

You have Downloaded, yet Another Great Resource to assist you with your Studies ③

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

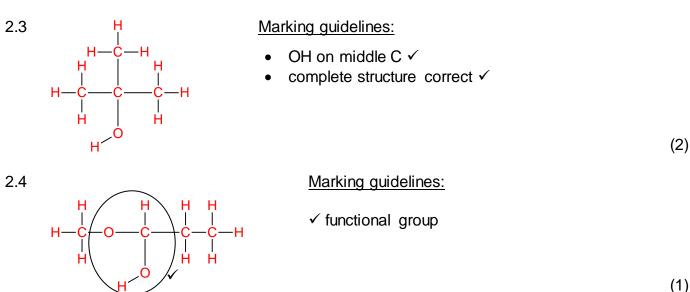
Visit us @ www.saexampapers.co.za

PREPARATORY EXAMINATION 2018 MARKING GUIDELINES

PHYSICAL SCIENCES: CHEMISTRY (PAPER 2) (10842)

10 pages

GAUTENG DEPARTMENT OF EDUCATION PREPARATORY EXAMINATION

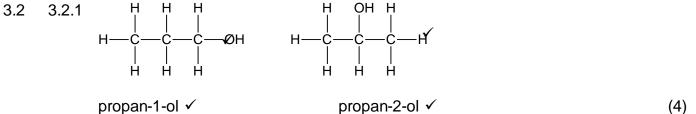

PHYSICAL SCIENCES (Paper 2)

MARKING GUIDELINES

QUESTION 1

- 1 A ✓ ✓
- 2 B √ √
- 3 C √ √
- 4 B **√** √
- 5 C ✓ ✓
- 6 A ✓ ✓
- 7 A ✓ ✓
- 8 C √ √
- 9 D 🗸 🗸

10	D√√		[20]
QUE	STION	2	
2.1	2.1.1	Compounds which have the same molecular formula but different structural formula. (two $\checkmark \checkmark$ or zero)	(2)
	2.1.2	Methyl methanoate	(2)
	2.1.3	H-O-C H H H H H H H H H H H H H H H H H H H	(2)
	2.1.4	Ethanoic acid√	(1)
	2.1.5	Carboxylic acids✓	(1)
2.2	2.2.1	C _n H _{2n} ✓	(1)
	2.2.2	<u>2,5-dimethyl</u> hept-3-ene√	(2)
		a	


[14]

(1)

(1)

QUESTION 3

3.1	(Alcohols are flammable.)	Do not bring it close to flames.✓	(1)

3.2.2 propan-1-ol√

3.2.3 The <u>position</u> of the –OH group in a chain will influence the boiling point, because of the role of the intermolecular forces in branched structure. OR

For a fair test, all alcohols need to be primary alcohols.

3.3 3.3.1 The melting point of butan-1-ol will be higher. \checkmark

Reasons:

- The hydrogen bond between butan-1-ol molecules are stronger than between the butan-2-ol molecules, because the hydroxyl group is more exposed in the butan-1-ol than in the butan-2-ol, which causes the hydrogen bond to have a stronger influence. ✓
- More energy is required to weaken IM Forces between the butan-1-ol molecules, causing a higher melting point. ✓

• Straight chains have a higher melting point than branched chains.

OR

- Butan-1-ol has a larger surface area (chain length)
- Therefore stronger IMF
- More energy needed to overcome IMF

Any TWO reasons

(3)

3.3.2 Butan-2-ol ✓

Reasons:

- If the hydroxyl group is on a terminal carbon atom, the intermolecular force (hydrogen bond) is stronger than when the –OH group is on the second carbon atom, where it is screened and has a smaller influence on the energy needed to cause a phase change (boil) in the second isomer, the butan-2-ol. ✓
- The boiling point of butan-2-ol will be lower and therefore the vapour pressure of butan-2-ol will be higher than the butan-1-ol. Less energy required to overcome the hydrogen bonds and to weaken the bonds. ✓

Any TWO reasons

3.3.3 Increase ✓

(3)

(2)

(1) [**19**]

- 3.3.4 Van der Waals forces (London forces) increase with an increase in molecular mass / chain length / size of molecule. ✓
 - The longer the chain, the higher the boiling point, the stronger the London forces. ✓

3.4 3.4.1 Polymerisation
$$\checkmark$$
 (1)

3.4.3 Any ONE use:

Packaging material ✓ Squeeze bottles Electrical insulation Industrial protective clothing Toys, etc.

