SA's Leading Past Year

Exam Paper Portal

STUD.Y

You have Downloaded, yet Another Great Resource to assist you with your Studies :

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

> SAEAMM RADPERES

NATIONAL SENIOR CERTIFICATE

GRADE 12

MARKS: 150

This Memorandum consists of 19 pages.

QUESTION 1

1.1 $B \checkmark \checkmark$

(2)
1.2 $C \checkmark \checkmark$
(2)
$1.3 \mathrm{D} \checkmark \checkmark$
$1.4 \quad B \checkmark \checkmark$
1.5 A $\checkmark \checkmark$
$1.6 \quad C \checkmark \checkmark$
1.7 $C \checkmark \checkmark$
1.8 C $\checkmark \checkmark$
$1.9 \mathrm{D} \checkmark \checkmark$
1.10 A $\checkmark \checkmark$

QUESTION 2

2.1
2.1.1 When a (non-zero) net/resultant force acts on an object, the object will accelerate in the direction of the net force with/at acceleration whose magnitude is directly proportional to the magnitude of the net force \checkmark and inversely proportional to the mass of the object. \checkmark
2.1.2

FN: Normal force \checkmark
F_{A} : Applied force \checkmark
F_{T} : Tension \checkmark
F_{f} : Friction/Frictional force \checkmark
F_{g} : Gravitational force/ ω eight/FEarth on block \checkmark

Notes:

- Mark awarded for label and arrow
- Do not penalise for length of arrows since drawing is not to scale
- Any other additional force(s): -1 mark
- If force(s) do not make contact with body: -1 mark
- -1 mark if all arrows are emitted but correctly labelled
2.1.3

```
\(F_{\text {net }}=\mathrm{ma}\)
\(\left(F_{\text {net }}\right) x=m_{1} a_{x}\)
```



```
\(\therefore \mathrm{F} \cos 30^{\circ}-\mathrm{f}_{\mathrm{k}}-\mathrm{T}=\mathrm{m}_{1} \mathrm{a}\)
\(\therefore\) Fcos \(30^{\circ}-\mu_{k}\left(m_{1} g-F \sin 30^{\circ}\right)-T=m_{1 a}\)
\(\therefore 50 \cos 30^{\circ}-(0,21)\left[(5)(9,8)-(50)\left(\sin 30^{\circ}\right)\right] \checkmark-T=5 a\)
\(\therefore 50 \cos 30^{\circ}-5,04-\mathrm{T}=5 \mathrm{a}\)
\(\therefore 38,26127-\mathrm{T}=5 \mathrm{a} \ldots\) (1) \(\checkmark\)
\(\left(F_{\text {net }}\right)_{y}=m_{2} a_{y}\)
\(\therefore \mathrm{T}+\left(\mathrm{w}_{2}\right)=\mathrm{m}_{2} \mathrm{a}\)
\(\therefore \mathrm{T}-\mathrm{m}_{2} \mathrm{~g}=\mathrm{m}_{2} \mathrm{a}\)
\(\therefore\) T- \((0,2)(9,8)=(0,2) \mathrm{a} \checkmark\)
\(\therefore\) T- \((0,2) \mathrm{a}+1,96 \ldots\) (2) \(\checkmark\)
Subst... (2) into (1):
\(\therefore 38,26127-[(0,2) a+1,96]=5 a\)
\(\therefore 38,26127-(0,2) a-1,96=5 a\)
\(\therefore 36,30127=(5,2) a\)
\(\therefore \mathrm{a}=6,981 \mathrm{~m} \cdot \mathrm{~s}^{-2}\)
From (2): \(T=(0,2)(6,981)+1,96\)
    \(\therefore \mathrm{T}=3,3562 \mathrm{~N} \checkmark\)
```

