

You have Downloaded, yet Another Great Resource to assist you with your Studies ③

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

education

Department: Education PROVINCE OF KWAZULU-NATAL

NATIONAL SENIOR CERTIFICATE GRADE 12

PHYSICAL SCIENCES P1 (PHYSICS)

PREPARATORY EXAMINATIONS

SEPTEMBER 2020

MARKING GUIDELINE

Time: 3 Hours

Т

Marks: 150

This marking guideline has 17 pages.

SECTION A

QUESTION 1

1.1	B√√	(2)
1.2	D√√	(2)
1.3	D√√	(2)
1.4	D√√	(2)
1.5	D√√	(2)
1.6	A√✓	(2)
1.7	D√√	(2)
1.8	C√√	(2)
1.9	C√√	(2)
1.10	A√✓	(2)

2 x 10 = **[20]**

SECTION B

QUESTION 2

2.1 Normal force is the force or the component of a force which a surface exerts on an object with which it is in contact, and which is perpendicular to the surface. $\checkmark\checkmark$ (2)

2.2

	Accept the following symbols
N✓	F _N /Normal/Normal force
fk√	Kinetic friction force/f/F _f /f _r
F₄✓	F/F _{applied}
F _g ✓	W/78,4 N

Notes

- Mark is awarded for label and arrow.
- Do not penalise for length of arrows.
- Deduct 1 mark for any additional force.
- If force(s) do not make contact with body/dot : Max:3/4
- If arrows missing but labels are there: *Max:3*/4

(4)

2.3 **Considering the forces parallel to the plane::**

$$F_{net} = ma$$

$$F_{net} = 0$$

$$F_{Ax} - f_k - F_{gx} = 0$$

$$F_{A}\cos\theta = f_k + F_{gx}$$

$$51\cos\theta = 1 + 8(9,8)\sin 30^{\circ} \checkmark$$

$$\theta = 37,98^{\circ} \checkmark$$
(3)

2.4 **POSITIVE MARKING FROM 2.3**

Consider the forces perpendicular to the plane:

F _{net} = ma	
$F_{net} = 0$	
$F_{Ay} + N - F_{gy} = 0$	
$F_{A}\sin\theta + N = F_{gy}$	
$51\sin 37,98^{\circ} + N = 8 \times 9,8\cos(30^{\circ}) \checkmark$	
∴ N = 36,51 N✓	(3)
Increases ✓	(1)

[13]

QUESTION 3

2.5

3.1				
	3.1.1	UPWARDS IS POSITIVE	UPWARDS IS NEGATIVE	
		$v_f = v_i + a\Delta t \checkmark$	$v_f = v_i + a\Delta t \checkmark$	
		$0 = 12 - 9,8\Delta t$	$0 = -12 + 9,8\Delta t$	
		$\Delta t = 1.2245 s\checkmark$	$\Delta t = 1.2245 s\checkmark$	(3)

3.1.2	OPTION 1		
	UPWARDS IS POSITIVE	UPWARDS NEGATIVE	
	$v_f^2 = v_i^2 + 2a\Delta y \checkmark$	$v_f^2 = v_i^2 + 2a\Delta y \checkmark$	
	<u>0 = 12² + 2(−9,8)∆γ</u> \checkmark	$0 = (-12)^2 + 2(9,8)\Delta y \checkmark$	
	Δy = 7,35 m	Δy = – 7,35m	
	∴Max height = <u>50+</u> √7,35 = 57,35m√	∴Maximum height = <u>50 +</u> √7,35 = 57,35m√	