QUESTION 4

4.14.1.1Compound $X = C_3H_5Br \checkmark$ (1)4.1.2Addition / hydrohalogenation \checkmark (1)4.1.3Propan-2-ol \checkmark (1)4.1.4An alcohol; where the hydroxyl group is attached to a carbon atom which is
bonded to two other carbon atoms. \checkmark (1)4.1.5Prop-1-ene OR propene \checkmark (1)4.1.6Dehydrohalogenation \checkmark (1)

4.2	4.2.1	Elimination ✓	(1)
	4.2.2	Hydration ✓	(1)
	4.2.3	Hydrohalogenation ✓	(1)
	4.2.4	H₂SO₄ ✓	(1)
	4.2.5	2-bromo-2-methyl <u>pentane</u> ✓	(2) [12]
QUE	STION	5	
5.1	5.1.1	Use powdered CaCO ₃ instead of lumps \checkmark Use of a more concentrated HC ℓ solution \checkmark Heat the reaction mixture \checkmark Add a suitable catalyst Any THREE ways	(3)
	5.1.2	Measure rate of CO ₂ formed by measuring the volume produced at certain time intervals. $\checkmark \checkmark$ Measure the rate at which the mass decreases, by placing the reaction container on a sensitive mass-meter and record the decrease in the mass per unit time. $\checkmark \checkmark$	(4)
	5.1.3	It is not a closed system. \checkmark The CO ₂ gas escapes from the reaction. \checkmark	(2)
5.2	5.2.1	$5 \text{ cm}^3/\text{min OR 5 cm}^3/\text{min}^{-1} \checkmark$	(1)
	5.2.2	Steeper gradient ✓	(1)
	5.2.3	The rate of production of hydrogen gas will be faster per unit time \checkmark because the reaction proceeds at a higher rate at a higher temperature. \checkmark	(2)
	5.2.4	The rate of production of hydrogen gas will increase as the length / surface area of the magnesium ribbon increases. $\checkmark\checkmark$ DO NOT ACCEPT: Graph is directly proportional; does not go through the origin.	(2) [15]

QUESTION 6

- 6.1 If a stress is applied to a system in equilibrium, the system will respond in such a way as to relieve the stress and restore the equilibrium under a new set of conditions. $\checkmark\checkmark$
- 6.2 6.2.1 A√
 - 6.2.2 The <u>forward reaction is endothermic</u>. Decreasing the temperature from the equilibrium system favours the reverse reaction. ✓ The reverse reaction is an exothermic reaction. Therefore more iodine and hydrogen molecules are formed and less HI will be in the reaction mixture. ✓
- 6.3 6.3.1 $K_c = [H_3O^+][CH_3COO^-] \checkmark$ = (1,34 x 10⁻³)(1,34 x 10⁻³) \checkmark = 1,80 x 10⁻⁶ \checkmark
 - 6.3.2 INCREASES. ✓
 - 6.3.3 When sodium ethanoate, CH₃COONa, dissolves in aqueous ethanoic (acetic) acid, CH₃COOH, it dissociates into Na⁺ ions and acetate ions, CH₃COO⁻. ✓ The acetate ion increases the total acetate ion concentration in the solution. ✓ The equilibrium re-establishes to the left and more ethanoic (acetic) acid forms, ✓ decreasing the [H₃O⁺] concentration, therefore the pH increases.
- 6.4 6.4.1 0,5 mol of gas $X_2Y_3 \checkmark$
 - 6.4.2

	2X(g)	3Y(g)	X ₂ Y ₃ (g)
Initial no. of moles	4	4	0
No of moles formed	0	0	0,5 ✓ ratio
No of moles used	1	1,5	
No of moles at equilibrium	3	2.5	0,5
Equilibrium concentration	1,5	1,25	0,25 (🗡 ÷ 2)
0,25			

$$K_{c} = \frac{[X_{2}Y_{3}]}{[X]^{2}[Y]^{3}} \checkmark$$

= $\frac{(0,25)}{(1,5)^{2}(1,25)^{3}} \checkmark$
= 0,057 \sigma

(2)

(1)

(3)

(3)

(1)

(3)

QUESTION 7

7.1	7.1.1	HSO ⁻ ₄ ✓	
		DO NOT ACCEPT: Hydrogen sulphate ion	(1)

7.1.2 CN⁻ ✓

7.2 7.2.1 Na₂CO₃.10H₂O
$$+ 2HC\ell - 2NaC\ell + 11H_2O + CO_2$$
 (2)

- 7.2.2 Methyl orange ✓
- 7.2.3 Strong acid is titrated with a weak base / The equivalence point is in the pH range (3 4,4) / Low pH / Acidic solution after titration end point. Any ONE answer will be correct
- 7.2.4 Red to yellow. ✓
- 7.2.5 **Option 1:**

$$c_{HC\ell} = \frac{n}{V} \quad \checkmark$$

∴ $n_{HC\ell} = CV$

$$= 0.1 \times \frac{24.8}{1000}$$

$$= 2.48 \times 10^{-3} \text{ mol HC} \ell \checkmark$$

1 mol Na₂CO₃ reacts with 2 mol HCℓ ✓
n (Na₂CO₃) in 500 cm³:
=
$$\frac{(2,48 \times 10^{-3})}{2} \times \frac{500}{25}$$

