## SA's Leading Past Year

## Exam Paper Portal

## STUD.Y

# You have Downloaded, yet Another Great Resource to assist you with your Studies : 

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za


> SAEAMM RADPERES

## education

## Department:

Education
PROVINCE OF KWAZULU-NATAL

## NATIONAL SENIOR CERTIFICATE

## GRADE 12

## PHYSICAL SCIENCES P1 (PHYSICS)

## PREPARATORY EXAMINATIONS

SEPTEMBER 2020

## MARKING GUIDELINE

Time: 3 Hours
Marks: 150

This marking guideline has 17 pages.

## SECTION A

## QUESTION 1

### 1.1 B $\checkmark \checkmark$

$1.2 \mathrm{D} \checkmark \checkmark$
1.3 D $\checkmark \checkmark$
$1.4 \mathrm{D} \checkmark \checkmark$
1.5 $\mathrm{D} \checkmark \checkmark$
1.6 A $\checkmark \checkmark$
1.7 $D \checkmark \checkmark$
$1.8 C \checkmark \checkmark$
$1.9 \quad C \checkmark \checkmark$
1.10 A $\checkmark \checkmark$

## SECTION B

## QUESTION 2

2.1 Normal force is the force or the component of a force which a surface exerts on an object with which it is in contact, and which is perpendicular to the surface. $\checkmark \checkmark$
2.2



|  | Accept the following symbols |
| :--- | :--- |
| $\mathbf{N} \checkmark$ | $\mathrm{F}_{\mathrm{N}} /$ Normal/Normal force |
| $\mathbf{f k} \checkmark$ | Kinetic friction force/f/ $\mathrm{F}_{\mathrm{f}} / \mathrm{f}_{\mathrm{r}}$ |
| $\mathbf{F}_{\mathbf{A}^{\checkmark}} \checkmark$ | $\mathrm{F}_{\mathrm{r}} / \mathrm{F}_{\text {applied }}$ |
| $\mathbf{F}_{\mathrm{g}} \checkmark$ | W/78,4 $\mathbf{N}$ |

## Notes

- Mark is awarded for label and arrow.
- Do not penalise for length of arrows.
- Deduct 1 mark for any additional force.
- If force(s) do not make contact with body/dot : Max:3/4
- If arrows missing but labels are there: Max:3/4


### 2.3 Considering the forces parallel to the plane::

$$
\begin{align*}
& \mathrm{F}_{\text {net }}=\mathrm{ma} \\
& \mathrm{~F}_{\text {net }}=0 \\
& \mathrm{~F}_{\mathrm{Ax}}-\mathrm{f}_{\mathrm{k}}-\mathrm{F}_{\mathrm{gx}}=0 \\
& \mathrm{~F}_{\mathrm{A}} \cos \theta=\mathrm{f}_{\mathrm{k}}+\mathrm{F}_{-9} \\
& 51 \cos \theta=1+8(9,8) \sin 30^{\circ} \checkmark \\
& \theta=37,98^{\circ} \checkmark \tag{3}
\end{align*}
$$

### 2.4 POSITIVE MARKING FROM 2.3

Consider the forces perpendicular to the plane:

$\underline{51 \sin 37,98^{\circ}+N=8 \times 9,8 \cos \left(30^{\circ}\right)^{\checkmark}}$
$\therefore N=36,51 N \checkmark$
2.5 Increases $\checkmark$

## QUESTION 3

3.1

### 3.1.1 UPWARDS IS POSITIVE

## UPWARDS IS NEGATIVE

$v_{f}=v_{i}+a \Delta t \checkmark$
$0=12-9,8 \Delta t \checkmark$
$\Delta t=1.2245 \mathrm{~s} \checkmark$
3.1.2