2.2

$\begin{aligned} & g=\frac{\mathrm{GM}_{\mathrm{E}}}{\mathrm{r}^{2}} \checkmark \\ & =\frac{\mathrm{GM}_{\mathrm{E}}}{\left(\mathrm{R}_{\mathrm{E}}+\mathrm{h}\right)^{2}} \\ & =\frac{\left(6,67 \times 10^{-11}\right)\left(5,98 \times 10^{24}\right)}{\left(6,38 \times 10^{6}+500000\right)^{2}} \checkmark \\ & =8,43 \mathrm{~m} \cdot \mathrm{~s}^{-2} \end{aligned}$	
$\begin{array}{\|l} \text { Reduction in } \mathrm{g}=9,8-8,43=1,37 \checkmark \\ \therefore \% \text { reduction }=\frac{1,37}{9,8} \times 100 \\ =13,98 \% \\ \therefore \% \text { reduction in } \omega=13,98 \% \\ \text { (for a constant } \mathrm{m}, \omega \propto \mathrm{~g} \text {) } \checkmark \end{array}$	$\begin{aligned} & \omega_{\mathrm{E}}=\mathrm{mg} \\ &=\mathrm{m}(9,8) \\ & \omega_{\mathrm{S}}=(8,43) \quad \\ & \therefore \% \omega_{\mathrm{S}}=\frac{\mathrm{m}(8,43}{\mathrm{m}(9,8)} \times 100 \\ &=86,02 \% \\ & \therefore \% \text { reduction in } \omega=100-86,02 \checkmark \\ &=13,98 \% \quad \mathrm{r} \end{aligned}$

QUESTION 3

3.1

3.1.1 Free fall \checkmark
3.1.2 The ratio of their weights to their masses is a constant or weight/mass remains the
3.1.3

Upwards positive:

ON EARTH:

$v_{f}^{2}=v_{i}^{2}+2 a \Delta y v$
$\therefore(0)^{2}=(20)^{2}+2(-9,8) \Delta y \checkmark$
$\therefore 0=400-(19,6) \Delta y$
$\therefore \Delta \mathrm{y}=20,4082 \mathrm{~m} \checkmark$

On Jupiter:

$\mathrm{vf}^{2}=\mathrm{vi}^{2}+2 \mathrm{a} \Delta \mathrm{y}$
$\therefore(0)^{2}=\mathrm{vi}^{2}+2(-22,5)(20,4082) \checkmark$
$\therefore 0=\mathrm{vi}^{2}-918,369$
$\therefore 918,369=\mathrm{v}^{2}{ }^{2}$
$\therefore \mathrm{v}_{\mathrm{i}}=30,3046 \mathrm{~m} \cdot \mathrm{~s}^{-1}$
\therefore The speed with which he/she would throw the ball is $30,3046 \mathrm{~m} \cdot \mathrm{~s}^{-1} \checkmark$

Downwards positive:

ON EARTH:

$$
\begin{aligned}
\mathrm{vf}^{2} & =\mathrm{vi}^{2}+2 \mathrm{a} \Delta \mathrm{y} \checkmark \\
\therefore(0)^{2} & =(-20)^{2}+2(9,8) \Delta \mathrm{y} \checkmark \\
\therefore 0 & =400+(19,6) \Delta \mathrm{y} \\
\therefore \Delta \mathrm{y} & =-20,4082 \mathrm{~m} \checkmark
\end{aligned}
$$

On Jupiter:

$$
v_{f}^{2}=v i^{2}+2 a \Delta y
$$

$\therefore \frac{(0)^{2}=\mathrm{vi}^{2}+2(22,5)(-20,4082)}{\therefore 0=\mathrm{vi}^{2}-918,369}$
$\therefore 918,369=\mathrm{v}^{2}{ }^{2}$
$\therefore \mathrm{V}_{\mathrm{i}}=-30,3046 \mathrm{~m} \cdot \mathrm{~s}^{-1}$
\therefore The speed with which he/she would throw the ball is $30,3046 \mathrm{~m} \cdot \mathrm{~s}^{-1} \checkmark$
3.2
3.2.1 $9.8 \mathrm{~m} \cdot \mathrm{~s}^{-2}$ downwards \checkmark
3.2.2

Option 1: Downwards as positive:

$\Delta y=v_{i} \Delta t+\frac{1}{2} a(\Delta t)^{2}$
Let the distance to wire1 be $x \mathrm{~m}$ in time ts

$$
\text { Wire1: } \begin{aligned}
x & =(0)(\mathrm{t})+\frac{1}{2}(9,8)(\mathrm{t})^{2} \checkmark \\
x & =4,9(\mathrm{t})^{2} \ldots(1)
\end{aligned}
$$

Wire2: $(x+1)=(0)(t+0,2)+\frac{1}{2}(9,8)(t+0,2)^{2} \checkmark$ $x+1=4,9(\mathrm{t}+0,2)^{2}$
$\therefore x+1=4,9\left(\mathrm{t}^{2}+0,4 \mathrm{t}+0,04\right)$
$\therefore x+1=4,9 . t^{2}+1,96 t+0,196$

Option 2:

