SA's Leading Past Year

Exam Paper Portal

STUD.Y

You have Downloaded, yet Another Great Resource to assist you with your Studies :

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

> SAEAMM RADPERES

Education

KwaZulu-Natal Department of Education PHYSICAL SCIENCES P2 (CHEMISTRY) PREPARATORY EXAMINATION

SEPTEMBER 2018

MEMORANDUM

NATIONAL SENIOR CERTIFICATE

GRADE 12

MARKS

This memorandum consists of 9 pages.

The marking guidelines as per 2014 Examination Guidelines, pages 34-37 must be applied when marking this Paper.

QUESTION 1

1.1 B $\checkmark \checkmark$
$1.2 C \checkmark \checkmark$
$1.3 C \checkmark \checkmark$
1.4 A $\checkmark \checkmark$
1.5 $B \checkmark \checkmark$
$1.6 \quad B \vee \checkmark$
(2)
1.7 $\mathrm{D} \checkmark \checkmark$
1.8 A $\checkmark \checkmark$
$1.9 \mathrm{~A} \checkmark \checkmark$
$1.10 \mathrm{C} \checkmark \checkmark$

QUESTION 2

2.1.1 E \checkmark
2.1.2 B \checkmark
2.1.3 D \checkmark
2.1.4 FV
2.1.5 G \checkmark
2.2.1 2,4,4-trimethylpent-2-ene $\checkmark \checkmark$
(2)
2.2.2 $\quad \mathrm{C}_{n} \mathrm{H}_{2 n}$
2.3.1 ethanol \checkmark
2.3.2 sulphuric acid \checkmark

QUESTION 3

3.1.1 a series of organic compounds that can be described by the same general formula \checkmark in which one member differs from the next with a CH_{2} group.
3.1.2 the temperature at which the vapour pressure equals atmospheric/external pressure. $\checkmark \checkmark$ (2 or 0)
3.2 C \checkmark

As the boiling point increases the vapour pressure decreases.
C has the highest boiling point.
$3.3 \quad \mathrm{~B} \checkmark$
3.4.1 $118,50{ }^{\circ} \mathrm{C} \checkmark$
3.4.2 In addition to London forces and dipole-dipole forces, \underline{C} has two sites for hydrogen bonding between the molecules \checkmark resulting in the strongest intermolecular forces occurring between molecules of C. \checkmark
The intermolecular forces between molecules of C require the most amount of energy to overcome. \checkmark
C will therefore have the highest boiling point.

QUESTION 4

4.1.1 Addition/hydrohalogenation \checkmark
4.1.2 Substitution/hydrolysis \checkmark

2-bromobutane \checkmark
4.3 Secondary \checkmark

The carbon to which the -O-H \checkmark is bonded to, is bonded to TWO other carbon atoms.
4.4 Dehydration $\checkmark \checkmark$
4.5 (Gentle) heat \checkmark

Aqueous/dilute strong base (accept NaOH (dilute) or KOH (dilute) \checkmark
4.6.1 Compounds with the same molecular formula, \checkmark but different positions of the side chain/substituents/functional groups on the parent chain.
4.6.2 Elimination \checkmark
4.6.3

1 mark for each reactant and product

QUESTION 5

5.1.1 ANY ONE

- The change in concentration \checkmark of reactants/products per unit time.
- Rate of \checkmark change in concentration of reactants or products.
- Change in amount/number of moles/volume/mass of reactants/products \checkmark per (unit) time.
- Amount/number of moles/volume/mass of products formed OR reactants used \checkmark per (unit) time.
5.1.2 60-61(s) \checkmark
5.1.3 $\mathrm{n}\left(\mathrm{CO}_{2}\right)=\mathrm{n}\left(\mathrm{CaCO}_{3}\right) \checkmark$

$$
=\left(n=\frac{m}{M}\right)
$$

$$
=\left(\frac{86-40}{100}\right)
$$

$$
=0,46 \mathrm{mols}
$$

$$
\begin{equation*}
V=10,304 \mathrm{dm}^{3} \checkmark \tag{5}
\end{equation*}
$$

$5.1 .4 \quad 40 \mathrm{~g} \checkmark$
5.1.5 INCREASES \checkmark
5.1.6 See attached graph.

- Curve starts at 86 g and ends at $40 \mathrm{~g} \checkmark$
- The completion time is above 60 or $61 \mathrm{~s} \checkmark$
- The curve above the original \checkmark
5.2.1 Collision theory
5.2.2 The shaded areas in the distribution curves represent the number of molecules with sufficient kinetic energy to overcome the activation energy \checkmark. An increase in the temperature of the system results in a greater number of particles with sufficient kinetic energy to overcome the activation energy of the reaction \checkmark. This results in more effective collisions per unit time OR a higher chance of an effective collision occurring \checkmark, resulting in a higher reaction rate.