UPWARDS IS POSITIVE
$v_{f}^{2}=v_{i}^{2}+2 a \Delta y v$
$0=12^{2}+2(-9,8) \Delta y \checkmark$
$\Delta y=7,35 \mathrm{~m}$
$\therefore$ Max height $=50+\checkmark 7,35$

$$
=\overline{57,35 \mathrm{~m}} \checkmark
$$

$v_{f}=v_{i}+a \Delta t \checkmark$
$0=-12+9,8 \Delta t \checkmark$
$\Delta t=1.2245 s \checkmark$
OPTION 1
UPWARDS NEGATIVE
$v_{f}^{2}=v_{i}^{2}+2 a \Delta y \checkmark$
$\underline{0=(-12)^{2}+2(9,8) \Delta y}$
$\Delta y=-7,35 m$
$\therefore$ Maximum height $=\underline{50+\checkmark 7,35}$

$$
=57,35 \mathrm{~m}
$$

## OPTION 2

POSITIVE MARKING FROM 3.1.1
UPWARDS IS POSITIVE UPWARDS IS NEGATIVE

$$
\begin{aligned}
& \Delta y=\left(\frac{v_{i}+v_{f}}{2}\right) \Delta t \checkmark \\
& {\left[\Delta y=\left(\frac{12+0}{2}\right) 1,2245\right] \checkmark} \\
& \Delta y=7,35 \mathrm{~m} \\
& \therefore \text { Max height }
\end{aligned}=\begin{aligned}
& =50+\checkmark 7,35 \\
& 57,35 \mathrm{~m} \checkmark
\end{aligned}
$$

$$
\Delta y=\left(\frac{v_{i}+v_{f}}{2}\right) \Delta t \checkmark
$$

$$
\left[\Delta y=\left(\frac{-12+0}{2}\right) 1,2245\right] \checkmark
$$

$\Delta y=-7,35 \mathrm{~m}$
$\therefore$ Max height $=\underline{50+\checkmark 7,35}$

$$
=57,35 \mathrm{~m}
$$

## OPTION 3

## POSITIVE MARKING FROM 3.1.1

UPWARDS IS POSITIVE
$\Delta y=v i \Delta t+1 / 2 a \Delta t^{2} \checkmark$
$\Delta y=(12)(1,23)+1 / 2(-9,8)(1,23)^{2} \checkmark$
$\Delta y=7,35 \mathrm{~m}$
$\therefore$ Maximum height $=50+\checkmark 7,35$

$$
=57,35 \mathrm{~m} \checkmark
$$

## UPWARDS IS NEGATIVE

$\Delta y=v i \Delta t+1 / 2 a \Delta t^{2} \checkmark$
$\Delta y=(-12)(1,23)+1 / 2(9,8)(1,23)^{2} \checkmark$
$\Delta y=-7,35 m$
$\therefore$ Maximum height $=50+\checkmark 7,35$

$$
=57,35 \mathrm{~m} \checkmark
$$

## OPTION 4

$(\mathrm{K}+\mathrm{U})_{1}=(\mathrm{K}+\mathrm{U})_{2} \checkmark$
$\left(1 / 2 m v^{2}+m g h\right)_{1}=\left(1 / 2 m v^{2}+m g h\right)_{2}$
$\underline{1 / 2 m(12)^{2}+m(9,8)(50)} \checkmark=\underline{1 / 2 m(0)^{2}+m(9,8) h} \checkmark$
$\mathrm{h}=57,35 \mathrm{~m} \checkmark$

### 3.1.3

OPTION 1
UPWARDS POSITIVE
$v_{f}=v_{i}+a \Delta t \checkmark$
$\mathrm{v}_{\mathrm{f}}=12+(-9,8)(4) \checkmark$
$\mathrm{v}_{\mathrm{f}}=-27,20 \mathrm{~m} \cdot \mathrm{~s}^{-1}$
$\therefore$ velocity of the ball is $27,20 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ downwards $\checkmark$

## UPWARDS NEGATIVE

$v_{f}=v_{i}+a \Delta t \checkmark$
$\mathrm{v}_{\mathrm{f}}=-12+(9,8)(4) \checkmark$
$\mathrm{v}_{\mathrm{f}}=27,20 \mathrm{~m} \cdot \mathrm{~s}^{-1}$
$\therefore$ velocity of the ball is $\underline{27,20 \mathrm{~m} \cdot \mathrm{~s}^{-1} \text { downwards } \checkmark}$