Downwards as positive:
Consider the motion from wire 1 to wire 2
$\Delta y=1 \mathrm{~m} ; \Delta \mathrm{t}=0,25 \mathrm{~s} ; \mathrm{a}=9,8 \mathrm{~m} \cdot \mathrm{~s}^{-2} ; \mathrm{v}_{\mathrm{i}}=$?

$$
\begin{aligned}
& \Delta y=v_{i} \Delta t+\frac{1}{2} a(\Delta t)^{2} \checkmark \\
& 1=v_{i}(0,2)+\frac{1}{2}(9,8)(0,2)^{2} \checkmark \\
& 1=v_{i}(0,2)+0,196 \\
& 0,804=v_{i}(0,2) \\
& \therefore v_{i}=4,02 \mathrm{~m} \cdot \mathrm{~s}^{-1} \\
& \therefore \mathrm{v}_{1}=4,02 \mathrm{~m} \cdot \mathrm{~s}^{-1} \checkmark \\
& \mathrm{v}_{\mathrm{f}}=\mathrm{v}_{\mathrm{i}}+\mathrm{a} \Delta \mathrm{t} \checkmark \\
&=4,02+(9,8)(0,2) \\
&
\end{aligned}
$$

Subt. (1) Into (2) $\begin{gathered} \therefore 4,9(\mathrm{t})^{2}+1=4,94,9 . \mathrm{t}^{2}+1,96 \mathrm{t}+0,196 \\ \therefore 1=(1,96) \mathrm{t}+0,196 \\ \therefore 0,804=(1,96) \mathrm{t} \\ \therefore \mathrm{t}=0,4102 \mathrm{~s} \checkmark \\ \mathrm{v}_{\mathrm{f}}= \\ \mathrm{v}_{\mathrm{i}}+\mathrm{a} \Delta \mathrm{t} \checkmark \\ \text { wire1: } \mathrm{v}_{1}=0+(9,8)(0,4102) \\ = \\ \text { wire1: } \mathrm{v}_{2}=0+\left(9,096 \mathrm{~m} \cdot \mathrm{~s}^{-1} \checkmark\right. \\ = \\ = \\ \text { (} 5,97996 \mathrm{~m} \cdot \mathrm{~s}^{-1} \checkmark \end{gathered}$	$\begin{gathered} =5,98 \mathrm{~m} \cdot \mathrm{~s}^{-1} \\ \therefore \mathrm{v}_{2}=5,98 \mathrm{~m} \cdot \mathrm{~s}^{-1} \end{gathered}$

QUESTION 4

4.1 The total (linear) momentum of an/a isolated/closed system \checkmark is constant/ conserved.

OR:
In an/a isolated/closed system, the total (linear) momentum \checkmark before collision is equal to the total (linear) momentum after collision.
4.2
4.2.1

Option 1

Take to the right as positive:

$$
\left.\begin{array}{rl}
\Sigma_{\mathrm{P}_{\mathrm{i}}} & =\Sigma_{\mathrm{P}_{\mathrm{f}}} \\
\mathrm{MbVbi}+\mathrm{mbvBi}=\mathrm{MbVbf}^{2} \mathrm{mbVBf}_{\mathrm{BV}}
\end{array}\right\} \text { Any one }
$$

$\therefore(0,0175)(55,60)+(8,45)(0)=(0,0175)(-12,60)+(8,45) \mathrm{VBf} \checkmark$

$$
\therefore 0,973=-0,2205+(8,45) \mathrm{VBf}
$$

$$
\therefore \mathrm{VBf}=0,141243 \mathrm{~m} \cdot \mathrm{~s}^{-1}
$$

\therefore The magnitude of the velocity of the block is $0,141243 \mathrm{~m} \cdot \mathrm{~s}^{-1} \checkmark$

Option 1

Take to the left as positive:

$$
\begin{aligned}
\therefore(0,0175)(-55,60)+(8,45)(0) & =(0,0175)(12,60)+(8,45) \mathrm{VBf} \checkmark \\
\therefore-0,973 & =0,2205+(8,45) \mathrm{VBf} \\
\therefore . \mathrm{VBf} & =-0,141243 \mathrm{~m} \cdot \mathrm{~s}^{-1}
\end{aligned}
$$

\therefore The magnitude of the velocity of the block is $0,141243 \mathrm{~m} \cdot \mathrm{~s}^{-1} \checkmark$