OPTION 2 POSITIVE MARKING FROM 3.1.1 UPWARDS IS POSITIVE UPWARDS IS NEGATIVE

$$\Delta y = \left(\frac{v_i + v_f}{2}\right) \Delta t \checkmark$$

$$[\Delta y = \left(\frac{12 + 0}{2}\right) 1,2245] \checkmark$$

$$\Delta y = 7,35 \text{ m}$$

$$\therefore \text{Max height} = \underline{50 + \checkmark} 7,35$$

$$= 57,35 \text{ m}\checkmark$$

$$\Delta y = \left(\frac{v_i + v_f}{2}\right) \Delta t \checkmark$$

$$[\Delta y = \left(\frac{-12 + 6}{2}\right) 1,2245]\checkmark$$

$$\Delta y = -7,35 \text{ m}$$

$$\therefore \text{Max height} = \underline{50+}\checkmark7,35$$

$$= 57,35 \text{ m}\checkmark$$

OPTION 3 POSITIVE MARKING FROM 3.1.1 UPWARDS IS POSITIVE

 $\Delta y = vi\Delta t + \frac{1}{2}a\Delta t^{2} \checkmark$ $\Delta y = (12)(1,23) + \frac{1}{2}(-9,8)(1,23)^{2} \checkmark$ $\Delta y = 7,35 \text{ m}$

∴Maximum height = 50+√7,35 = 57,35m√

UPWARDS IS NEGATIVE

 $\Delta y = vi\Delta t + \frac{1}{2}a\Delta t^{2} \checkmark$ $\Delta y = (-12)(1,23) + \frac{1}{2}(9,8)(1,23)^{2} \checkmark$ $\Delta y = -7,35 \text{ m}$

 $\therefore Maximum height = 50+\checkmark 7,35 = 57,35m\checkmark$

OPTION 4

 $(K + U)_{1} = (K + U)_{2} \checkmark (\frac{1}{2}mv^{2} + mgh)_{1} = (\frac{1}{2}mv^{2} + mgh)_{2}$ $\frac{1}{2}m(12)^{2} + m(9,8)(50) \checkmark = \frac{1}{2}m(0)^{2} + m(9,8)h \checkmark h = 57,35 \text{ m} \checkmark (4)$

3.1.3 UPWARDS POSITIVE

OPTION 1

 $v_{f} = v_{i} + a\Delta t \checkmark$ $v_{f} = \frac{12 + (-9,8) (4)}{v_{f}} \checkmark$ $v_{f} = -27,20 \text{ m} \cdot \text{s}^{-1}$ ∴ velocity of the ball is <u>27,20 \text{ m} \cdot \text{s}^{-1} downwards</u> \checkmark

UPWARDS NEGATIVE

 $v_f = v_i + a\Delta t$ ✓ $v_f = -12 + (9,8) (4)$ ✓ $v_f = 27,20 \text{ m} \cdot \text{s}^{-1}$ \therefore velocity of the ball is 27,20 m $\cdot \text{s}^{-1}$ downwards ✓

OPTION 2

UPWARDS POSITIVE

 $\Delta y = vi\Delta t + \frac{1}{2}a\Delta t^{2}$ $\Delta y = (12)(4) + \frac{1}{2}(-9,8)(4)^{2}$ $\Delta y = -30,40 \text{ m}$ NSC

$$\Delta y = \left(\frac{v_i + v_f}{2}\right) \Delta t \checkmark$$

$$-30,40 = (\frac{12+\nu_f}{2})(4)\checkmark$$

 v_f =-27,20 m•s⁻¹ ∴ velocity of the ball is <u>27,20 m•s⁻¹ downwards</u>

UPWARDS NEGATIVE

 $\Delta y = vi\Delta t + \frac{1}{2}a\Delta t^2$ $\Delta y = (-12)(4) + \frac{1}{2}(9,8)(4)^2$ $\Delta y = 30,40 \text{ m}$

$$\Delta y = (\frac{v_i + v_f}{2}) \Delta t \checkmark$$

$$30,40 = (\frac{-12 + v_f}{2})(4) \checkmark$$

 v_f =27,20 m•s⁻¹ ∴ velocity of the ball is <u>27,20 m•s⁻¹ downwards</u>

OPTION 3

UPWARDS POSITIVE

 $\Delta y = vi\Delta t + \frac{1}{2}a\Delta t^2$ $\Delta y = (12)(4) + \frac{1}{2}(-9,8)(4)^2$ $\Delta y = -30,40 \text{ m}$