## OPTION 2

## UPWARDS POSITIVE

$\Delta y=v i \Delta t+1 / 2 a \Delta t^{2}$
$\Delta y=(12)(4)+1 / 2(-9,8)(4)^{2}$
$\Delta y=-30,40 \mathrm{~m}$
$\Delta y=\left(\frac{v_{i}+v_{f}}{2}\right) \Delta t \checkmark$
$-30,40=\left(\frac{12+v_{f}}{2}\right)(4) \cdot$
$\mathrm{v}_{\mathrm{f}}=-27,20 \mathrm{~m} \cdot \mathrm{~s}^{-1}$
$\therefore$ velocity of the ball is $27,20 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ downwards $\checkmark$

## UPWARDS NEGATIVE

$\Delta y=v i \Delta t+1 / 2 a \Delta t^{2}$
$\Delta y=(-12)(4)+1 / 2(9,8)(4)^{2}$
$\Delta y=30,40 \mathrm{~m}$
$\Delta y=\left(\frac{v_{i}+v_{f}}{2}\right) \Delta t \checkmark$
$30,40=\left(\frac{-12+v_{f}}{2}\right)(4) \checkmark$
$v_{f}=27,20 \mathrm{~m} \cdot \mathrm{~s}^{-1}$
$\therefore$ velocity of the ball is $27,20 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ downwards $\checkmark$

## OPTION 3

## UPWARDS POSITIVE

$\Delta y=v i \Delta t+1 / 2 a \Delta t^{2}$
$\Delta y=(12)(4)+1 / 2(-9,8)(4)^{2}$
$\Delta y=-30,40 \mathrm{~m}$
$v_{f}^{2}=v_{i}^{2}+2 a \Delta y v$
$\mathrm{v}_{\mathrm{f}}^{2}=(12)^{2}+2(-9,8)(-30.40)$
$\mathrm{v}_{\mathrm{f}}=27,20 \mathrm{~m} \cdot \mathrm{~s}^{-1}$
$\therefore$ velocity of the ball is $27,20 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ downwards $\checkmark$

## UPWARDS NEGATIVE

$$
\begin{align*}
& \Delta y=v i \Delta t+1 / 2 a \Delta t^{2} \\
& \Delta y=(-12)(4)+1 / 2(9,8)(4)^{2} \\
& \Delta y=30,40 \mathrm{~m} \\
& v_{f}^{2}=v_{i}^{2}+2 \mathrm{a} \Delta \mathrm{y} \checkmark \\
& \mathrm{v}_{\mathrm{f}}^{2}=(-12)^{2}+2(9,8)(30.40) \\
& \mathrm{v}_{\mathrm{f}}=27,20 \mathrm{~m}^{2} \cdot \mathrm{~s}^{-1} \tag{3}
\end{align*}
$$

$\therefore$ velocity of the ball is $27,20 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ downwards $\checkmark$

## OPTION 1

UPWARDS POSITIVE
$\Delta y=v i \Delta t+1 / 2 a \Delta t^{2} \checkmark$
$\Delta y=(12)(4)+1 / 2(-9,8)(4)^{2} \checkmark$
$\Delta y=-30,40 \mathrm{~m}$

If candidate calculated 30.40 m in Q 3.1.3. above award 2 marks here.
$\therefore$ Position above the ground $=\underline{50-\sqrt{0} 30,40}$

$$
=\overline{19,60} \mathrm{~m} \checkmark
$$

## UPWARDS NEGATIVE

$\Delta y=v i \Delta t+1 / 2 a \Delta t^{2} \checkmark$
$\Delta y=(-12)(4)+1 / 2(9,8)(4)^{2} \checkmark$
$\Delta y=30,40 \mathrm{~m}$
$\therefore$ Position above the ground $=\underline{50-\sqrt{0} 0,40}$

$$
=19,60 \mathrm{~m} \checkmark
$$

## OPTION 2

POSITIVE MARKING FROM 3.1.3
UPWARDS POSITIVE
$\Delta y=\left(\frac{v_{i}+v_{f}}{2}\right) \Delta t \checkmark$
$\Delta y=\left(\frac{12+(-27,20)}{2}\right)(4) \checkmark$
$\Delta y=-30,40 m$
$\therefore$ Position above the ground $=\underline{50-\sqrt{0} 0,40}$

