mathrm{~A} \checkmark
\end{array}
$$

OPTION 3

OPTION 4

$\mathrm{P}_{\text {ave }}=\mathrm{V}_{\mathrm{rms}} \cdot \mathrm{I}_{\mathrm{mm}}$
$R=\frac{V_{\text {rms }}}{I_{\text {rms }}}=\frac{220}{5,455} \checkmark=40,33 \Omega$
$1200=220 \cdot I_{\text {ms }} \checkmark$
$I_{\max }=\frac{V_{\text {max }}}{R} \checkmark=\frac{311,13}{40,33}=7,72 \mathrm{~A} \checkmark$
$I_{\text {rms }}=5,46 \mathrm{~A}$
But $I_{\max }=\sqrt{2} \cdot I_{\text {mss }} \checkmark$

$$
\begin{aligned}
& =(\sqrt{2})(5,455) \\
& =7,71 \mathrm{~A}
\end{aligned}
$$

OPTION 5

$$
\begin{align*}
& \mathrm{P}_{\text {ave }}=\frac{\left(\mathrm{V}_{\mathrm{rms}}\right)^{2}}{\mathrm{R}} \tag{3}\\
& \mathrm{R}=\frac{(220)^{2}}{1200} \checkmark=40,33 \Omega \\
& I_{\max }=\frac{\mathrm{V}_{\text {max }}}{\mathrm{R}} \checkmark=\frac{311,13}{40,33}=7,72 \mathrm{~A} \tag{3}
\end{align*}
$$

9.7 ANYONE

- Easier to generate and transmit from place to place.
- Lesser energy loss in transmission.
- Voltage can be easily changed by stepping it up or down. \checkmark

QUESTION 10

10.1 Cathode \checkmark
10.2 Threshold frequency \checkmark
10.3 The minimum energy that an electron in the metal needs to be emitted from the metal surface. $\checkmark \checkmark$

NOTE

If any of the underlined key words in the correct context is omitted deduct 1 mark.

$$
10.4 \begin{align*}
\mathrm{W}_{0} & =\mathrm{hf}_{0} \checkmark \\
& =\left(6,63 \times 10^{-34}\right)\left(5 \times 10^{14}\right) \checkmark \\
& =3,32 \times 10^{-19} \mathrm{~J} \checkmark \tag{3}
\end{align*}
$$

10.5 Positive marking from 10.4
$\mathrm{hf}=\mathrm{W}_{0}+\frac{1}{2} m v^{2} \checkmark$
$\left(6,63 \times 10^{-34}\right)\left(f_{1}\right)^{\checkmark}=3,32 \times 10^{\boxed{\vee} 19}+11 \times 10^{-19}$
$f_{1}=2,15 \times 10^{15} \mathrm{~Hz}$
10.6 Remain the same \checkmark