QUESTION 6

6.1 When the equilibrium in a closed system is disturbed \checkmark, the system will re-instate a new equilibrium by favouring the reaction that will oppose the disturbance.
6.2.1 REMAINS THE SAME \checkmark
6.2.2 INCREASES \checkmark
6.2.3 REMAINS THE SAME
6.2.4 INCREASES \checkmark

Apply negative marking from 6.2.4

6.3 According to Le Chatelier's Principle a decrease in temperature favours the exothermic reaction \checkmark A decrease in temperature increases the equilibrium constant \checkmark. Therefore the forward reaction is favoured \checkmark
6.4

Marking criteria:

- Indicating that the number of mols of H_{2} decreases by an unknown amout \checkmark
- Correct mol ratior
- Calculating in terms of x the quantity (mol) at equilibrium of all three substances \checkmark
- Substitute $\mathrm{V}=4 \mathrm{dm}^{3}$ in $\mathrm{c}=\frac{\mathrm{n}}{\mathrm{V}}$ to determine concentration at equilibrium of $\mathrm{H}_{2} / \mathrm{l}_{2}$ and HI. \checkmark
- K_{c} expression \checkmark
- Substitution of concentrations in K_{c} expression \checkmark
- Substitution of 49 for Kc \checkmark
- Equation: $n=\frac{m}{M} \checkmark$
- Substituting in the above equation \checkmark
- Final answer: 399,36 g \checkmark

No K ${ }_{\mathrm{c}}$ expression, correct substitution: Max. $9 / 10$

Wrong K_{c} expression: Max. 6/10

	H_{2}	I_{2}	HI
Initial quantity(mol)	2	2	0
Change(mol)	$-\mathrm{x} \checkmark$	$-x$	+2 x
Quantity at equilibrium(mol)	$2-\mathrm{x}$	$2-\mathrm{x}$	2 x
Equilibrium concentration(mol. dm^{-3})	$\frac{2-x}{4}$	$\frac{2-x}{4}$	$\frac{x}{2}$

$$
\begin{aligned}
\mathrm{K}_{\mathrm{c}}=\frac{[H I]^{2}}{\left[\mathrm{H}_{2}\right]\left[I_{2}\right]} & \left.\checkmark \frac{\left(\frac{x}{2}\right)^{2}}{\left(\frac{2-x}{4}\right)\left(\frac{2-x}{4}\right)}\right)=49 \checkmark \\
x & =1,56 \mathrm{~mol} \\
& =\mathrm{nM} \checkmark \\
\mathrm{~m}(\mathrm{HI}) & =\frac{(2)(1,56)(128) \checkmark}{399,36 \mathrm{~g} \checkmark}
\end{aligned}
$$

QUESTION 7

7.1 It dissociates/ionises completely in water to form a high concentration of OH^{-}ions.
7.2 It contains a small amount (number of moles) of base \checkmark in proportion to the volume of water \checkmark
7.3

- Formula $\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \checkmark / \mathrm{pOH}=-\log \left[\mathrm{OH}^{+}\right] \checkmark$
- Substitute 13,45 for $\mathrm{pH} \checkmark / 0,55$ for $\mathrm{pOH} \checkmark$
- $\mathrm{c}\left(\mathrm{OH}^{-}\right)=0,282 \mathrm{~mol}^{-} \mathrm{dm}^{-3} \checkmark$
- Using ratio of $1: 2$ to calculate $\mathrm{c}\left(\left(\mathrm{Ba}(\mathrm{OH})_{2}\right)\right.$
- Formula $m=c V M \checkmark$
- Substituting into the above formula \checkmark
- Answer $\sqrt{ }$

Option 1:
$\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
$13,45 \checkmark=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
$\therefore\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=3,54 \times 10^{-14} \mathrm{~mol}^{2} \mathrm{dm}^{-3}$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1 \times 10^{-14}$
$\mathrm{c}\left(\mathrm{OH}^{-}\right)=0,282 \mathrm{~mol}^{2} \mathrm{dm}^{-3} \checkmark$
$\mathrm{c}\left(\left(\mathrm{Ba}(\mathrm{OH})_{2}\right)=0,141 \mathrm{~mol} . \mathrm{dm}^{-3} \mathrm{r}\right.$
$=\quad(0,141)(0,25)(171){ }^{\checkmark}$
$=6,03 \mathrm{~g} \checkmark$