$$
=\overline{19,60} \mathrm{~m}
$$

## UPWARDS NEGATIVE

$\Delta y=\left(\frac{v_{i}+v_{f}}{2}\right) \Delta t \checkmark$
$\Delta y=\left(\frac{-12+27,20}{2}\right)(4) \checkmark$
$\Delta y=30,40 \mathrm{~m}$
$\therefore$ Position above the ground $=\underline{50-\checkmark 30,40}$

$$
=19,60 \mathrm{~m} \checkmark
$$

## OPTION 3

POSITIVE MARKING FROM 3.1.3 UPWARDS POSITIVE
$v_{f}^{2}=v_{i}^{2}+2 a \Delta y \checkmark$
$(-27,20)^{2}=(12)^{2}+2(-9,8) \Delta y \checkmark$
$\Delta y=-30,40$
$\therefore$ Position above the ground $=50-\sqrt{50,40}$

$$
=19,60 \mathrm{~m} \checkmark
$$

## UPWARDS NEGATIVE

$v_{f}^{2}=v_{i}^{2}+2 a \Delta y \checkmark$
$(27,20)^{2}=(-12)^{2}+2(9,8) \Delta y \checkmark$
$\Delta y=30,40$
$\therefore$ Position above the ground $=50-\sqrt{50,40}$

$$
\begin{equation*}
=\overline{19,60} \mathrm{~m} \tag{4}
\end{equation*}
$$



OR


| CRITERIA FOR MARKING OF GRAPH |  |
| :--- | :---: |
| Correct shape (the three lines must have same <br> gradient) | $\checkmark$ |
| Indication of initial velocity (12 $\mathrm{m} \cdot \mathrm{s}^{-1}$ ) | $\checkmark$ |
| Indication of velocity of bounce $\left(25 \mathrm{~m} \cdot \mathrm{~s}^{-1}\right)$ | $\checkmark$ |
| 1.23 s | $\checkmark$ |
| First line longer below x-axis than above | $\checkmark$ |
| If $25 \mathrm{~m} . \mathrm{s}^{-1}$ line beyond x-axis then -1 |  |
| Do not penalise if dotted lines are solid |  |

## QUESTION 4

4.1 The resultant/net force acting on an object is equal to the rate of change of momentum of the object in the direction of the resultant/net force. $\checkmark \checkmark$
4.2
4.2.1 $(\mathrm{K}+\mathrm{U})_{1}=(\mathrm{K}+\mathrm{U})_{2}$
$\left(1 / 2 m v^{2}+m g h\right)_{1}=\left(1 / 2 m v^{2}+m g h\right)_{2}$
$\frac{\left(1 / 2(1,005) \mathrm{v}^{2}+0\right)}{v_{1}=3,13 \mathrm{~m} \cdot \mathrm{~s}^{-1}}=0+(1,005)(9,8)(0,5) \quad \checkmark$
$\therefore$ The velocity of the block - bullet system immediately after collision is $3,13 \mathrm{~m} \cdot \mathrm{~s}^{-1} \checkmark$
4.2.2 POSITVE MARKING FROM 4.2.1

$$
\begin{align*}
& \Sigma p_{i}=\Sigma p_{f} \\
& m_{1} v_{1 i}+m_{2} v_{2 i}=\left(m_{1}+m_{2}\right)_{f} \\
& (0,005) v_{1 i}+(1)(0) \checkmark v=(0,005+1)(3,13)  \tag{4}\\
& \underline{v i n}^{(0,13}=629,13 \mathrm{~m} \cdot \mathrm{~s}^{-1}
\end{align*}
$$

4.3 Less than $\checkmark$

## QUESTION 5

5.1.1 Total mechanical energy of an isolated system remains constant $\checkmark \checkmark$
5.1.2 No, $\checkmark$
5.1.3

## OPTION 1

$(K+U)_{P}=(K+U)_{Q}-W_{f}$
OR
$W n c=\Delta E p+\Delta E k$
$\left(1 / 2 m v^{2}+m g h\right)_{P}=\left(1 / 2 m v^{2}+m g h\right)_{Q}-W_{f}$
$\left[1 / 2(1200)(0,8)^{2}+(1200)(9,8)(1,8)\right] p \underline{\checkmark}=\left[1 / 2(1200)(4)^{2}+0 \checkmark-W_{f}\right]_{Q}$
$\mathrm{W}_{\mathrm{f}}=-11952 \mathrm{~J}$
$\mathrm{W}_{\mathrm{f}}=\mathrm{F}_{\mathrm{f}} \Delta \mathrm{x} \cos 180$
$-11952=-F_{f} 2,2$
$\mathrm{F}_{\mathrm{f}}=5432,73 \mathrm{~N} \checkmark$