Option 2

Take to the right as positive

$$
\begin{aligned}
& \left.\begin{array}{rl}
\Delta \mathrm{P}_{\text {block }} & =-\Delta \mathrm{P}_{\text {bullet }} \\
\text { (}
\end{array}\right\} \text { Any one } \checkmark \\
& m_{B}\left(V_{B f}-V_{B i}\right)=-m_{b}\left(V_{b f}-V_{b i}\right) \\
& \therefore(8,45)\left(v_{B f}-0\right)=-(0,0175)(-12,60-55,60) \checkmark \\
& \therefore(8,45) \mathrm{V}_{\mathrm{Bf}}=1,1935 \\
& \therefore \mathrm{~V}_{\mathrm{Bf}}=0,141243 \mathrm{~m} \cdot \mathrm{~s}^{-1}
\end{aligned}
$$

\therefore The magnitude of the velocity of the block is $0,141243 \mathrm{~m} \cdot \mathrm{~s}^{-1}$

Option2

Take to the left as positive

$$
\begin{aligned}
\Delta \mathrm{P}_{\text {block }} & =-\Delta \mathrm{P}_{\text {bullet }} \\
\mathrm{mB}_{\mathrm{B}}\left(\mathrm{~V}_{\mathrm{Vf}}-\mathrm{VBi}\right) & =-\mathrm{mb}_{\mathrm{b}}\left(\mathrm{~V}_{\text {bf }}-\mathrm{V}_{\mathrm{bi}}\right) \\
\therefore(8,45)\left(\mathrm{VBf}^{-0}-0\right) & =-(0,0175)(12,60+55,60) \checkmark \text { Any one } \\
\therefore(8,45) \mathrm{VBf} & =-1,1935 \\
\therefore \mathrm{~V}_{\mathrm{Bf}} & =-0,141243 \mathrm{~m} \cdot \mathrm{~s}^{-1}
\end{aligned}
$$

\therefore The magnitude of the velocity of the block is $0,141243 \mathrm{~m} \cdot \mathrm{~s}^{-1} \checkmark$

4.2.2 POSITIVE MARKING FROM QUESTION 4.2.1

Option 1

$$
\begin{aligned}
v^{2} & =v^{2}+2 a \Delta y \\
\therefore(0)^{2} \checkmark & =(0,141243)^{2}+2(a)(1,32) \checkmark \\
\therefore a & =-7,55634 \times 10^{-3} \mathrm{~m} \cdot \mathrm{~s}^{-2} \\
\mathrm{~F}_{\text {net }} & =\operatorname{ma} \checkmark \\
\therefore \mathrm{f} & =(8,45)\left(-7,55634 \times 10^{-3}\right) \checkmark \\
& =-0,06385 \mathrm{~N}
\end{aligned}
$$

\therefore The magnitude of the frictional force between the block and the table is $0,06385 \mathrm{~N} \checkmark$

Option 2

$$
\begin{aligned}
\mathrm{vf}^{2} & =\mathrm{v}^{2}+2 \mathrm{a} \Delta \mathrm{y} \\
\therefore(0)^{2} \checkmark & =(0,141243)^{2}+2(\mathrm{a})(1,32) \\
\quad \therefore \mathrm{a} & =-7,55634 \times 10^{-3} \mathrm{~m} \cdot \mathrm{~s}^{-2} \\
\quad \mathrm{v}_{\mathrm{f}}= & \mathrm{v}_{\mathrm{i}}+\mathrm{a} \Delta \mathrm{t} \\
\therefore 0 & =0,141243+\left(-7,55634 \times 10^{-3}\right) \Delta \mathrm{t} \\
\therefore \Delta \mathrm{t} & =18,6919858 \mathrm{~s} \checkmark
\end{aligned}
$$

$$
\text { But } F_{\text {net }} \Delta t=m\left(v_{f}-v_{i}\right)
$$

$$
\therefore \mathrm{f}(18,6919858)=(8,45)(0-0,141243) \checkmark
$$

$$
=-0,06385 \mathrm{~N}
$$

\therefore The magnitude of the frictional force between the block and the table is $0,06385 \mathrm{~N}$

QUESTION 5

5.1 A force for which work is done in moving an object between two points is independent of the path taken. $\checkmark \checkmark$

OR:
A force for which the total work done on the particle as it is moved around any closed path is zero $\checkmark \checkmark$
5.3

Notes:

- Mark awarded for label and arrow
- Do not penalise for length of arrows since drawing is not to scale
- Any other additional force(s): -1 mark
- If force(s) do not make contact with body: -1 mark
- -1 mark if all arrows are emitted but correctly labelled
5.4 The work done on an object by a net force is equal \checkmark to the change in the object's kinetic energy.