= 2,48 x 10⁻³ mol Na₂CO₃ ✓

n =
$$\frac{m}{M}$$

m = nM
= 2,48 x 10⁻³ x 286 g·mol⁻¹
= 7,092 g ✓

Marking guidelines:

- Calculate n(HCℓ) ✓
- Use formula

$$C = \frac{n}{V}$$
 \checkmark

- Use ratio, 1 : 2 ✓
- Calculate n(Na₂CO₃) ✓
- Calculate m of $Na_2CO_3 \checkmark$

(1)

(1)

(2)

(1)

Option 2:

$$\frac{n_{a}}{n_{b}} = \frac{C_{a}V_{a}}{C_{b}V_{b}} \checkmark$$

$$\checkmark \frac{2}{1} = \frac{(0,1)\left(\frac{24.5}{1000}\right)}{(C_{b})\left(\frac{25}{1000}\right)}$$

$$C_{b} = 0,0496 \text{ mol·dm}^{-3} \checkmark$$

$$C = \frac{n}{V}$$

$$n = (0,0496)(0,5)$$

$$= 0,0248 \text{ mol } Na_{2}CO_{3} \checkmark$$

$$n = \frac{m}{M}$$

$$m = nM = (0,0248) (286) = 7,093 \text{ g } Na_{2}CO_{3} \checkmark$$
(5)

7.2.6 Positive marking from question 7.2.6% Na₂CO₃ in commercial washing soda:

 $= \frac{\text{actual mass}}{\text{theoretical mass}} \times 100 \checkmark$ $= \frac{7,092}{7,6} \checkmark x \quad 100$ $= 93,32 \% \checkmark$

If answer of 7,093 g is used then the answer is 93,33 %

(3) **[16]**

(1)

[8]

QUESTION 8

		\checkmark	
8.1	8.1.1	Mg Mg ²⁺ Ág ⁺ Ág	(3)

- 8.1.2 Silver ✓
 - 8.1.3 $E_{cell}^{\circ} = E_{oxidising agent}^{\circ} E_{reducing agent}^{\circ}$ = 0,8 V -(-2,36 V) \checkmark = 3,16 V \checkmark (3)
 - 8.1.4 25°C or 298 K ✓ (1)
 - 8.1.5 1 mol·dm⁻³ \checkmark (1)
 - 8.1.6 **Option 1**

The reaction rate is too low to supply enough charges to maintain a large enough current. \checkmark

Option 2

$$I = \frac{P}{V} = \frac{6W}{3V} = 2A$$

The light bulb is manufactured to operate effectively if it is connected to a source of 3 V which delivers a current of 2 A. Although the potential difference is sufficiently large, the current is probably too small (due to a too large internal cell resistance). (3) [12]

QUESTION 9

9.1	9.1.1	To the cathode \checkmark	(1)
	9.1.2	$2H_3O^+ + 2e^- \rightarrow H_2 + 2H_2O \checkmark \checkmark$	(2)
	9.1.3	Chlorine (Cℓ₂) gas ✓	(1)
9.2	9.2.1	The covering of the surface or an object with a thin layer of a metal by means of electrolysis. $\checkmark\checkmark$	(2)
	9.2.2	 Any ONE use of electroplating. Protection of the surface of a base metal. ✓ 	

Decorative purposes. (1)
9.2.3 Negative electrode / cathode. ✓ (1)

QUESTION 10

10.1	10.1.1	Wheat ✓	(1)
	10.1.2	Ammonium nitrate / NH₄NO ₃ ✓	(1)
	10.1.3	Wheat needs a soil low in potassium, medium in nitrogen and high in phosphorous. \checkmark Nitrogen needs to be increased in the soil. \checkmark More nitrogen needs to be added and ammonium nitrate has the most nitrogen. \checkmark	(3)
	10.1.4	%nitrogen in NH ₄ NO ₃ = $\frac{\text{mass nitrogen}}{\text{molar mass ammonium nitrate}} \times 100 \checkmark$ = $\frac{28}{80} \checkmark \times 100 = 35\% \checkmark$	(4)
	10.1.5	A Nitrogen / $N_2 \checkmark$ B Hydrogen / $H_2 \checkmark$ C Nitrogen dioxide / $NO_2 \checkmark$ D Ammonium nitrate / $NH_4NO_3 \checkmark$ E Ammonium sulphate / $(NH_4)_2SO_4 \checkmark$	(5) [14]
		TOTAL:	150