## OPTION 2

```
\(\mathrm{W}_{\text {net }}=\Delta \mathrm{K}\)
\(W_{f}+W_{g}=1 / 2 m v_{f}^{2}-1 / 2 m v_{i}^{2} \quad \checkmark\)
\(W_{f}+m g h=1 / 2 m\left(v_{f}^{2}-v_{i}^{2}\right)\)
\(W_{f}+m g h=1 / 2 m v_{f}^{2}-1 / 2 m v_{i}^{2}\)
\(W_{f}+\underline{1200(9,8)(2,2) \cos 324,90^{\circ}} \checkmark=\underline{1 / 2(1200)}(4)^{2}-1 / 2(1200)(0,8)^{2} \checkmark\)
                                    (accept \(35.1^{\circ}\) )
\(\mathrm{W}_{\mathrm{f}}=-11952 \mathrm{~J}\)
\(W_{f}=F_{f} \Delta x \cos 180\)
\(-11952=-\mathrm{F}_{\mathrm{f}} 2,2\)
\(\mathrm{F}_{\mathrm{f}}=5432,73 \mathrm{~N} \checkmark\)
```

5.2
5.2.1 The net/total work done on an object is equal to the change in the object's kinetic energy. $\checkmark \checkmark$.

OR
The work done on an object by a resultant/net force is equal to the change in the object's kinetic energy.

Note: -1 mark for each key word/phrase omitted in the correct context.
5.2.2 $\mathrm{W}_{\text {net }}=\Delta \mathrm{K}$
$\left.\begin{array}{l}W_{\text {net }}=\Delta K \\ W_{f}+W_{N}=1 / 2 m v_{f}^{2}-1 / 2 m v_{i}^{2}\end{array}\right\} \checkmark$
$\underline{8000 \cos 180^{\circ} \Delta x}+0+0=\underline{1 / 2(1000)(0)}-\underline{1 / 2(1000)\left(35^{2}\right)} \checkmark$
$\Delta x=76,56 \mathrm{~m} \checkmark$
5.2.3 $\mathrm{W}_{\text {net }}=\Delta \mathrm{K}$
$W_{f}+W_{g}+W_{N}=1 / 2 m v_{f}^{2}-1 / 2 m v_{i}^{2}$
$\underline{8000} \cos 180^{\circ}(30)+0+0 \checkmark=1 / 2(1000) \mathrm{v}_{\mathrm{f}}^{2}-1 / 2(1000)\left(35^{2}\right) \checkmark$ $v_{f}=27,29 \mathrm{~m} \cdot \mathrm{~s}^{-1}$
5.2.4 INCREASE $\checkmark$

On a rainy day the road surface would have less frictional force needed for the braking.

## QUESTION 6

6.1 Doppler Effect.

It is the change in frequency (or pitch) of the sound detected by a listener because the sound source and the listener have different velocities relative to the medium of sound propagation.

## OR

Doppler Effect.
It is the change in the observed frequency of a sound wave when the source of sound is moving relative to the listener. $\checkmark \checkmark$
6.2 Towards $\checkmark$
6.3
$f_{L}=\frac{v \pm v_{L}}{v \pm v_{s}} f_{s} \checkmark$
$\left(\mathrm{f}_{\mathrm{s}}+50\right) \checkmark=\left(\frac{340+0 \checkmark}{340-20 \checkmark}\right) \mathrm{f}_{\mathrm{s}}$
OR $\mathrm{f}_{\mathrm{L}} \checkmark\left(\frac{340+0 \checkmark}{340-20 \checkmark}\right)\left(\mathrm{f}_{\mathrm{L}}-50\right)$
$\mathrm{f}_{\mathrm{s}}=800 \mathrm{~Hz}$ (range: $800-833.33 \mathrm{~Hz}$ )
$v=f_{s} \lambda \checkmark$
$340=800 \lambda \checkmark$
$\lambda=0,425 \mathrm{~m} \checkmark$ (range: $0,425-0,408$ )
6.4 Greater than. $\checkmark$

The reflected waves are moving toward the ambulance. $\checkmark$
6.5 blood flow meter $\checkmark$
-echocardiograms.