Option 2:

$$
\begin{aligned}
\mathrm{pOH} & =-\log \left[\mathrm{OH}^{-}\right] \checkmark \\
0,55 \checkmark & =-\log \left[\mathrm{OH}^{-}\right] \\
\therefore\left[\mathrm{OH}^{-}\right] & =0,282 \mathrm{~mol}_{\mathrm{l}} \cdot \mathrm{dm}^{-3} \checkmark \\
\mathrm{c}\left(\left(\mathrm{Ba}(\mathrm{OH})_{2}\right)\right. & =0,141 \mathrm{~mol} \cdot \mathrm{dm}^{-3} \checkmark \\
\mathrm{~m} & =\mathrm{cVM} \checkmark \\
& =\frac{(0,141)(0,25)(171)}{6,03 \mathrm{~g}^{2}}
\end{aligned}
$$

7.4 Positive marking from question 7.3: concentration of $\mathrm{Ba}(\mathrm{OH})_{2}$

Marking guidelines

- Formulae: $\mathrm{c}=\frac{\mathrm{n}}{\mathrm{V}} / \mathrm{n}=\mathrm{cV} / \frac{\mathrm{c}_{\mathrm{a}} \times \mathrm{V}_{\mathrm{a}}}{\mathrm{c}_{\mathrm{b}} \times \mathrm{V}_{\mathrm{b}}}=\frac{\mathrm{n}_{\mathrm{a}}}{\mathrm{n}_{\mathrm{b}}} \checkmark$
- Substitution of: $0,141 \times 60 / 0,141 \times 0,06 \checkmark$
- Use mol ratio: $\mathrm{n}_{\mathrm{a}}: \mathrm{n}_{\mathrm{b}}=2: 1 \mathrm{~V}$
- Final answer: $33,84 \mathrm{~cm}^{3} / 0,03384 \mathrm{dm}^{3} \checkmark$

```
Option 1:
\(n(\mathrm{HCl})=2 n\left(\left(\mathrm{Ba}(\mathrm{OH})_{2}\right)\right.\)
    \(=2 \mathrm{cV}\)
    \(=\underline{2(0,141)(0,06)} \checkmark\)
    \(=0.01692 \mathrm{mols}\)
\(\mathrm{c}(\mathrm{HCl})=\mathrm{n} / \mathrm{V} \checkmark\)
    \(0,5 \checkmark=0,01692 / \mathrm{V}\)
    \(V=0,03384 \mathrm{dm}^{3} / 33,84 \mathrm{~cm}^{3} \checkmark\)
```


Option 2:

$$
\begin{align*}
& \frac{c_{A} V_{A}}{c_{B}} V_{B}=\frac{n_{A}}{n_{B}} \\
& \frac{0,5}{0,141} \frac{V_{A}}{0,06} \quad \checkmark=\frac{2}{1} \\
& V_{A}=0,03384 \mathrm{dm}^{3} \checkmark \\
& \text { Accept } V_{B} \stackrel{V_{A}}{=} \quad 60 \mathrm{~cm}^{3} \\
& \mathrm{~V}_{\mathrm{A}} \quad=33,84 \quad \mathrm{~cm}^{3} \tag{4}
\end{align*}
$$

QUESTION 8

8.1 GALVANIC, \checkmark converts chemical energy to electrical energy \checkmark or no dc power supply.
8.2 Temperature of $25{ }^{\circ} \mathrm{C} / 298 \mathrm{~K} \checkmark$

Pressure $101,3 \mathrm{kPa} \checkmark$
Concentration of electrolyte of $1 \mathrm{~mol} . \mathrm{dm}^{-3} \checkmark$
8.3 Chlorine (molecule) $\checkmark \checkmark$

8.4 OPTION 1

$$
\begin{aligned}
E_{\text {cell }}^{\ominus} & =E_{\text {cathode }}^{\ominus}-E_{\text {anode }}^{\ominus} \checkmark \\
& =1,36 \checkmark-(-1,66) \checkmark \\
& =3,02 \vee \checkmark
\end{aligned}
$$