OR:
The net/total work done on an object is equal \checkmark to the change in the object's kinetic energy.
5.5

$$
\begin{gather*}
W_{n e t}=\Delta \mathrm{E}_{\mathrm{k}} \\
\mathrm{~W}_{\mathrm{T}}+\mathrm{W} \omega=\frac{1}{2} \mathrm{mvf}^{2}-\frac{1}{2} \mathrm{mv}_{\mathrm{i}}^{2} \\
\mathrm{~T} \cdot \Delta \mathrm{y} \cdot \cos \theta+\mathrm{mg} \cdot \Delta \mathrm{y} \cdot \cos \theta=\frac{1}{2} \mathrm{mvf}^{2}-\frac{1}{2} \mathrm{mvi}^{2} \\
\left(4,0 \times 10^{6}\right)(500)\left(\cos 0^{\circ}\right)+(15000)(9,8)(500)\left(\cos 180^{\circ}\right) \checkmark=\frac{1}{2}(15000)\left[\mathrm{vf}^{2}-(0)^{2}\right] \tag{4}\\
20 \times 10^{9}+\left(-7,35 \times 10^{8}\right)=75000 \cdot \mathrm{vf}^{2} \\
1265000000=75000 \cdot \mathrm{vf}^{2} \\
\therefore \mathrm{vf}^{2}=16866,66667 \\
\therefore \mathrm{vf}_{\mathrm{f}}=129,8717316 \mathrm{~m} \cdot \mathrm{~s}^{-1} \\
\therefore \text { The speed of a rocket at a height of } 500 \mathrm{~m} \text { is } 129,8717316 \mathrm{~m} \cdot \mathrm{~s}^{-1} \checkmark
\end{gather*}
$$

> e

QUESTION 6

6.1 The (apparent) change in frequency (or pitch) or wavelength of the sound observed/detected by a listener, because the sound source and the listener have different velocities relative to the medium of the sound propagation.

OR:
An apparent change in the observed detected frequency (pitch), (wavelength) as a result of the relative motion between a source and an observer (listener). $\checkmark \checkmark$

Note: If any of the underlined key words/phrases in the correct context is omitted deduct 1 mark.
6.2
6.2.1

$$
\begin{align*}
f_{L} & =\left(\frac{v \pm v_{L}}{v \pm v_{S}}\right) f_{S} \checkmark \\
& =\left(\frac{340+15}{340-0}\right) \checkmark(1800) \checkmark \\
& =18794,11765 \mathrm{~Hz} \checkmark \tag{4}
\end{align*}
$$

6.2.2

$$
\begin{align*}
f_{L} & =\left(\frac{v \pm v_{L}}{v \pm v_{S}}\right) f_{S} \\
& =\left(\frac{340-15}{340+0}\right) \checkmark(1800) \checkmark \\
& =17205,88235 \mathrm{~Hz} \checkmark \tag{3}
\end{align*}
$$

6.318000 Hz OR 18 kHz \checkmark

6.4

Criteria for graph	Mark
First and Second parts of the graph correct (For	\checkmark
moving towards and for receding/moving away)	
Two frequencies on the vertical axis(From	\checkmark
$\mathbf{6 . 2 . 1 / 6 . 2 . 2)}$	

QUESTION 7

7.1
7.1.1

Fe: Electrostatic force/Coulombic force/Electric force \checkmark
F_{T} : Tension
Fg: Gravitational force/weight/FEarth on sphere \checkmark

Notes:

- Mark awarded for label and arrow
- Do not penalise for length of arrows since drawing is not to scale
- Any other additional force(s): -1 mark
- If force(s) do not make contact with body: -1 mark
- -1 mark if all arrows are emitted but correctly labelled
7.1.2 The magnitude of the electrostatic force exerted by one-point charge on another point charge is directly proportional to the magnitudes of the charges and inversely proportional to the square of the distance (r) between them.

OR:
The magnitudes of the electrostatic force exerted by one charge on another is directly proportional to the magnitudes of the charges and inversely proportional to the square of the distance (r) between their centres.