- ultrasound technology
- monitor pregnancies
-examine soft tissue injuries. ( any two)


## QUESTION 7

7.1.1 The magnitude of the electrostatic force exerted by one point charge $\left(Q_{1}\right)$ on another point charge $\left(Q_{2}\right)$ is directly proportional to the product of the magnitudes of the charges and inversely proportional to the square of the distance (r) between them $\checkmark \checkmark$.
(2)

Note: -1 mark for each key word/phrase omitted in the correct context.
7.1.2


Accept:
Density around $R$ maybe greater than Q

| Marking Criteria |  |
| :--- | :---: |
| Correct Shape | $\checkmark$ |
| Field lines do not cross | $\checkmark$ |
| Direction of field lines correct | $\checkmark$ |

(3)
7.1.3


### 7.1.4 CONSIDERING THE HORIZONTAL FORCES:

$\mathrm{F}_{\text {net }}=0$
$\mathrm{T} \sin \theta=\mathrm{F}_{\mathrm{e}} \checkmark$
$\mathrm{T} \sin \theta=\left\{9 \times 10^{9}\left[\frac{\left(0,6 \times 10^{-6}\right)\left(0,9 \times 10^{-6}\right)}{0,150^{2}} \checkmark\right]\right\} \checkmark$
$\mathrm{T} \sin \theta=0,216$

## CONSIDERING THE VERTICAL FORCES:

$\mathrm{F}_{\text {net }}=0$
$\mathrm{T} \cos \theta=\mathrm{mg} \checkmark$
$\mathrm{T} \cos \theta=8 \times 10^{-2}(9,8) \checkmark$
2

$\tan \theta=0,26 /\left(8 \times 10^{-2}(9,8)\right)$
$\theta=15,40^{\circ} \checkmark$
OPTION 2

$F=\left\{9 \times 10^{9}\left[\frac{\left(0,6 \times 10^{-6}\right)\left(0,9 \times 10^{-6}\right) \curlyvee}{0,150^{2} \checkmark}\right]\right\}$
$=0.216 \mathrm{~N}$
$\mathrm{F}_{\mathrm{g}}=\mathrm{mg} \checkmark$
$=8 \times 10^{-2} \times 9,8 \checkmark$
$=0,784 \mathrm{~N}$
$\tan \theta=\mathrm{F} / \mathrm{F}_{\mathrm{g}}$

$$
\begin{equation*}
=0,216 / 0,784 \checkmark \tag{6}
\end{equation*}
$$

$\theta=15,40^{\circ} \checkmark$

### 7.1.5 POSITIVE MARKING FROM 7.2

$\mathrm{T} \cos \theta=8 \times 10^{-2}(9,8)$
$\mathrm{T} \cos 15,40^{\circ} \checkmark=8 \times 10^{-2}(9,8) \checkmark$
$\mathrm{T}=0,81 \mathrm{~N} \checkmark$
7.2.1 Electric field is a region of space in which an electric charge experiences a force. $\checkmark \checkmark$
(accept : force experienced per unit positive charged when placed at that point)
7.2.2 $\quad E_{1}=k \frac{q_{1}}{d^{2}} \checkmark$
$E_{n e t}=\left[k \frac{q_{1}}{d^{2}}+k \frac{q_{2}}{(2 d)^{2}}\right] \checkmark \quad$ OR $\left(\mathrm{E}_{1}=\mathrm{E}_{2}\right)$
${ }_{2}^{\checkmark} \mathrm{E}_{1}=k \frac{q_{1}}{d^{2}}+k \frac{q_{2}}{(2 d)^{2}}$

$$
\begin{align*}
& 2 k \frac{q_{1}}{d^{2}}=k \frac{q_{1}}{d^{2}}+k \frac{q_{2}}{(2 d)^{2}} \\
& 2 k \frac{q_{1}}{d^{2}}=k \frac{q_{1}}{d^{2}}+k \frac{q_{2}}{4 d^{2}} \\
& k \frac{q_{1}}{d^{2}}=k \frac{q_{2}}{4 d^{2}} \\
& 4 \mathrm{q}_{1}=\mathrm{q}_{2} \\
& 4 \times 0,5 \times 10^{-6}=\mathrm{q}_{2} \\
& \mathrm{q}_{2}=2 \times 10^{-6} \mathrm{C} \tag{4}
\end{align*}
$$