OPTION 2

Notes

- Accept any other correct formula from the data sheet.
- Any other formula using unconventional abbreviations, e.g. $\mathrm{E}^{\circ}{ }_{\text {cell }}=\mathrm{E}^{\circ}{ }_{\mathrm{OA}}-\mathrm{E}^{\circ}{ }_{\text {RA }}$ followed by correct substitutions:

$$
E_{\text {sel }}^{\circ}=E^{\circ}{ }_{O M}-E^{\circ}{ }_{\text {RM }} \text { Max/: } 3 / 4
$$

$$
\checkmark\left\{\begin{array}{lr}
\mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cl}(\mathrm{aq}) & 1,36(\mathrm{~V}) \checkmark \tag{4}\\
\mathrm{Al}(\mathrm{~s}) \rightarrow \mathrm{Al}^{\mathrm{l}^{+}(\mathrm{aq})+3 \mathrm{e}^{-}} & -1,66(\mathrm{~V}) \checkmark \\
\mathrm{Al}(\mathrm{~s})+\mathrm{Cl} l_{2}(\mathrm{~g}) \rightarrow \mathrm{Al}{ }^{3+}(\mathrm{aq})+2 \mathrm{Cl}(\mathrm{aq}) & 3,02(\mathrm{~V})
\end{array}\right.
$$

$8.53 \mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{Al}(\mathrm{s}) \rightarrow 6 \mathrm{Cl}(\mathrm{aq})+2 \mathrm{Al}^{3+}(\mathrm{aq})$

Notes

- Reactants \checkmark Products \checkmark Balancing \checkmark
- Ignore phases.
- Marking rule 6.3.10
- Marking rule 3.9.
- Marking rule 3.4: One mark is forfeited when the charge of an ion is omitted per equation (not for the charge on the electron)
8.6.1 REMAINS THE SAME \checkmark
8.6.2 DECREASES \checkmark

QUESTION 9

9.1 A solution that conducts electricity through the movement of ions.
$9.2 \mathrm{Cu}^{2+} \checkmark$
9.3.1 Decreases \checkmark
9.3.2 $\mathrm{Cu} \rightarrow \mathrm{Cu}^{2+}+2 \mathrm{e}$

Notes

- $\mathrm{Cu}^{2+}+2 \mathrm{e}^{-} \leftarrow \mathrm{Cu}$
(2/2)
$\mathrm{Cu}^{2+}+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Cu} \quad(0 / 2)$
$\mathrm{Cu} \rightleftharpoons \mathrm{Cu}^{2+}+2 \mathrm{e}^{-}$
($1 / 2$)
$\mathrm{Cu}^{2+}+2 \mathrm{e} \rightarrow \mathrm{Cu}$
($0 / 2$)
- Ignore if charge on electron is omitted.
- If a charge of an ion is omitted e.g. $\mathrm{Cu} \rightarrow \mathrm{Cu}^{2}+2 \mathrm{e}^{-}$is $\mathrm{Cu} \rightarrow \mathrm{Cu}^{2}+2 \mathrm{e}^{-} \mathrm{Max} .: 1 / 2$
9.3.4

Marking criteria

- Calculate number of mols of cations: $2,259 \times 10^{24}=n\left(6,023 \times 10^{23}\right)^{\checkmark}$
- Formula: $n=\frac{m}{M} \checkmark$
- Substitute calculated number of moles of cations and 63,5 in $n=\frac{m}{M} \checkmark$
- Final answer 238,125 g \checkmark

$$
\begin{aligned}
& \mathrm{n}_{\mathrm{e}}=\mathrm{nNA} \\
& \frac{2,259 \times 10^{24}}{}=\mathrm{n}\left(6,023 \times 10^{23}\right) \\
& \mathrm{n}=3,75 \mathrm{mols} \\
& \mathrm{~m}=/ \mathrm{nM} \checkmark \\
&=(3,75)(63,5) \\
&=238,125 \mathrm{~g} .
\end{aligned}
$$

QUESTION 10

10.1.1 Haber \checkmark
10.1.2 Catalytic oxidation of ammonia \checkmark
10.1.3 Nitrogen dioxide \checkmark
10.1.4 Ammonium nitrate \checkmark
10.2.1 Sulphuric acid $/ \mathrm{H}_{2} \mathrm{SO}_{4} \checkmark$
10.2.2 $\quad \mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NH}_{3} \rightarrow\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$

Notes:

- Reactants \checkmark Products $\checkmark \quad$ Balancing \checkmark
- Marking rule 6.3.10.

$$
\begin{array}{rlrl}
10.3 \% \mathrm{~N} & = & 14 / 20 \times 36 \\
& = & 25,2 \% \checkmark \\
\text { Mass of } \mathrm{N} & =25,2 / 100 \times \mathbf{m} \\
12,60 \checkmark & = & \underline{25,2 / 100 \times \mathrm{m}} \mathrm{r} \\
\mathrm{~m} & =50 \mathrm{~kg} \tag{4}
\end{array}
$$

10.4 Fertiliser A \checkmark

Fertilizer A has a high percentage of Phosphorus compared to fertilizer B. $\checkmark \checkmark$

QUESTION 5.1.6