 $v_f^2 = v_i^2 + 2a\Delta y \checkmark$ $v_f^2 = (12)^2 + 2(-9,8)(-30.40) \checkmark$ $v_f = 27,20 \text{ m} \cdot \text{s}^{-1}$ ∴ velocity of the ball is 27,20 m $\cdot \text{s}^{-1}$ downwards \checkmark

UPWARDS NEGATIVE

 $\Delta y = vi\Delta t + \frac{1}{2}a\Delta t^{2}$ $\Delta y = (-12)(4) + \frac{1}{2}(9,8)(4)^{2}$ $\Delta y = 30,40 \text{ m}$

$$v_f^2 = v_i^2 + 2a\Delta y \checkmark$$

 $v_f^2 = (-12)^2 + 2(9,8)(30.40) \checkmark$
 $v_f = 27,20 \text{ m} \cdot \text{s}^{-1}$
∴ velocity of the ball is 27,20 m $\cdot \text{s}^{-1}$ downwards \checkmark (3)

SC

3.1.4 OPTION 1 UPWARDS POSITIVE

 $\Delta y = vi\Delta t + \frac{1}{2}a\Delta t^{2}\checkmark$ $\Delta y = \frac{(12)(4) + \frac{1}{2}(-9,8)(4)^{2}}{\Delta y} = -30,40 \text{ m}$

If candidate calculated 30.40 m in Q 3.1.3. above award 2 marks here.

 $\therefore \text{Position above the ground} = \frac{50 - \checkmark 30,40}{= 19,60 \text{ m}\checkmark}$

UPWARDS NEGATIVE

 $\Delta y= vi\Delta t + \frac{1}{2}a\Delta t^{2}\checkmark$ $\Delta y= (-12)(4) + \frac{1}{2}(9,8)(4)^{2}\checkmark$ $\Delta y = 30,40 \text{ m}$ $\therefore \text{Position above the ground} = \frac{50 - \sqrt{30,40}}{19,60 \text{ m}\checkmark}$

OPTION 2 POSITIVE MARKING FROM 3.1.3 UPWARDS POSITIVE

$$\Delta y = \left(\frac{v_i + v_f}{2}\right) \Delta t \checkmark$$

$$\Delta y = (\frac{12 + (-27, 20)}{2})(4) \checkmark$$

$$\Delta y = -30,40 \text{ m}$$

 $\therefore \text{Position above the ground} = \frac{50 - \checkmark 30,40}{= 19,60} \text{ m}\checkmark$

UPWARDS NEGATIVE

$$\Delta y = \left(\frac{v_i + v_f}{2}\right) \Delta t \checkmark$$
$$\Delta y = \left(\frac{-12 + 27, 20}{2}\right) (4) \checkmark$$
$$\Delta y = 30,40 \text{ m}$$

 $\therefore \text{Position above the ground} = \frac{50 - \checkmark 30,40}{= 19,60 \text{ m}\checkmark}$

OPTION 3 POSITIVE MARKING FROM 3.1.3 UPWARDS POSITIVE

 $v_f^2 = v_i^2 + 2a\Delta y \checkmark$ (-27,20)² = (12)² + 2(-9,8) $\Delta y \checkmark$ $\Delta y = -30,40$

 $\therefore \text{Position above the ground} = \frac{50 - \checkmark 30,40}{= 19,60 \text{ m}\checkmark}$

UPWARDS NEGATIVE

 $v_f^2 = v_i^2 + 2a\Delta y \checkmark$ (27,20)² = (-12)² + 2(9,8) $\Delta y \checkmark$ $\Delta y = 30,40$

 $\therefore \text{Position above the ground} = \frac{50 - \checkmark 30,40}{= 19,60 \text{ m}\checkmark}$ (4)

9 NSC

[19]

(5)