## QUESTION 8

8.1 The potential difference across a conductor is directly proportional to the current in the conductor at constant temperature

NOTE
If constant temperature is omitted -1 mark
8.2
8.2.1 Total Resistance $=R_{\text {series }}+R_{\text {parallel }}$

Total Resistance $=\underline{4+\checkmark}\left(\frac{1}{12}+\frac{1}{18}\right)^{-1} \checkmark$
Total Resistance $=11,20$
$\mathrm{I}=\frac{V}{R}$
$I=\frac{12}{11,2} \checkmark$
$I=1,07 \mathrm{~A}$.

### 8.2.2 POSITIVE MARKING FROM 8.2.1

$$
\begin{aligned}
& V_{4 \Omega}=I R \\
& V_{4 \Omega}=1,07 \times 4 \checkmark \\
& V_{4 \Omega}=4,28 \mathrm{~V} \\
& \mathrm{~V}_{/ /}=12-\mathrm{V}_{4 \Omega} \\
& \mathrm{~V}_{\text {/I }}=12-4,28 \\
& \mathrm{~V}_{\text {II }}=7,72 \mathrm{~V} \\
& \mathrm{l}_{10 \Omega}=\frac{V}{R} \\
& l_{10 \Omega}=\frac{7,72}{18} \checkmark
\end{aligned}
$$

### 8.2.3 POSITIVE MARKING FROM 8.2.1

| $\mathrm{W}=\mathrm{V} .1 \Delta \mathrm{t} \checkmark$ | $W=I^{2} R t \checkmark$ | $\begin{aligned} W & =\frac{V^{2}}{R} t \\ & =\frac{12^{2}}{11.2} \times 30 \\ & =385,71 \mathrm{~J} \end{aligned}$ |
| :---: | :---: | :---: |
| $\begin{aligned} & =12 \times 1.07 \times 30 \checkmark \\ & =385,20 \mathrm{~J} \checkmark \end{aligned}$ | $\begin{aligned} & =1,07^{2} \times 11,2 \times 30 \checkmark \\ & =384,69 \mathrm{~J} \checkmark \end{aligned}$ |  |

### 8.3 Decreases $\checkmark$

If the 12 Ohm resistor stops working, the total resistance would increase $\checkmark$. Resistance is inversely proportional to the current $\checkmark$.

## QUESTION 9

9.1 AC (generator) $\checkmark$
9.2 Slip rings $\checkmark$
9.3 The AC potential difference/voltage which dissipates the same amount of energy as DC. $\checkmark \checkmark$

## OR

(The rms value of AC is) the DC potential difference/voltage which dissipates the same amount of energy as AC. $\checkmark \checkmark$
9.4

$$
V_{R M S}=\frac{V_{\operatorname{Max}}}{\sqrt{2}} \downarrow
$$

$V_{\text {RMS }}=\frac{1}{\sqrt{2}} \checkmark$
$\mathrm{V}_{\mathrm{RMS}}=0,71 \mathrm{~V} \checkmark$
$9.50,04 \mathrm{~s} . \checkmark$
9.6 Positive marking from Q 9.4

$$
\left.\begin{array}{l}
P_{A v e}=V_{\text {RUS }} I_{\text {RUS }} \\
P_{\text {Ave }}=V_{\text {RUS }}\left(\frac{I_{\text {Max }}}{\sqrt{2}}\right)
\end{array}\right\}
$$

$P_{\text {Ave }}=0,71\left(\frac{2}{\sqrt{2}}\right) \checkmark$
$P_{\text {Ave }}=1,00 \mathrm{~W} \checkmark$
9.7 Any two:
(i) easier to generate and transmit from place to place $\checkmark$
(ii) easier to convert from a.c. to d.c. than the reverse $\checkmark$
(iii) voltage can be easily changed by stepping it up or down
(iv) high frequency used in a.c. make it more suitable for electric motors