Note: If any of the underlined key words/ phrases in the correct context is omitted deduct 1 mark. If masses used $\frac{0}{2}$

Take to the right and upwards as POSITIVE

$$
\begin{align*}
F_{\text {net }} & =m a \\
\left(F_{\text {net }}\right) \mathrm{m} & =\text { max } \\
\therefore \mathrm{T} \sin \theta+\left(-\mathrm{F}_{\mathrm{e}}\right) & =\text { ma } \\
\therefore \mathrm{T} \sin \theta-\mathrm{Fe}_{\mathrm{e}} & =0 \\
\therefore \mathrm{~T} \sin \theta & =\mathrm{F}_{\mathrm{e}} \ldots \tag{1}
\end{align*}
$$

$\left(F_{\text {net }}\right) y=m a y$
$\therefore \mathrm{Tcos} \theta+(-\mathrm{mg})=\mathrm{ma}$
$\therefore T \cos \theta=\mathrm{mg}$

$$
\begin{gather*}
\text { (1) } \div(2): \frac{\mathrm{T} \sin \theta}{\mathrm{~T} \cos \theta}=\frac{\mathrm{F}_{\mathrm{E}}}{\mathrm{mg}} \tag{2}\\
\therefore \tan \theta=\frac{\mathrm{F}_{\mathrm{E}}}{\mathrm{mg}} \\
\therefore \mathrm{Fe}_{\mathrm{e}}=\mathrm{mg} \tan \theta
\end{gather*}
$$

From the diagram: $\sin \theta=\frac{\mathrm{a}}{\mathrm{L}} \quad \therefore \mathrm{a}=\mathrm{L} \sin \theta$

$$
=(0,15 \mathrm{~m}) \sin \theta
$$

$\therefore \frac{\mathrm{Kq}^{2}}{(2 \mathrm{a})^{2}}=\mathrm{mg} \tan \theta$
$\therefore \frac{\left(9,0 \times 10^{9}\right) \mathrm{q}^{2} \checkmark}{\left[(2)(0,15)\left(\sin 5,00^{\circ}\right)\right]^{2} \checkmark}=\left(3,00 \times 10^{-2}\right)(9,8)\left(\tan 5,00^{\circ}\right) \checkmark$
$\therefore \mathrm{q}^{2}=\frac{1,758464636 \times 10^{-5}}{9,0 \times 10^{9}}=1,953849596 \times 10^{-15} \mathrm{C}^{2}$

$$
\therefore q=\sqrt{1,953849596 \times 10^{-15}}
$$

$$
\begin{equation*}
=4,42 \times 10^{-8} \mathrm{C} \tag{7}
\end{equation*}
$$

7.2.1 The electrostatic force experienced \checkmark per unit positive charge \checkmark (placed at that point).
7.2.2


```
Take uphill as positive
\(F_{\text {netl }}=m a O R F_{\text {net }} I=0\)
\(\mathrm{F}_{\mathrm{e}}+\left(-\omega_{\|}\right)=\mathrm{ma}\)
    \(\mathrm{F}_{\mathrm{e}}=0,022365 \mathrm{~N}\)
\(\therefore \mathrm{Fe}_{\mathrm{e}}-\left(5,40 \times 10^{-3}\right)(9,8)\left(\sin 25,0^{\circ}\right) \checkmark=\left(5,40 \times 10^{-3}\right)(0) \checkmark\)
\(\therefore \mathrm{F}_{\mathrm{e}}-0,02236495841=0\)
\(\therefore \mathrm{F}_{\mathrm{e}}=0,022365 \mathrm{~N}\)
But \(E=\frac{F_{e}}{|Q|} \checkmark\)
    \(=\frac{0,022365}{7,00} \checkmark\)
    \(=3,194994 \mathrm{~N} \cdot \mathrm{C}^{-1} \checkmark\) down the incline
```


Question 8

8.1
1.1.1 Current \checkmark
1.1.2 Temperature \checkmark
1.1.3 Current is directly proportional to the potential difference \checkmark

OR:

The ratio of potential difference to current is constant \checkmark
8.1.4

$$
\begin{align*}
\text { Gradient } & =\frac{\Delta \mathrm{I}}{\Delta \mathrm{~V}} \tag{1}\\
& =\frac{0,4-0 \checkmark}{1-0 \checkmark} \text { OR } \frac{0,8-0,4}{2-1} \text { OR } \frac{1,6-0,4}{4-1} \\
\therefore \frac{1}{R} & =\frac{0,4}{1} \text { OR } \frac{0,4}{1} \text { OR } \frac{1,2}{3} \\
\therefore \frac{1}{R} & =\frac{\mathrm{I}}{V} \therefore \frac{R}{1}=\frac{\mathrm{V}}{\mathrm{I}} \therefore \mathrm{R}=\frac{1}{0,4}=2,50 \Omega \checkmark \tag{3}
\end{align*}
$$

8.2
8.2.1 The battery supplies 20 J per coulomb/ 20 J per unit charge $\checkmark \checkmark$