4.1 The resultant/net force acting on an object is equal to the rate of change of momentum of the object in the direction of the resultant/net force. $\checkmark \checkmark$ (2)

4.2

4.2.1
$$(K + U)_1 = (K + U)_2$$

 $(\frac{1}{2}mv^2 + mgh)_1 = (\frac{1}{2}mv^2 + mgh)_2$
 $(\frac{1}{2}(1,005)v^2 + 0) = 0 + (1,005)(9,8)(0,5) \checkmark$
 $v_1 = 3,13 \text{ m} \cdot \text{s}^{-1}$
 \therefore The velocity of the block – bullet system immediately after collision is 3,13 m $\cdot \text{s}^{-1} \checkmark$ (3)

4.2.2 POSITVE MARKING FROM 4.2.1

$$\Sigma p_{i} = \Sigma p_{f}$$

$$m_{1}v_{1i} + m_{2}v_{2i} = (m_{1} + m_{2})v_{f}$$

$$(0.005)v_{1i} + (1)(0) \checkmark = (0.005 + 1)(3.13) \checkmark$$

$$v_{1i} = 629.13 \text{ m} \cdot \text{s}^{-1} \checkmark$$
(4)

(1)

[10]

(1)

QUESTION 5

5.1.1	Total mechanical energy of an isolated system remains constant \checkmark	(2)
-------	---	-----

5.1.2 No,**√**

5.1.3 **OPTION 1** $(K + U)_{P} = (K + U)_{Q} - W_{f}$ OR $Wnc = \Delta Ep + \Delta Ek$ $(\frac{1}{2}mv^{2} + mgh)_{P} = (\frac{1}{2}mv^{2} + mgh)_{Q} - W_{f}$ $\frac{[\frac{1}{2}(1200)(0.8)^{2} + (1200)(9.8)(1.8)]_{P}}{W_{f} = -11952 J} = \frac{[\frac{1}{2}(1200)(4)^{2} + 0]}{W_{f} = -11952 J} = -F_{f}2.2$ $W_{f} = F_{f}\Delta x \cos 180 \checkmark$ $-11952 = -F_{f}2.2$ $F_{f} = 5432,73 N\checkmark$ 5.2

OPTION 2

 $W_{net} = \Delta K$ $W_{f} + W_{g} = \frac{1}{2}mv_{f}^{2} - \frac{1}{2}mv_{i}^{2}$ $W_{f} + mgh = \frac{1}{2}m(v_{f}^{2} - v_{i}^{2})$ $W_{f} + mgh = \frac{1}{2}mv_{f}^{2} - \frac{1}{2}mv_{i}^{2}$ $W_{f} + \frac{1200(9,8)(2,2)\cos324,90^{\circ}}{(accept 35.1^{\circ})} \checkmark = \frac{1}{2}(1200)(4)^{2} - \frac{1}{2}(1200)(0,8)^{2}} \checkmark$ $W_{f} = -11952 \text{ J}$ $W_{f} = F_{f} \Delta x \cos 180 \checkmark$ $-11952 = -F_{f} 2,2$ $F_{f} = 5432,73 \text{ N} \checkmark$

5.2.1 The <u>net/total work done</u> on an object is equal to the <u>change in</u> the object's kinetic energy. $\checkmark \checkmark$.

OR The work done on an object by a resultant/net force is equal to the change in the object's kinetic energy. $\checkmark\checkmark$

Note: -1 mark for each key word/phrase omitted in the correct context. (2)

- 5.2.2 $W_{net} = \Delta K$ $W_f + W_{g+}W_N = \frac{1}{2}mv_f^2 - \frac{1}{2}mv_i^2$ $\sqrt{\frac{8000\cos 180^{\circ}\Delta x}{\Delta x} + 0} + 0 = \frac{\frac{1}{2}(1000)(0) - \frac{1}{2}(1000)(35^2)}{\Delta x} = 76,56 \text{ m} \sqrt{(4)}$
- 5.2.3 $W_{net} = \Delta K$

 $W_{f} + W_{g} + W_{N} = \frac{1}{2}mv_{f}^{2} - \frac{1}{2}mv_{i}^{2}$

$$\frac{8000\cos 180^{\circ}(30) + 0 + 0}{v_{f}} = \frac{1}{2}(1000)v_{f}^{2} - \frac{1}{2}(1000)(35^{2}) \checkmark$$
(3)

5.2.4 INCREASE√

On a rainy day the road surface would have less frictional force needed for the braking. \checkmark (2)

(5)

[19]

6.1 Doppler Effect. ✓
 It is the change in frequency (or pitch) of the sound detected by a listener because the sound source and the listener have different velocities relative to the medium of sound propagation. ✓✓

OR

Doppler Effect. \checkmark It is the change in the observed frequency of a sound wave when the source of sound is moving relative to the listener. $\checkmark\checkmark$ (3)

(1)

6.3

 $f_{L} = \frac{V \pm V_{L}}{V \pm V_{s}} f_{s} \checkmark$

$$(f_{s} + 50)\checkmark = (\frac{340 + 0\checkmark}{340 - 20\checkmark})f_{s} \qquad \qquad \mathsf{OR} \ f_{L}\checkmark (\frac{340 + 0\checkmark}{340 - 20\checkmark})(f_{L} - 50)$$

f_s = 800 Hz (range: 800 – 833.33 Hz)

$$v = f_s \lambda \checkmark$$

 $340 = 800 \lambda \checkmark$
 $\lambda = 0,425 \text{ m} \checkmark \text{ (range: } 0,425 - 0,408)$
(7)

- 6.4 Greater than. ✓
 The reflected waves are moving toward the ambulance. ✓
 (2)
- 6.5 blood flow meter ✓
 ●echocardiograms. ✓
 ●ultrasound technology
 - •monitor pregnancies

examine soft tissue injuries. (any two)

[15]

(2)

7.1.1 The magnitude of the <u>electrostatic force</u> exerted by one point charge (Q_1) on another point charge (Q_2) <u>is directly proportional to the product of the magnitudes of the charges</u> and <u>inversely proportional</u> to the square of the distance (r) between them $\checkmark \checkmark$.

Note: -1 mark for each key word/phrase omitted in the correct context.

(2)

7.1.2

CONSIDERING THE VERTICAL FORCES:

14 NSC

	$1 \div 2$	
	$\tan \theta = 0,26/(8 \times 10^{-2} (9,8))$	
	θ = 15,40° \checkmark	
	OPTION 2	
	0,784 N	
	$F = \{9 \times 10^9 \left[\frac{(0.6 \times 10^{-6})(0.9 \times 10^{-6})}{0.150^2} \right] \}$ = 0.216N	
	$F_g = mg\checkmark$ = 8 x 10 ⁻² x 9,8 = 0,784 N	
	$\tan \theta = F/F_g$ = 0,216/0,784 \checkmark $\theta = 15,40^{\circ}\checkmark$	(6)
7.1.5	POSITIVE MARKING FROM 7.2 Tcos θ = 8 x 10 ⁻² (9,8) Tcos 15,40° \checkmark = 8 x 10 ⁻² (9,8) \checkmark T = 0,81 N \checkmark	(6)
7.2.1	<i>Electric field</i> is a region of space in which an electric charge experiences a force. $\checkmark\checkmark$ (accept : force experienced per unit positive charged when placed at that point)	(2)
7 7 7		

7.2.2
$$E_1 = k \frac{q_1}{d^2} \checkmark$$

 $E_{net} = [k \frac{q_1}{d^2} + k \frac{q_2}{(2d)^2}] \checkmark$ OR (E₁ = E₂)
 \checkmark
 $2E_1 = k \frac{q_1}{d^2} + k \frac{q_2}{(2d)^2}$