OR: The potential difference of the battery in a circuit is $20 \mathrm{~V} \checkmark \checkmark$
OR: The battery does 20 J of work per unit charge/per coulomb $\checkmark \checkmark$
OR: Maximum energy supplied by the battery per unit charge is $20 \mathrm{~J} \checkmark \checkmark$
OR: maximum work done by the battery per unit charge is $20 \mathrm{~J} \checkmark \checkmark$
OR: The total amount of electric energy supplied by the battery per coulomb/per unit charge is $20 \mathrm{~J} \checkmark \checkmark$

OR: The total energy transferred by the battery to a unit electric charge is $20 \mathrm{~J} \checkmark \checkmark$
Note: If any of the underlined key words/phrases in the correct context is omitted deduct 1 mark
8.2.2 $0 \mathrm{~V} /$ Zero volt \checkmark

Option 1:
$V=V_{3 \Omega}$
$=\mathrm{IR} \checkmark$
$=(6)(3) \checkmark$
$=18 \mathrm{~V}$

Option 2:

$V_{5 \Omega}=V_{3 \Omega}$
$\left(\mathrm{I}_{5 \Omega}\right)\left(\mathrm{R}_{5 \Omega}\right)=\left(\mathrm{I}_{3 \Omega}\right)\left(\mathrm{R}_{5 \Omega}\right)$
$\mathrm{I}_{5 \Omega}(5)=(6)(3)$
$\therefore \mathrm{V}=\mathrm{V}_{5} \Omega$
$=I R$
$=(3,60)(5)$
$=18 \mathrm{~V}$

Option 3:

$R_{p}=\frac{1}{\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)}=\frac{1}{\left(\frac{1}{3}+\frac{1}{5}\right)}=1,875 \Omega$

OR:

$\mathrm{R}_{\mathrm{p}}=\frac{R_{1} R_{1}}{\mathrm{R}_{1} \mathrm{R}_{2}}=\frac{(3)(5)}{(3+5)}=1,875 \Omega$

OR:

$\frac{1}{\mathrm{R}_{\mathrm{p}}}=\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}=\frac{1}{3}+\frac{1}{5}=\frac{8}{15}$
$\therefore \mathrm{R}_{\mathrm{p}}=\frac{15}{8}=1,875 \Omega$

$$
V_{5 \Omega}=V_{3 \Omega}
$$

$$
\left(\mathrm{IR}_{5 \Omega}\right)=\left(\mathrm{IR}_{3 \Omega}\right)
$$

$$
I_{5 \Omega}(5)=(6)(3)
$$

$$
\therefore \mathrm{I}_{5 \Omega}=3,60 \mathrm{~A}
$$

$$
I_{\text {total }}=I_{3 \Omega}+I_{5 \Omega}
$$

$$
=6+3,60
$$

$$
=9,60 \mathrm{~A}
$$

$$
\therefore \mathrm{V}=\mathrm{V}_{\|}=\|_{\|} \mathrm{R}_{\|} \checkmark
$$

$$
=(9,60)(1,875) \checkmark
$$

$$
=18 \mathrm{~V}
$$

Option 1:
$\begin{aligned} \text { Itotal } & =9,6 \mathrm{~A} \\ \mathrm{R} & =\mathrm{R}_{\text {external }} \quad \text { From opti } \\ & =1,875 \Omega \\ \varepsilon & =1(\mathrm{R}+\mathrm{r}) \checkmark \\ 20 & =(9,6)(1,875+\mathrm{r}) \checkmark \\ \frac{25}{12} & =1,875+r \\ \therefore r & =0,2083333 \Omega \checkmark \end{aligned}$
Option 3:
$\begin{aligned} & V_{\text {lost }}=\varepsilon-v=20-18=2 v \\ & \text { but } V_{\text {lost }}=\operatorname{lr} \checkmark \\ & \therefore 2=(9,6) r \checkmark \\ & \therefore r=0,20833 \Omega \checkmark \end{aligned}$

Option 2:

Itotal $=$ 9,60 A...from Q8.2.3 option 3
$\therefore \varepsilon=I_{\text {total }} . \mathrm{R}_{\text {total }} \checkmark$ $20=(9,60)\left(R_{\text {total }}\right) \checkmark$
$R_{\text {total }}=2,083333 \Omega$
But $R_{\text {total }}=R_{\text {external }}+r$
$2,083333 \Omega=1,875+r$
$r=0,2033 \Omega \checkmark$

Option 3:

$\mathrm{V}_{\text {lost }}=\varepsilon-\mathrm{v}=20-18=2 \mathrm{v}$
but $\mathrm{V}_{\text {lost }}=\operatorname{Ir} \checkmark$
$\therefore 2=(9,6) r \checkmark$
$\therefore r=0,20833 \Omega \checkmark$
8.2.5 • Resistance of a circuit decreases

- current in the circuit increases
- $\varepsilon=\mathrm{IR}+\mathrm{Ir}=\mathrm{V}+\mathrm{Ir}$: Thus Ir (internal voltage) decreases.