15

NSC

$$2 k \frac{q_{1}}{d^{2}} = k \frac{q_{1}}{d^{2}} + k \frac{q_{2}}{(2d)^{2}}$$

$$2 k \frac{q_{1}}{d^{2}} = k \frac{q_{1}}{d^{2}} + k \frac{q_{2}}{4d^{2}}$$

$$k \frac{q_{1}}{d^{2}} = k \frac{q_{2}}{4d^{2}}$$

$$4q_{1} = q_{2}$$

$$4x 0.5 \times 10^{-6} = q_{2}$$

$$q_{2} = 2 \times 10^{-6} C \checkmark$$
(4)
[21]

QUESTION 8

<u>The potential difference across a conductor is directly proportional to</u> the current in the conductor at constant temperature $\checkmark \checkmark$ 8.1

NOTE

If constant temperature is omitted -1 mark

(2)

8.2

Total Resistance = R_{series} + R_{parallel} 8.2.1

Total Resistance = $\underline{4 + \sqrt{(\frac{1}{12} + \frac{1}{18})^{-1}}}$

Total Resistance = 11,20

$$I = \frac{V}{R}$$

$$I = \frac{12}{11,2}$$

$$I = 1,07A$$
(5)

8.2.2 **POSITIVE MARKING FROM 8.2.1**

 $V_{4\Omega} = IR$ V_{4Ω} = 1,07 x 4√ V_{4Ω} = 4,28 V $V_{//} = 12 - V_{4\Omega}$ $V_{//} = 12 - 4,28$ V// = 7,72 V $I_{10\Omega} = \frac{V}{D}$ R $I_{10\Omega} = \frac{7,72}{18} \checkmark$ $I_{10\Omega} = 0,43$ A V_{10Ω} = IR $P = I^2 R_{\nu}$ V_{10Ω} = 0,43 x 10 $P = (0,43)^2 (10) \checkmark$ $V_{10\Omega} = 4.3 V$ V^2 P = 1,85 W√ ℙৼͺͶ∕ R P = 4,3 X 0,43√ 4,3² P = P = 1,85 W√ 10 P = 1,85 W✓ (5)

8.2.3 POSITIVE MARKING FROM 8.2.1

W = V.I∆t✓	W = I ² Rt∕	$W = \frac{V^{2}}{R}t$ = $\frac{12^{2}}{11.2} \times 30$ = 385,71J	
= 12 x 1.07 x 30√ = 385,20 J√	= 1,07 ² x 11,2 x 30√ = 384,69 J√	1	(3)

8.3 Decreases√

If the 12 Ohm resistor stops working, the <u>total resistance would</u> <u>increase</u> \checkmark . Resistance is <u>inversely proportional</u> to the current \checkmark . (3)

[18]

9.1	AC (generator) ✓	(1	I)

- 9.2 Slip rings \checkmark (1)
- 9.3 The AC potential difference/voltage which dissipates the same amount of energy as DC. ✓✓

OR

(The rms value of AC is) the DC potential difference/voltage which dissipates the same amount of energy as AC. $\checkmark \checkmark$ (2)

9.4

$$V_{RMS} = \frac{V_{Max}}{\sqrt{2}} \checkmark$$

$$V_{RMS} = \frac{1}{\sqrt{2}} \checkmark$$

$$V_{RMS} = 0.71 \, V \checkmark$$
(3)

9.6 Positive marking from Q 9.4

$$P_{Ave} = V_{RMS} I_{RMS}
 P_{Ave} = V_{RMS} \left(\frac{I_{Max}}{\sqrt{2}} \right)$$

$$P_{Ave} = 0.71(\frac{2}{\sqrt{2}}) \checkmark$$

$$P_{Ave} = 1.00 \text{ W} \checkmark$$
(3)

9.7 Any two:

(i) easier to generate and transmit from place to place ✓
(ii) easier to convert from a.c. to d.c. than the reverse ✓
(iii) voltage can be easily changed by stepping it up or down
(iv) high frequency used in a.c. make it more suitable for electric motors

[13]

TOTAL: 150