Since ε an r are constant, V will increase.

Question 9

9.1
9.1.1 Slip rings \checkmark

9.1.2 ANY ONE:

- Maintains electrical contact with the slip rings \checkmark
- Takes current out of/into the coil \checkmark
9.1.3 North pole \checkmark
9.1.4 To concentrate the magnetic field \checkmark
9.1.5 To convert kinetic energy (mechanical energy) into electrical energy \checkmark
9.2
9.2.1 $\mathrm{T}=\frac{1}{2}$ period where period $=\frac{1}{\mathrm{f}}$
$=\frac{1}{2}\left(\frac{1}{\mathrm{f}}\right)$
$=\frac{1}{2}\left(\frac{1}{50}\right) \checkmark$
$=0,01 \mathrm{~s} \checkmark$
9.2.2

Option 1:	Option 2:
$V_{m 5}=\frac{V_{\text {max }}}{\sqrt{2}}$	$I_{\max }=\frac{v_{\max }}{R} \checkmark$
$=\frac{170}{\sqrt{2}} \checkmark$	$=\frac{170}{200} \checkmark$
$=120,2082 \mathrm{~V}$	$=0,85 \mathrm{~A}$
$I_{\text {rms }}=\frac{V_{\text {rms }}}{R} \checkmark$	$\mathrm{I}_{\mathrm{m} 5}=\frac{\mathrm{I}_{\mathrm{max}}}{\mathrm{R}} \checkmark$
$=\frac{120,2082}{200} \checkmark$	$=\frac{0,85}{\sqrt{2}} \checkmark$
$=0,601 \mathrm{~A} \checkmark$	$=0,601 \mathrm{~A} \checkmark$

9.2.3 The average value of the current over the cycle is zero \checkmark (and no useful power is delivered).

QUESTION 10

10.1.1 The process whereby electrons are ejected/emitted/dislodged from a metal surface \checkmark when light of suitable frequency is incident on that surface.

ACCEPT:

When light of high enough frequency falls on a clean metal surface, \checkmark electrons are emitted from the surface by photon-electron interactions within the metal \checkmark

ACCEPT:

The liberation of electrons from a substance \checkmark exposed to electromagnetic radiation with high enough frequency.
10.1.2

OPTION 1	OPTION 2
$\begin{aligned} & C=f \lambda \\ & 3 \times 10^{8}=f\left(400 \times 10^{-9}\right) \checkmark \\ & \begin{aligned} \therefore f & =7,5 \times 10^{14} \mathrm{~Hz} \\ \text { But } \mathrm{E} & =\mathrm{hf} \checkmark \\ & =\left(6,63 \times 10^{-34}\right)\left(7,5 \times 10^{14}\right) \checkmark \\ & =4,9725 \times 10^{-19} \mathrm{~J} \checkmark \end{aligned} \end{aligned}$	$\begin{aligned} & \mathrm{E}=\mathrm{hf} \\ & \therefore \mathrm{E}=\frac{\mathrm{hc}}{\lambda} \checkmark \\ & \therefore \mathrm{E}=\frac{\left(6,63 \times 10^{-34}\right)\left(3 \times 10^{8}\right) \checkmark}{\left(400 \times 10^{-19}\right) \mathrm{J} \checkmark} \\ & \therefore \mathrm{E}=4,9725 \times 10^{-19} \mathrm{~J} \checkmark \end{aligned}$

10.1.3

POSITIVE MARKING FROM QUESTION 10.1.2

$$
\begin{aligned}
1,5 \% 600 \mathrm{~W} & =\left(\frac{1,5}{100}\right)(600) \\
& =9,00 \mathrm{~W}
\end{aligned}
$$

Number of electrons $=\frac{P}{E} \checkmark$

$$
\begin{aligned}
& =\frac{9,00}{4,9725 \times 10^{-19}} \checkmark \\
& =1,81 \times 10^{-19} \mathrm{e} / \mathrm{s}
\end{aligned}
$$

10.2

10.2.1 Emission spectra occur when excited atoms/electrons drop from higher energy levels to lower energy levels.
10.2.2 P \checkmark
10.2.3 R \checkmark

